Skip to main content

Recent advances in TAM mechanisms in lung diseases

Abstract

TYRO3, MERTK, and AXL receptor tyrosine kinases, collectively known as TAM receptors, play a vital role in maintaining lung tissue homeostasis by regulating integrity and self-renewal. These receptors activate signalling pathways that inhibit apoptosis, promote cell proliferation and differentiation, mediate cell adhesion and migration, and perform other essential biological functions. Additionally, TAM receptors are implicated in mechanisms that suppress anti-tumor immunity and confer resistance to immune checkpoint inhibitors. Disruption of the homeostatic balances can lead to pathological conditions such as lung inflammation, fibrosis, or tumors. Recent studies highlight their significant role in COVID-19-induced lung injury. However, the exact mechanisms by which TAM receptors contribute to lung diseases remain unclear. This article reviews the potential mechanisms of TAM receptor involvement in disease progression, focusing on lung inflammation, fibrosis, cancer, and COVID-19-induced lung injury. It also explores future research aspects and the therapeutic potentials of targeting TAM receptors, providing a theoretical foundation for understanding lung disease mechanisms and identifying treatment targets.

Introduction

Lung diseases primarily encompass lung inflammation, fibrosis, and tumors. Lung inflammation involves the accumulation of immune cells, which are phagocytized by macrophages during apoptosis. However, secondary necrosis of these apoptotic cells can trigger uncontrolled inflammatory activity [1]. Pulmonary fibrosis can develop when lung inflammation persists and inflammatory activities worsens. It is a chronic, progressive disease, and the interstitial pneumonias are classified into three categories based on pathomorphological variants: major idiopathic interstitial pneumonias, rare idiopathic interstitial pneumonias, and non-classifiable idiopathic interstitial pneumonias [2]. The main effector cells in pulmonary fibrosis are fibroblasts, myofibroblasts, and differentiated fibroblasts. The primary cause of fibrosis is the imbalance of extracellular matrix (ECM) protein homeostasis and the dysfunction of fibroblasts and myofibroblasts [3, 4]. Lung cancer remains the leading cause of cancer-related deaths worldwide, with non-small cell lung cancer (NSCLC) being the commonest type [5]. The therapeutic targets for lung diseases for instance pneumonia, pulmonary fibrosis, and lung cancer are not yet well understood and require further investigation. Additionally, the pathogenesis of lung diseases is not fully elucidated, necessitating comprehensive research to explore their mechanisms and identify effective therapeutic targets.

Numerous studies indicate that TAM receptors play a significant role in lung homeostasis regulation, making them a potential therapeutic target for lung diseases. TAM, a transmembrane receptor protein that includes TYRO3, AXL, and MERTK, consists of extracellular, transmembrane, and intracellular regions. It belongs to one of the 20 subfamilies of receptor tyrosine kinases (RTKs) [6]. Under normal physiological conditions, TAM performs various functions, including inhibiting cell apoptosis, promoting proliferation, and facilitating cell adhesion and migration. The ligand Gas6 (gene 6) aids TAM in regulating inflammatory responses and fibrosis [7, 8]. However, in pathological states, TAM is overexpressed in damaged tissues, disrupting homeostasis and contributing to conditions like inflammation, fibrosis, and immune responses, evident in chronic obstructive pulmonary disease (COPD) and small cell lung cancer. In lung inflammation, TAM is vital for hemostasis and regulating macrophage activity and anti-inflammatory responses through its interaction with Gas6 [9, 10]. In lung fibrosis, AXL and TYRO3 activate lung fibroblasts [11], while MERTK is involved in myofibroblast activation [12]. AXL also regulates extracellular matrix homeostasis and the functions of fibroblasts and myofibroblasts, influencing fibrosis progression. In lung tumors, AXL and Gas6 regulate cancer growth, metastasis, and epithelial-mesenchymal transition (EMT), creating a favourable environment for tumor development [13]. This suggests that the Gas6/AXL pathway is a promising target for lung cancer therapy, offering anti-tumor effects, reducing invasion, and inhibiting migration [14,15,16,17]. MERTK can contribute to cancer development through overexpression or inappropriate activation of ligands like Gas6 and PROS1 (protein S), alterations in chimeric receptor signalling (e.g., Colony-Stimulating Factor 1 (CSF-1)), and activation of signalling pathways such as PI3K (phosphatidylinositol 3-kinase), ERK (extracellular regulatory protein kinase), p38 (p38 mitogen-activated protein kinase), and MEK (mitogen-activated extracellular signal-regulated kinase) [18]. TYRO3, by binding to PROS1, can influence local coagulation, proliferation, or differentiation and may play a role in the advance or progression of lung cancer [19]. Additionally, since the COVID-19 pandemic, there has been robust research into how the viral infections damage lung tissues. This damage may involve lung injury, abnormal wound healing, the activation of pro-inflammatory and pro-fibrotic signals [20]. The Gas6/TAM system plays a significant role in the pathological processes of diseases [21, 22], highlighting its critical importance in understanding COVID-19 pathogenesis. This review explores the potential mechanisms of TAM in lung diseases, focusing on four key areas: lung inflammation, fibrosis, cancer, and COVID-19-related injury. It underscores TAM's impact on the development of lung inflammation and fibrosis, triggering new insights for targeted therapeutic strategies in treating lung diseases.

TAM

Structure of TAM

TAM receptors, members of the receptor tyrosine kinase family, include TYRO3, AXL, and MERTK [6] These transmembrane proteins consist of an extracellular region, a transmembrane domain, and an intracellular region. The extracellular region features two tandem immunoglobulins like domains and two fibronectin type III repeats, which enable ligand binding. The transmembrane region contains cleavage sites for ADAM17 (in AXL and MERTK) and ADAM10 (in AXL), allowing proteolytic processing. The intracellular region includes a tyrosine kinase catalytic domain, a conserved KWIAIES motif, and three tyrosine autophosphorylation sites [23], which are critical for signal transduction [24, 25]. The tyrosine kinase domain is implicated in oncogenic activity and can be activated both dependently and independently of extracellular stimuli [26].

TAM is activated by binding to its ligand’s growth inhibition specific gene 6 and PROS1 [27]. Compared to TYRO3, AXL exhibits higher structural similarity to MERTK receptors, with 31%—36% amino acid homology in the extracellular region and 54%—59% in the intracellular region [28]. TYRO3, AXL, and MERTK are homologous type I RTKs, sharing a conserved kinase domain sequence [KW (I/L) and (I/L) ES] and similar extracellular structures, including two immunoglobulin-like domains and two fibronectin III domains [29]. TAM is expressed in monocytes, macrophages, dendritic cells (DCs), phagocytes, as well as in natural killer (NK) and natural killer T (NKT) cells [30, 31] (Fig. 1).

Fig. 1
figure 1

Structure of TAM. TAM is a transmembrane receptor protein that consists of an extracellular region, a transmembrane region, and an intracellular region. The extracellular region is composed of two tandem immunoglobulins and two fibronectin type III repeat sequences. Transmembrane region consists of TYRO3, AXL, MERTK these 3 RTKs. The intracellular region contains the tyrosine kinase catalytic region, the highly conserved KWIAIES motif, and three tyrosine autophosphorylation sites. TAM is able to bind to ligand-specific gene 6 and protein S

Mechanisms of AXL in disease

Activation of AXL under physiological conditions requires homodimerization of its ligand and is fully achieved through interaction with phosphatidylserine [32]. Binding of AXL to its ligand triggers autophosphorylation, receptor dimerization, and trans-autophosphorylation of tyrosine residues in the cytoplasmic domains [33]. Oxidative stress can also induce AXL phosphorylation, enhancing cell migration [15]. AXL activates downstream signalling pathways that promote processes such as proliferation, survival, migration, plasticity, and immunosuppression. In lung tissue, AXL expressed in platelet [34], endothelial cell, [35] and bronchial epithelial cell [19], affecting normal cell growth and immune regulation of the body [36]. For instance, AXL mediates contact dependent activation and platelet stabilization through interactions with Gas6 [37,38,39], while also promoting inflammation by enhancing leukocyte extravasation [40]. AXL in the endothelium is cleaved into its soluble form, sAXL, which is released into the bloodstream. Plasma levels of sAXL serve as indicators of inflammation severity and trends in endothelial dysfunction, as seen in conditions like COVID-19 [41].

In the context of lung tumors, AXL modulates the tumor immune microenvironment to encourage tumor growth. It regulates cancer cell properties, influencing migration, growth, survival, and chemotherapy resistance [42]. AXL also facilitates immune evasion by reducing antigen presentation and immune cell killing [43]. Additionally, it promotes the secretion of immunosuppressive cytokines and chemokines, recruits immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), and reduces the infiltration of activated immune cells like cytotoxic T cells. Furthermore, AXL drives the polarization of M1 to M2 macrophages, contributing to tumor microenvironment remodelling [26].

Mechanism of MERTK in disease

MERTK plays a critical role in various physiological processes, including lung tissue homeostasis and repair, platelet aggregation, and innate immune regulation. It is essential for phagocytosis and the efficient clearance of apoptotic cells, as macrophages lacking MERTK can recognize and bind apoptotic cells but fail to engulf them [44]. By mediating efferocytosis, MERTK suppresses inflammation, preventing the release of antigens from apoptotic cells and eliminating apoptotic debris [45]. This process also induces MERTK signalling, which promotes M2 macrophage polarization [46,47,48,49]. PROS1-mediated MERTK signalling serves as a late costimulatory signal, enhancing the proliferation and secretion of effector and memory cytokines [50]. Activated T cells expressing PROS1 and PtdSer (phosphatidylserine) can bind to MERTK on dendritic cells, further inhibiting inflammatory responses [51]. In platelet aggregation, MERTK promotes integrin signalling, fibrinogen adhesion, and platelet spreading [52,53,54], although its exact role in platelet activation remains unclear and requires further verification [37]. MERTK also maintains immune balance by preventing excessive pro-inflammatory responses to pathogens or tumor cells while avoiding autoimmune reactions that could lead to tissue damage or tumorigenesis [55]. In the context of lung cancer, MERTK overexpression contributes to oncogenic processes such as cell growth, proliferation, survival, and migration. Inhibiting MERTK can induce apoptosis, suppress colony formation, enhance chemosensitivity, and reduce tumor growth [56].

Mechanism of TYRO3 in disease

The endogenous ligands for TYRO3 are Gas6 and PROS1. Gas6 is significantly upregulated following growth arrest [57], while PROS1 is linked to the proliferation and differentiation of immune cells [6]. TYRO3 plays a role in platelet aggregation and is involved in vascular injury responses [58]. Gas6 activates TYRO3, promoting the activation of pro-inflammatory endothelial cells, adhesion molecule expression, platelet adhesion to endothelial cells [40], and tissue factor release, which triggers exogenous coagulation and thrombus formation [59]. Studies in mice with TYRO3 deficiency have shown reduced platelet granule secretion, impaired thrombus formation, and decreased platelet aggregation stability [34, 60, 61]. TYRO3 also inhibits inflammation by enhancing the phagocytosis of apoptotic tumor cells by dendritic cells and macrophages [62,63,64,65]. Activated T cells contribute to this process by producing PROS1, which forms a PROS1-PtdSer complex with exposed PtdSer on their surface, stimulating TYRO3 on dendritic cells [51].

TYRO3 has dual roles, regulating platelet aggregation, immune responses, and cell growth while also exhibiting oncogenic potential [60, 66]. It interacts with the PI3K pathway and induce transformations of NIH3T3 cells via the EGFR/TYRO3 chimeric receptor. The PI3K pathway mediates part of TYRO3's oncogenic capacity [67]. Additionally, the synthesis and secretion of anticoagulant protein S, along with co-expression of the TYRO3 receptor, may contribute to lung carcinogenesis [19] (Fig. 2).

Fig. 2
figure 2

Four main mechanisms of action exist for TAM. First, TAM facilitates platelet aggregation by activating integrin αIIbβ3 through AXL or TYRO3, enabling sustained platelet contact to promote thrombosis. Second, TAM modulates the inflammatory response by inhibiting TLR signaling and inflammatory cytokine production through STAT1-induced AXL-IFNαR interactions, which co-drive SOCS1 and SOCS3 feedback. Third, TAM mediates cytosolic burial by binding to PtdSer on apoptotic cells, activating downstream signaling via the VAV1-RHOA, p130cas-CRKII-DOCK180-ELMO, and related pathways to induce cytoskeletal reorganization. Finally, TAM promotes M2 polarization during wound healing by inhibiting NF-κB and activating the PI3K-AKT-STAT1-dependent LXRα/β pathway, while reducing M1 cytokine expression by disrupting the Jun transcription factor complex (Jun proto-oncogene is a member of AP-1 (activator protein-1) transcription factor family) through MERTK-PTP1B-p38α signalling

The role of TAM in lung diseases

TAM and pulmonary inflammation

Lung inflammation can be either non-infectious or infectious in nature [68]. Pneumonia, a lung infection affecting susceptible individuals, often arises from chronic conditions (e.g., age, smoking, COPD, diabetes) or acute events (e.g., poisoning, air pollution, trauma) [69]. These factors lead to exudate accumulation in the lung parenchyma, impairing respiratory function [70]. The development of pneumonia, or pneumogenesis, is influenced by host biology, including immune resistance and tissue resilience [1]. Adaptive immunity significantly impacts pneumonia outcomes, particularly through recurrent respiratory infections and lung-resident memory cells triggered by atypical recall responses [71, 72]. Tissue resilience supports anti-inflammatory, pro-resolving, and reparative-regenerative pathways. The severity of pneumonia ultimately depends on the strength of the host's immune resistance and tissue elasticity [73].

Gas6 significantly impacts haemostasis and reduces inflammation by interacting with TAM [10]. The Gas6/TAM axis regulates inflammatory responses and fibrosis progression [8]. Physiologically, this axis plays a dual role, either promoting tissue repair or causing organ damage and dysfunction. Its activation can exhibit anti-inflammatory effects in certain cells and tissues, such as upregulating AXL phosphorylation in the alveolar epithelium during ischemia–reperfusion-induced acute lung injury (IR-ALI), where Gas6/AXL signalling activates the SOCS3-mediated pathway to reduce IR-related inflammation and injury [74]. However, it can also maintain pro-inflammatory responses in other contexts, depending on its anti-inflammatory or pro-fibrotic properties.

The anti-inflammatory effects of the Gas6/TAM system primarily stem from its regulation of macrophage activity [9]. When overexpressed in damaged tissues, Gas6 inhibits pro-inflammatory cytokine production, mediates apoptotic body cytotoxicity, and limits antigen presentation to antigen-presenting cells (APCs) by attenuating Toll-like receptors (TLRs) and type I IFN signalling. Additionally, it suppresses NLRP3 inflammasome activation through autophagy [22].

Studies have shown that MERTK and AXL specialize in coordinating apoptotic cell clearance across different contexts and play critical roles in inflammatory regulation [75]. MERTK facilitates the phagocytosis of microparticles by alveolar macrophages during acute lung injury, thereby reducing the pro-inflammatory effects on alveolar epithelial cells [76]. endothelial MERTK supports endothelial barrier function and mitigates inflammation by regulating neutrophil transmigration and endothelial permeability [77]. Dexmedetomidine (DEX) has been shown to alleviate sepsis-associated acute lung injury by inhibiting the ROS/ADAM10/AXL signalling pathway, reducing macrophage cytotoxicity, upregulating AXL expression in mouse alveolar macrophages, and enhancing apoptotic cell clearance [78]. If lung inflammation persists and worsens, it can progress to pulmonary fibrosis.

TAM and pulmonary fibrosis

Pulmonary fibrosis is a chronic and progressive lung disease marked by thickening of the alveolar walls, impaired gas exchange, and eventual respiratory failure [79, 80]. Based on pathomorphological characteristics, interstitial pneumonias are categorized into three groups: major idiopathic interstitial pneumonia, rare idiopathic interstitial pneumonia, and unclassifiable idiopathic interstitial pneumonia. Among these, idiopathic pulmonary fibrosis (IPF), a subset of major idiopathic interstitial pneumonia, is the most severe and irreversible form, characterized by progressive fibrosis of the lung parenchyma [81]. Fibrosis arises from dysfunctional wound healing [82], with chronic lung inflammation being a key contributing factor [83]. The primary effector cells in pulmonary fibrosis are fibroblasts and myofibroblasts. The disease is characterized by excessive ECM deposition and structural remodelling of the lung, which disrupts the dynamic equilibrium between ECM synthesis and degradation [3]. Two major regulatory mechanisms are involved: the proliferation and apoptosis of fibroblasts and myofibroblasts, and the synthesis and degradation of ECM components [4]. The main cause of pulmonary fibrosis is an imbalance in ECM homeostasis and a disruption in the physiological functions of fibroblasts and myofibroblasts.

IPF is a rare and heterogeneous disease with a complex etiology that remains poorly understood. Multiple factors contribute to its development, including genetic mutation [84,85,86,87], age, sex [88, 89], and environmental factors ( smoking [90], Indoor pollutants [91]). However, recurrent epithelial injury from various aetiologies emphasize the IPF initiation [92]. For instance, mutations in surfactant-related genes, which are essential for normal epithelial function, can promote pulmonary fibrosis [93]. Additionally, dysfunction in pro-inflammatory cytokines, such as transforming growth factor-β (TGF-β), plays a significant role in the disease process [94, 95]. Elevated levels of connective tissue growth factor (CTGF), platelet-derived growth factor (PDGF), and fibroblast growth factors (FGFs) are known to exacerbate lung fibrosis. Inhibitors targeting these growth factors [96,97,98,99], such as TGF-β inhibitors [100], have shown potential in halting fibrotic progression and improving outcomes for patients. The TAM receptor tyrosine kinase family, including AXL, TYRO3, and MERTK, plays a pivotal role in IPF. AXL forms a complex with Gas6, regulating Gas6-mediated signalling and modulating ligand availability [101]. This interaction negatively regulates the alveolar epithelial phenotypes, leading to a loss of epithelial integrity [102]. Interestingly, Gas6 exhibits antifibrotic effects, as demonstrated by studies where recombinant Gas6 (rGas6) reduced pulmonary fibrosis in mice by inhibiting EMT, apoptosis, and fibroblast activation in alveolar epithelial type II (ATII) cells [103].

Furthermore, AXL, TYRO3, and their ligand Gas6 contribute to the activation of lung fibroblasts in IPF, while MERTK is not expressed in these cells [11]. However, MERTK expression is upregulated in certain macrophage subpopulations within IPF, where it is involved in myofibroblast activation and fibrosis [12, 104]. Gas6 has the highest affinity for AXL, suggesting that the Gas6/TAM system primarily exerts its effects through AXL in IPF. The roles of MERTK and TYRO3 in IPF require further investigation. Notably, AXL inhibition has shown differential effects depending on the disease stage: worsening inflammation and fibrosis in the acute phase, but alleviating pulmonary fibrosis in the fibrotic phase. These highlights need for staged and targeted therapeutic approaches in treating pulmonary fibrosis [105]. The Gas6/TAM system has been implicated in the pathogenesis of pulmonary fibrosis, particularly in IPF. Further exploration of its role in other fibrotic diseases may provide valuable insights into broader therapeutic applications.

TAM and lung tumor

Mechanisms of lung tumor

Lung cancer is one of the most common and deadly malignancies worldwide, with NSCLC being the most prevalent form [5]. Smoking remains the primary risk factor, and countries with high or rising smoking rates are expected to see increased lung cancer incidence [106, 107]. A key feature of lung cancer is the aberrant activation of the extracellular regulatory protein kinase signalling pathway. The zinc finger protein ZNF251, which is overexpressed in clinical lung cancer samples and promotes tumor cell growth, has emerged as a potential therapeutic target. ZNF251 inhibits the expression of dual specificity phosphatases 6 (DUSP6), a negative regulator of ERK activation, by directly binding to its promoter region [108]. Additionally, exosomes derived from lung cancer tumors have been shown to play a significant role in promoting cancer progression. These exosomes induce epithelial-mesenchymal transition, foster a favourable tumor microenvironment, enhance cell proliferations, inhibit apoptosis, regulate invasion and metastasis, mediate immunosuppression and immune evasion, promote angiogenesis, drive cancer-related fibroblast transformation, and contribute to resistance against radiotherapy and chemotherapy [109,110,111,112,113,114].

AXL and lung tumors

AXL is recognized for its carcinogenic potential, particularly in NSCLC, where it is co-expressed with its ligand Gas6 in specific cell lines [115, 116], contrasting with its absence in normal bronchial epithelial and small cell lung cancer cells. This expression pattern may relate to histochemical and adhesive phenotypes [117]. AXL promotes NSCLC progression by enhancing tumor growth, metastasis, invasion, drug resistance, and EMT, encouraging a conducive environment for tumorigenesis [13]. AXL also plays a role in immune regulation by clearing apoptotic cells [118], reducing inflammation, and creating an immune-tolerant microenvironment that influences lung cancer growth [117, 119]. Oxidative stress exacerbates AXL-mediated cell migration and invasion via the AKT1/Rac1 pathway [15]. Additionally, CD73 activates AXL by binding to its R55 site, independently of Gas6, promoting metastasis and EMT through the CD73/AXL axis [120].

AXL is closely linked to the epithelial-mesenchymal transition [121,122,123]. a process where polarized epithelial cells lose adhesion and gain migratory and invasive mesenchymal properties [124]. EMT plays a key role in the progression of NSCLC [124,125,126,127]. AXL expression is higher in NSCLC mesenchymal cancer cells than in epithelial cancer cells, and its abnormal expression promotes EMT-related phenotypes, enhancing cell migration and invasion [17], while maintaining the EMT state [128]. The AXL-MET axis represents a potential therapeutic target for NSCLC. Research indicates that Phosphofructokinase platelet (PFKP), a metabolic enzyme essential for cancer hyperglycolysis, binds to AXL, activating its signalling pathway and promoting MET phosphorylation to drive NSCLC progression. Nanoparticle system (NPs)-mediated PFKP silencing reduces cell proliferation, migration, invasion, and colony formation by inhibiting the AXL-MET axis. A nanoparticle system encapsulating PFKP siRNAs enhances the stability of siRNA and promotes its release into the cytoplasm, effectively inhibiting PFKP expression, enhancing the targeted inhibition of the PFKP-mediated AXL-MET axis in tumors, and ultimately hindering tumor growth in vivo [129].

Cancer stem cells (H1299-sdCSCs) are obtained from tumor spheres of the human NSCLC cell line H1299. AXL is highly expressed in H1299-sdCSCs and regulates their biophysical properties, including low stiffness and soft elasticity. AXL knockdown significantly reduces tumor sphere formation [130, 131]. In addition, AXL may play a role in promoting pro-tumor macrophages. Studies have shown that targeted inhibition of AXL on M2 polarized tumor-associated macrophages (M2-TAMs) helps to polarize them towards the M1 type and activate macrophage anti-tumor immunity. Direct inhibition of AXL carried by macrophages and AXL on tumor cells can effectively interfere with M2 polarization and its pro-tumor activit [132].

The activation and overexpression of MERTK and AXL are key factors promoting NSCLC, with complementary and overlapping roles. These receptors are aberrantly expressed in NSCLC but are absent or present at low levels in NHBE cells (Normal Human Bronchial Epithelial Cells) [133,134,135,136]. MERTK promotes tumor cell proliferation and anti-apoptotic signalling, while AXL reduces sensitivities to chemotherapy. Together, MERTK and AXL enhance tumor cell survival by inhibiting apoptosis, fostering growth, and decreasing chemosensitivity in NSCLC cells [56]. However, the precise mechanisms by which AXL contributes to drug resistance requires further investigation, potentially involving EMT status and interactions with other receptors in targeted signalling pathways. AXL expression is linked to aggressive tumor phenotypes, and its upregulation and hyperactivation influence the tumor microenvironment. Therefore, combining AXL inhibitors [137] with current chemoimmunotherapy regimens, such as immune checkpoint Inhibitors ( ICIs) [138] and epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) [139,140,141,142,143,144,145,146,147] may benefit NSCLC patients.

Notably, AXL exhibits dual functionality, supporting normal cell growth while also possessing oncogenic properties. It can induce cancer cell apoptosis, inhibit tumor growth, and reduce drug resistance by preventing AXL overexpression or its co-expression with ligands, offering potential strategies for lung cancer treatment.

MERKT and lung tumor

MERTK's role in cancer is linked to the inappropriate expression of its ligands and alterations in chimeric receptor signalling pathways [18]. Unbiased gain-of-function retroviral insertion screens have also highlighted MERTK's oncogenic potential [148]. MERTK promotes tumorigenesis through its ligands, primarily Gas6 and PROS1, which activate the PI3K/AKT and mitogen-activated protein kinase (MAPK) signaling cascades, pathways also associated with the Epidermal Growth Factor Receptor (EGFR) [149]. Protein S, another ligand, requires modification to activate MERTK-mediated phagocytosis of apoptotic cells [150, 151]. Additionally, galectin-3, which is overexpressed in many cancers, may contribute to MERTK signalling [152].

MERTK also contributes to lung tumorigenesis via chimeric receptor signalling. For instance, human CSF-1 induces MERTK autophosphorylation, activating phospholipase Cg, PI3K, p70S6 kinases, MEK, and ERK [153]. Furthermore, a constitutively active MERTK chimera, formed by fusing the extracellular domain of CD8 with MERTK's intracellular region [154], activates MEK1, ERK, PI3K, and the p38 pathway, influencing the proliferation, migration, and survival of lung cancer cells [155].

In NSCLC, Gas6-induced phosphorylation of p38, ERK1/2, MEK1/2, AKT (Protein Kinase B), CREB, and FAK (Focal Adhesion Kinase) promotes tumor cell migration and invasion [56]. MERTK activation triggers multiple pro-oncogenic signalling pathways, including MAPK, p38, and PI3K, which drive lung carcinogenesis by enhancing cell proliferation and migration while reducing apoptosis and chemosensitivity [18]. Inhibiting MERTK in NSCLC increases apoptosis, reduces colony formation, enhances chemosensitivity, and decreases tumor formation.

Cancer progression is often linked to MERTK mutations, ligand overexpression, or altered chimeric receptor signalling. Targeting MERTK in tumor cells offers a promising therapeutic strategy, with potential inhibitors including ligand traps, monoclonal antibodies, and small molecule tyrosine kinase inhibitors. A novel macrocyclic dual MERTK/AXL inhibitor, lead compound 43, shows therapeutic potentials with low nanomolar potency against MERTK and AXL, demonstrating anti-tumor activity in lung cancer cell lines [156].

TYRO3 and lung tumor

Studies have shown that the co-expression of TYRO3 and protein S is a common feature in most lung cancer cell lines. Unlike Gas6, protein S does not stimulate TYRO3 kinase activity [157, 158]. However, as an active anticoagulant protein produced by cancer epithelial cells [159], protein S may contribute to lung carcinogenesis or progression through a receptor-ligand system that influences local anticoagulation, proliferation, or differentiation [19]. The interaction between protein S and TYRO3 may also promote cell survival or aid in tissue repair, suggesting a dual role in lung cancer development and progression, with mechanisms that require further investigation. Additionally, combining TYRO3-targeted inhibitors with checkpoint inhibitors may enhance antitumor activity and benefit NSCLC patients [160]. Furthermore research is needed to explore whether TYRO3 influences lung cancer through other mechanisms or pathways, as current studies on its role remain limited.

Mechanisms of TAM in COVID-19-induced lung injury

SARS-CoV-2, the virus responsible for COVID-19, is a pathogen that causes an acute respiratory disease. It encodes four major structural proteins: spike protein (S), membrane protein (M), nucleocapsid protein (N), and envelope protein (E) [161]. The spike protein, a glycoprotein, consists of two functional subunits, S1 and S2. The S1 subunit, exposed on the surface, contains a receptor-binding domain (RBD) that specifically recognizes angiotensin-converting enzyme 2 (ACE2) on host cells, facilitating viral entry [162, 163]. The S2 subunit is primarily involved in membrane fusion [164] (Fig. 3).

Fig. 3
figure 3

SARS-CoV-2 utilizes its surface spike (S) protein for receptor recognition and membrane fusion. The viral genome encodes four structural proteins: S, membrane (M), nucleocapsid (N), and envelope (E). The S protein, a glycoprotein composed of S1 and S2 subunits, mediates viral entry. Specifically, the S1 receptor-binding domain (RBD) binds ACE2, while S2 facilitates membrane fusion

Gas6 binds PtdSer on viral surfaces and interacts with TAM to connect viruses to macrophages and other phagocytes, facilitating either lattice protein-mediated endocytosis or viral megalocytosis [24], leading to viral internalization [165, 166]. Serum ACE2 and AXL levels are linked to the severity of COVID-19, particularly with pulmonary inflammation [167], and targeting these proteins provides an effective strategy to block viral entry into cells [168, 169]. AXL facilitates the entry of viruses into cells [20], while increased galectin-3, a ligand for MERTK and TYRO3 activation, correlates with fibrosis, inflammation, and tissue damage [170]. Plasma levels of Gas6 and soluble AXL (sAXL) correlate with COVID-19 severity, progressing with disease intensity and serving as potential biomarkers for prognosis [171]. TAM receptors may play a role in both adaptive and non-adaptive immunity [172]. The Gas6/TAM axis is a key regulator of the innate immune system, and under inflammatory conditions, elevated levels of sAXL, sMERTK, and sTYRO3 help modulate the inflammatory response and protect against tissue damage [21, 22].

The development of pulmonary fibrosis following viral infection can be attributed to two main mechanisms: virus-induced lung injury with abnormal wound healing and immune-mediated injury, which involves the activation of pro-inflammatory and pro-fibrotic signals [20]. Clinical studies in COVID-19 patients have demonstrated that SARS-CoV-2 disrupts normal re-epithelialization, leading to abnormal wound healing and subsequent lung injury [173]. This injury is often accompanied by thrombotic activation, as thrombosis and disseminated intravascular coagulation are common in these patients [174,175,176]. PROS1, a critical regulator of the coagulation cascade, plays a key role in preventing coagulopathy [177]. However, its depletion due to SARS-CoV-2 infection of blood vessels can result in uncontrolled cytokine production, triggering cytokine storms and damaging lung vasculature. Coagulation dysfunction, vascular necrosis, and bleeding complications may also reduce TAM ligand levels, as thrombus exposure accelerates PROS1 consumption [178]. In contrast, the Gas6/TAM axis is essential for maintaining vascular homeostasis and regulating platelet activation, serving as a protective mechanism against vascular damage and endothelial repair [39, 179]. ADP-P2Y12 and Gas6 work synergistically to activate PI3K signalling, promoting sustained activation of αIIbβ3 and stabilizing thrombus [180]. However, moderate inhibition of the Gas6/TAM axis can reduce platelet activation and thrombosis while still allowing platelet plugs to form, thereby maintaining haemostatic function [181].

Viruses can trigger immune-mediated injury by activating pro-inflammatory and pro-fibrotic signals. In the case of SARS-CoV-2, the immune response can become overactive, leading to excessive cytokine production, recruitment of neutrophils, monocytes, and macrophages, which express phosphatidylinositol 3-kinase gamma (PI3Kγ) [182]. This exacerbates immune damage and contributes to pulmonary fibrosis [173]. Elevated levels of cytokines such as IL-6 and tumor necrosis factors (TNF) in COVID-19 patients have been linked to widespread lung damage [183, 184]. PROS1 plays a critical role in cytokine regulation by binding to the extracellular domain of MERTK, activating its kinase to suppress cytokine release during infections caused by viral, bacterial, and other pathogens [185]. In COVID-19 patients, reduced PROS1 expression impairs TAM signalling, resulting in chronic immune hyperactivation, ineffective clearance of apoptotic cells, and an increased risk of autoimmune diseases. Interestingly, PROS1 has dual functions, acting as both an anticoagulant and a potential inducer of excessive blood coagulation and immune responses, possibly linked to its role as a TAM ligand.

The Gas6/TAM system is implicated in the pathological processes of COVID-19, with receptors like AXL potentially mediating viral entry, inflammatory regulation, and the coagulation cascades. This suggests the system’s significance in understanding COVID-19 pathogenesis. Exploring the role of Gas6/TAM in pulmonary inflammation and fibrosis could offer novel therapeutic strategies for COVID-19 patients (Table 1).

Table 1 Study on the mechanism of TAM receptor in various lung diseases

Summary and outlook

This review focuses on the role of TAM (TYRO3, AXL, and MERTK) in the haematopoietic, immune, fibrotic, and inflammatory systems of the lung. TAM exhibits dual roles in regulating lung cell biology, highlighting its complexity as a highly regulated system. To elucidate TAM's impact on lung disease progression, this review examines its function alongside its ligands, Gas6 and PROS1, in processes such as proliferation and differentiation. It provides a comprehensive analysis of TAM's involvement in four key areas: lung inflammation, fibrosis, tumour development, and COVID-19-related lung injury.

This review highlights that TAM receptors can exacerbate lung inflammation and fibrosis via the Gas6/TAM axis. While MERTK and AXL can collaborate to clear apoptotic cells and limit inflammatory progression, AXL plays a role in lung cancer by driving tumor growth, metastasis, invasion, drug resistance, and epithelial-mesenchymal transition. Mutations in MERTK, abnormal ligand expression, and altered chimeric receptor signalling can activate pro-cancer pathways, enhancing cell proliferation and migration while reducing apoptosis and chemotherapy sensitivity, thereby promoting lung cancer development. Additionally, the co-expression of TYRO3 and protein S is a common feature in most lung cancer cell lines and contributes to tumor progression.

A detailed review of the progress in understanding the mechanism of action of TAM in lung diseases can help identify new therapeutic targets for lung tumor treatment. Inhibition of the TAM signalling pathways has shown promise in lung tumor therapy by blocking the co-expression of AXL and its ligand Gas6, thereby reducing cell adhesion, mitotic activity, and proliferation, which inhibits tumor growth. The AXL-MET axis is a potential therapeutic target for NSCLC patients, as inhibiting AXL expression can reduce EMT-related phenotypic transformation and stabilize the cytoskeleton, thereby inhibiting metastasis, invasion, and drug resistance. Additionally, targeting MERTK, which is selectively demanded by tumor cells, offers a strategy for developing inhibitors, such as ligand traps, monoclonal antibodies, and small molecule tyrosine kinase inhibitors, to inhibit lung tumor occurrence and development. The co-expression of TYRO3 and protein S, a common feature in most lung cancer cell lines, also contributes to tumor development. Furthermore, targeting ACE2 and AXL provides an effective strategy to inhibit the entry of the COVID-19 virus into cells.

TAM inhibitors can restore drug sensitivity, inhibit angiogenesis, reduce lung tumorigenesis and prevent lung tumor formation. Current therapeutic candidates include the dual MERTK/AXL inhibitor compound 43, immune checkpoint inhibitors, EGFR-TKIs, TYRO3-targeted inhibitors combined with checkpoint inhibitors. However, the long-term effects of TAM signalling inhibition on lung disease development remain unexplored, and population-based trials are lacking. There is also a scarcity of research data and statistics needed to translate the theoretical framework into practical applications. Conducting relevant population trials to emphasize TAM's role and impact in lung diseases could lead to more rational treatment strategies, enabling targeted therapy for lung diseases without affecting other cells and tissues.

Data availability

Not applicable.

Abbreviations

ACE2:

Angiotensin-converting enzyme 2

AKT:

Protein kinase B

AP-1:

Activator protein-1

APCs:

Antigen-presenting cells

ATII:

Alveolar epithelial type II

COPD:

Chronic obstructive pulmonary disease

CSF-1:

Colony-stimulating factor 1

CTGF:

Connective tissue growth factor

DCs:

Dendritic cells

DEX:

Dexmedetomidine

DUSP6:

Dual specificity phosphatases 6

ECM:

Extracellular matrix

EGFR:

Epidermal growth factor receptor

EGFR-TKI:

Epidermal growth factor receptor tyrosine kinase inhibitor

EMT:

Epithelial-mesenchymal transition

ERK:

Extracellular regulatory protein kinase

FAK:

Focal adhesion kinase

FGFs:

Fibroblast growth factors

ICIs:

Immune checkpoint inhibitors

IPF:

Idiopathic pulmonary fibrosis

IR-ALI:

Ischemia-reperfusion-induced acute lung injury

M2-TAMs:

M2 polarized tumor-associated macrophages

MAPK:

Mitogen-activated protein kinase

MDSCs:

Myeloid-derived suppressor cells

MEK:

Mitogen-activated extracellular signal-regulated kinase

NHBE cells:

Normal human bronchial epithelial cells

NK:

Natural killer

NKT:

Natural killer T

NPs:

Nanoparticle System

NSCLC:

Non-small cell lung cancer

p38:

P38 mitogen-activated protein kinase

PDGF:

Platelet-derived growth factor

PFKP:

Phosphofructokinase platelet

PI3K:

Phosphatidylinositol 3-kinase

PI3Kγ:

Phosphatidylinositol 3-kinase gamma

PROS1:

Protein S

PtdSer:

Phosphatidylserine

RBD:

Receptor-binding domain

rGas6:

Recombinant Gas6

RTKs:

Receptor tyrosine kinases

sAXL:

Soluble AXL

TGF-β:

Transforming growth factor-β

TLRs:

Toll-like receptors

TNF:

Tumor necrosis factors

Tregs:

Regulatory T cells

References

  1. Braciale TJ, Sun J, Kim TS. Regulating the adaptive immune response to respiratory virus infection. Nat Rev Immunol. 2012;12(4):295–305. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nri3166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Travis WD, Costabel U, Hansell DM, et al. An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med. 2013;188(6):733–48. https://doiorg.publicaciones.saludcastillayleon.es/10.1164/rccm.201308-1483ST.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gaggar A, Weathington N. Bioactive extracellular matrix fragments in lung health and disease. J Clin Invest. 2016;126(9):3176–84. https://doiorg.publicaciones.saludcastillayleon.es/10.1172/JCI83147.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Upagupta C, Shimbori C, Alsilmi R, Kolb M. Matrix abnormalities in pulmonary fibrosis. Eur Respir Rev Off J Eur Respir Soc. 2018;27(148): 180033. https://doiorg.publicaciones.saludcastillayleon.es/10.1183/16000617.0033-2018.

    Article  Google Scholar 

  5. Jiang L, Li Z, Wang R. Long non-coding RNAs in lung cancer: regulation patterns, biologic function and diagnosis implications (Review). Int J Oncol. 2019;55(3):585–96. https://doiorg.publicaciones.saludcastillayleon.es/10.3892/ijo.2019.4850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. DeRyckere D, Huelse JM, Earp HS, Graham DK. TAM family kinases as therapeutic targets at the interface of cancer and immunity. Nat Rev Clin Oncol. 2023;20(11):755–79. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41571-023-00813-7.

    Article  PubMed  Google Scholar 

  7. Wu G, Ma Z, Hu W, et al. Molecular insights of Gas6/TAM in cancer development and therapy. Cell Death Dis. 2017;8(3): e2700. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/cddis.2017.113.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rizzi M, Tonello S, Dnghia D, Sainaghi PP. Gas6/TAM Axis Involvement in Modulating Inflammation and Fibrosis in COVID-19 Patients. Int J Mol Sci. 2023;24(2): 951. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ijms24020951

  9. Bellan M, Cittone MG, Tonello S, et al. Gas6/TAM System: A Key Modulator of the Interplay between Inflammation and Fibrosis. Int J Mol Sci. 2019;20(20):5070. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ijms20205070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fukatsu M, Ohkawara H, Wang X, et al. The suppressive effects of Mer inhibition on inflammatory responses in the pathogenesis of LPS-induced ALI/ARDS. Sci Signal. 2022;15(724):2533. https://doiorg.publicaciones.saludcastillayleon.es/10.1126/scisignal.abd2533.

    Article  CAS  Google Scholar 

  11. Espindola MS, Habiel DM, Narayanan R, et al. Targeting of TAM receptors ameliorates fibrotic mechanisms in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2018;197(11):1443–56. https://doiorg.publicaciones.saludcastillayleon.es/10.1164/rccm.201707-1519OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morse C, Tabib T, Sembrat J, et al. Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur Respir J. 2019;54(2):1802441. https://doiorg.publicaciones.saludcastillayleon.es/10.1183/13993003.02441-2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang G, Wang M, Zhao H, Cui W. Function of Axl receptor tyrosine kinase in non-small cell lung cancer. Oncol Lett. 2018;15(3):2726–34. https://doiorg.publicaciones.saludcastillayleon.es/10.3892/ol.2017.7694.

    Article  CAS  PubMed  Google Scholar 

  14. Abu-Thuraia A, Gauthier R, Chidiac R, et al. Axl phosphorylates Elmo scaffold proteins to promote Rac activation and cell invasion. Mol Cell Biol. 2015;35(1):76–87. https://doiorg.publicaciones.saludcastillayleon.es/10.1128/MCB.00764-14.

    Article  CAS  PubMed  Google Scholar 

  15. Huang JS, Cho CY, Hong CC, et al. Oxidative stress enhances Axl-mediated cell migration through an Akt1/Rac1-dependent mechanism. Free Radic Biol Med. 2013;65:1246–56. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.freeradbiomed.2013.09.011.

    Article  CAS  PubMed  Google Scholar 

  16. Shieh YS, Lai CY, Kao YR, et al. Expression of axl in lung adenocarcinoma and correlation with tumor progression. Neoplasia N Y N. 2005;7(12):1058–64. https://doiorg.publicaciones.saludcastillayleon.es/10.1593/neo.05640.

    Article  CAS  Google Scholar 

  17. Lay JD, Hong CC, Huang JS, et al. Sulfasalazine suppresses drug resistance and invasiveness of lung adenocarcinoma cells expressing AXL. Cancer Res. 2007;67(8):3878–87. https://doiorg.publicaciones.saludcastillayleon.es/10.1158/0008-5472.CAN-06-3191.

    Article  CAS  PubMed  Google Scholar 

  18. Cummings CT, Deryckere D, Earp HS, Graham DK. Molecular pathways: MERTK signaling in cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2013;19(19):5275–80. https://doiorg.publicaciones.saludcastillayleon.es/10.1158/1078-0432.CCR-12-1451.

    Article  CAS  Google Scholar 

  19. Wimmel A, Rohner I, Ramaswamy A, et al. Synthesis and secretion of the anticoagulant protein S and coexpression of the Tyro3 receptor in human lung carcinoma cells. Cancer. 1999;86(1):43–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/(sici)1097-0142(19990701)86:1%3c43::aid-cncr8%3e3.0.co;2-d.

    Article  CAS  PubMed  Google Scholar 

  20. Wang S, Qiu Z, Hou Y, et al. AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells. Cell Res. 2021;31(2):126–40. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41422-020-00460-y.

    Article  CAS  PubMed  Google Scholar 

  21. Vago JP, Amaral FA, van de Loo FAJ. Resolving inflammation by TAM receptor activation. Pharmacol Ther. 2021;227: 107893. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.pharmthera.2021.107893.

    Article  CAS  PubMed  Google Scholar 

  22. Lee CH, Chun T. Anti-Inflammatory Role of TAM Family of Receptor Tyrosine Kinases Via Modulating Macrophage Function. Mol Cells. 2019;42(1):1–7. https://doiorg.publicaciones.saludcastillayleon.es/10.14348/molcells.2018.0419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhu C, Wei Y, Wei X. AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol Cancer. 2019;18(1):153. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12943-019-1090-3.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang ZY, Wang PG, An J. The multifaceted roles of TAM receptors during viral infection. Virol Sin. 2021;36(1):1–12. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s12250-020-00264-9.

    Article  CAS  PubMed  Google Scholar 

  25. Burstyn-Cohen T, Maimon A. TAM receptors, phosphatidylserine, inflammation, and cancer. Cell Commun Signal CCS. 2019;17(1):156. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12964-019-0461-0.

    Article  PubMed  Google Scholar 

  26. Engelsen AST, Lotsberg ML, Abou Khouzam R, et al. Dissecting the Role of AXL in cancer immune escape and resistance to immune checkpoint inhibition. Front Immunol. 2022;13: 869676. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fimmu.2022.869676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van der Meer JHM, van der Poll T, Veer C. TAM receptors, Gas6, and protein S: roles in inflammation and hemostasis. Blood. 2014;123(16):2460–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1182/blood-2013-09-528752.

    Article  CAS  PubMed  Google Scholar 

  28. Graham DK, Bowman GW, Dawson TL, Stanford WL, Earp HS, Snodgrass HR. Cloning and developmental expression analysis of the murine c-mer tyrosine kinase. Oncogene. 1995;10(12):2349–59.

    CAS  PubMed  Google Scholar 

  29. Linger RMA, Keating AK, Earp HS, Graham DK. TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv Cancer Res. 2008;100:35–83. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/S0065-230X(08)00002-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rothlin CV, Carrera-Silva EA, Bosurgi L, Ghosh S. TAM receptor signaling in immune homeostasis. Annu Rev Immunol. 2015;33:355–91. https://doiorg.publicaciones.saludcastillayleon.es/10.1146/annurev-immunol-032414-112103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Behrens EM, Gadue P, Gong S, Garrett S, Stein PL, Cohen PL. The mer receptor tyrosine kinase: expression and function suggest a role in innate immunity. Eur J Immunol. 2003;33(8):2160–2167. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/eji.200324076

  32. Brown M, Black JRM, Sharma R, Stebbing J, Pinato DJ. Gene of the month: Axl. J Clin Pathol. 2016;69(5):391–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1136/jclinpath-2016-203629.

    Article  CAS  PubMed  Google Scholar 

  33. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141(7):1117–34. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cell.2010.06.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Angelillo-Scherrer A, de Frutos P, Aparicio C, et al. Deficiency or inhibition of Gas6 causes platelet dysfunction and protects mice against thrombosis. Nat Med. 2001;7(2):215–21. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/84667.

    Article  CAS  PubMed  Google Scholar 

  35. Ruan GX, Kazlauskas A. Axl is essential for VEGF-A-dependent activation of PI3K/Akt. EMBO J. 2012;31(7):1692–703. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/emboj.2012.21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hafizi S, Dahlbäck B. Signalling and functional diversity within the Axl subfamily of receptor tyrosine kinases. Cytokine Growth Factor Rev. 2006;17(4):295–304. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cytogfr.2006.04.004.

    Article  CAS  PubMed  Google Scholar 

  37. Zhou J, Yang A, Wang Y, et al. Tyro3, Axl, and Mertk receptors differentially participate in platelet activation and thrombus formation. Cell Commun Signal CCS. 2018;16(1):98. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12964-018-0308-0.

    Article  CAS  PubMed  Google Scholar 

  38. Cosemans JMEM, Van Kruchten R, Olieslagers S, et al. Potentiating role of Gas6 and Tyro3, Axl and Mer (TAM) receptors in human and murine platelet activation and thrombus stabilization. J Thromb Haemost JTH. 2010;8(8):1797–808. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/j.1538-7836.2010.03935.x.

    Article  CAS  PubMed  Google Scholar 

  39. Gould WR, Baxi SM, Schroeder R, et al. Gas6 receptors Axl, Sky and Mer enhance platelet activation and regulate thrombotic responses. J Thromb Haemost JTH. 2005;3(4):733–41. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/j.1538-7836.2005.01186.x.

    Article  CAS  PubMed  Google Scholar 

  40. Tjwa M, Bellido-Martin L, Lin Y, et al. Gas6 promotes inflammation by enhancing interactions between endothelial cells, platelets, and leukocytes. Blood. 2008;111(8):4096–105. https://doiorg.publicaciones.saludcastillayleon.es/10.1182/blood-2007-05-089565.

    Article  CAS  PubMed  Google Scholar 

  41. Baskol G, Özel M, Saracoglu H, et al. New Avenues to Explore in SARS-CoV-2 Infection: Both TRIM25 and TRIM56 Positively Correlate with VEGF, GAS6, and sAXL in COVID-19 Patients. Viral Immunol. 2022;35(10):690–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1089/vim.2022.0112.

    Article  CAS  PubMed  Google Scholar 

  42. Korshunov VA. Axl-dependent signalling: a clinical update. Clin Sci Lond Engl 1979. 2012;122(8):361–368. https://doiorg.publicaciones.saludcastillayleon.es/10.1042/CS20110411

  43. Terry S, Abdou A, Engelsen AST, et al. AXL targeting overcomes human lung cancer cell resistance to NK- and CTL-mediated cytotoxicity. Cancer Immunol Res. 2019;7(11):1789–802. https://doiorg.publicaciones.saludcastillayleon.es/10.1158/2326-6066.CIR-18-0903.

    Article  CAS  PubMed  Google Scholar 

  44. Scott RS, McMahon EJ, Pop SM, et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature. 2001;411(6834):207–11. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/35075603.

    Article  CAS  PubMed  Google Scholar 

  45. Jennings JH, Linderman DJ, Hu B, Sonstein J, Curtis JL. Monocytes recruited to the lungs of mice during immune inflammation ingest apoptotic cells poorly. Am J Respir Cell Mol Biol. 2005;32(2):108–17. https://doiorg.publicaciones.saludcastillayleon.es/10.1165/rcmb.2004-0108OC.

    Article  CAS  PubMed  Google Scholar 

  46. Tibrewal N, Wu Y, D’mello V, et al. Autophosphorylation docking site Tyr-867 in Mer receptor tyrosine kinase allows for dissociation of multiple signaling pathways for phagocytosis of apoptotic cells and down-modulation of lipopolysaccharide-inducible NF-kappaB transcriptional activation. J Biol Chem. 2008;283(6):3618–3627. https://doiorg.publicaciones.saludcastillayleon.es/10.1074/jbc.M706906200

  47. Filardy AA, Pires DR, Nunes MP, et al. Proinflammatory clearance of apoptotic neutrophils induces an IL-12(low)IL-10(high) regulatory phenotype in macrophages. J Immunol Baltim Md 1950. 2010;185(4):2044–2050. https://doiorg.publicaciones.saludcastillayleon.es/10.4049/jimmunol.1000017

  48. Curran T. Fos and Jun: oncogenic transcription factors. Tohoku J Exp Med. 1992;168(2):169–74. https://doiorg.publicaciones.saludcastillayleon.es/10.1620/tjem.168.169.

    Article  CAS  PubMed  Google Scholar 

  49. Huelse JM, Fridlyand DM, Earp S, DeRyckere D, Graham DK. MERTK in cancer therapy: targeting the receptor tyrosine kinase in tumor cells and the immune system. Pharmacol Ther. 2020;213: 107577. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.pharmthera.2020.107577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Peeters MJW, Dulkeviciute D, Draghi A, et al. MERTK acts as a costimulatory receptor on human CD8+ T cells. Cancer Immunol Res. 2019;7(9):1472–84. https://doiorg.publicaciones.saludcastillayleon.es/10.1158/2326-6066.CIR-18-0841.

    Article  CAS  PubMed  Google Scholar 

  51. Carrera Silva EA, Chan PY, Joannas L, et al. T cell-derived protein S engages TAM receptor signaling in dendritic cells to control the magnitude of the immune response. Immunity. 2013;39(1):160–70. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.immuni.2013.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Angelillo-Scherrer A, Burnier L, Lambrechts D, et al. Role of Gas6 in erythropoiesis and anemia in mice. J Clin Invest. 2008;118(2):583–96. https://doiorg.publicaciones.saludcastillayleon.es/10.1172/JCI30375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Branchford BR, Stalker TJ, Law L, et al. The small-molecule MERTK inhibitor UNC2025 decreases platelet activation and prevents thrombosis. J Thromb Haemost JTH. 2018;16(2):352–63. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/jth.13875.

    Article  CAS  PubMed  Google Scholar 

  54. Chen C, Li Q, Darrow AL, et al. Mer receptor tyrosine kinase signaling participates in platelet function. Arterioscler Thromb Vasc Biol. 2004;24(6):1118–23. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/01.ATV.0000130662.30537.08.

    Article  CAS  PubMed  Google Scholar 

  55. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cell.2010.01.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Linger RMA, Cohen RA, Cummings CT, et al. Mer or Axl receptor tyrosine kinase inhibition promotes apoptosis, blocks growth and enhances chemosensitivity of human non-small cell lung cancer. Oncogene. 2013;32(29):3420–31. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/onc.2012.355.

    Article  CAS  PubMed  Google Scholar 

  57. Schneider C, King RM, Philipson L. Genes specifically expressed at growth arrest of mammalian cells. Cell. 1988;54(6):787–93. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/s0092-8674(88)91065-3.

    Article  CAS  PubMed  Google Scholar 

  58. Li F, Xu L, Li C, Hu F, Su Y. Immunological role of Gas6/TAM signaling in hemostasis and thrombosis. Thromb Res. 2024;238:161–71. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.thromres.2024.05.002.

    Article  CAS  PubMed  Google Scholar 

  59. Robins RS, Lemarié CA, Laurance S, Aghourian MN, Wu J, Blostein MD. Vascular Gas6 contributes to thrombogenesis and promotes tissue factor up-regulation after vessel injury in mice. Blood. 2013;121(4):692–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1182/blood-2012-05-433730.

    Article  CAS  PubMed  Google Scholar 

  60. Hsu PL, Jou J, Tsai SJ. TYRO3: A potential therapeutic target in cancer. Exp Biol Med Maywood NJ. 2019;244(2):83–99. https://doiorg.publicaciones.saludcastillayleon.es/10.1177/1535370219828195.

    Article  CAS  Google Scholar 

  61. Angelillo-Scherrer A, Burnier L, Flores N, et al. Role of Gas6 receptors in platelet signaling during thrombus stabilization and implications for antithrombotic therapy. J Clin Invest. 2005;115(2):237–46. https://doiorg.publicaciones.saludcastillayleon.es/10.1172/JCI22079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lai C, Lemke G. An extended family of protein-tyrosine kinase genes differentially expressed in the vertebrate nervous system. Neuron. 1991;6(5):691–704. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/0896-6273(91)90167-x.

    Article  CAS  PubMed  Google Scholar 

  63. Liu Y, Zeng G. Cancer and innate immune system interactions: translational potentials for cancer immunotherapy. J Immunother Hagerstown Md. 2012;35(4): 299–308. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/CJI.0b013e3182518e83

  64. Stitt TN, Conn G, Gore M, et al. The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell. 1995;80(4):661–70. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/0092-8674(95)90520-0.

    Article  CAS  PubMed  Google Scholar 

  65. Lemke G, Rothlin CV. Immunobiology of the TAM receptors. Nat Rev Immunol. 2008;8(5):327–36. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nri2303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vouri M, Hafizi S. TAM receptor tyrosine kinases in cancer drug resistance. Cancer Res. 2017;77(11):2775–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1158/0008-5472.CAN-16-2675.

    Article  CAS  PubMed  Google Scholar 

  67. Lan Z, Wu H, Li W, et al. Transforming activity of receptor tyrosine kinase tyro3 is mediated, at least in part, by the PI3 kinase-signaling pathway. Blood. 2000;95(2):633–8.

    Article  CAS  PubMed  Google Scholar 

  68. Scherer PM, Chen DL. Imaging pulmonary inflammation. J Nucl Med Off Publ Soc Nucl Med. 2016;57(11):1764–70. https://doiorg.publicaciones.saludcastillayleon.es/10.2967/jnumed.115.157438.

    Article  CAS  Google Scholar 

  69. Gautam SS, O’Toole RF. Convergence in the epidemiology and pathogenesis of COPD and pneumonia. COPD. 2016;13(6):790–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1080/15412555.2016.1191456.

    Article  PubMed  Google Scholar 

  70. Quinton LJ, Walkey AJ, Mizgerd JP. Integrative physiology of pneumonia. Physiol Rev. 2018;98(3):1417–64. https://doiorg.publicaciones.saludcastillayleon.es/10.1152/physrev.00032.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chiu C, Openshaw PJ. Antiviral B cell and T cell immunity in the lungs. Nat Immunol. 2015;16(1):18–26. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/ni.3056.

    Article  CAS  PubMed  Google Scholar 

  72. Mizgerd JP. Respiratory infection and the impact of pulmonary immunity on lung health and disease. Am J Respir Crit Care Med. 2012;186(9):824–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1164/rccm.201206-1063PP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Quinton LJ, Mizgerd JP. Dynamics of lung defense in pneumonia: resistance, resilience, and remodeling. Annu Rev Physiol. 2015;77:407–30. https://doiorg.publicaciones.saludcastillayleon.es/10.1146/annurev-physiol-021014-071937.

    Article  CAS  PubMed  Google Scholar 

  74. Peng CK, Wu CP, Lin JY, et al. Gas6/Axl signaling attenuates alveolar inflammation in ischemia-reperfusion-induced acute lung injury by up-regulating SOCS3-mediated pathway. PLoS ONE. 2019;14(7): e0219788. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pone.0219788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Guimarães-Pinto K, Leandro M, Corrêa A, et al. Differential regulation of lung homeostasis and silicosis by the TAM receptors MerTk and Axl. Front Immunol. 2024;15:1380628. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fimmu.2024.1380628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mohning MP, Thomas SM, Barthel L, et al. Phagocytosis of microparticles by alveolar macrophages during acute lung injury requires MerTK. Am J Physiol Lung Cell Mol Physiol. 2018;314(1):L69–82. https://doiorg.publicaciones.saludcastillayleon.es/10.1152/ajplung.00058.2017.

    Article  CAS  PubMed  Google Scholar 

  77. Li Y, Wittchen ES, Monaghan-Benson E, et al. The role of endothelial MERTK during the inflammatory response in lungs. PLoS ONE. 2019;14(12): e0225051. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pone.0225051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li F, Bai Y, Guan Z, et al. Dexmedetomidine attenuates sepsis-associated acute lung injury by regulating macrophage efferocytosis through the ROS/ADAM10/AXL pathway. Int Immunopharmacol. 2024;142(Pt A): 112832. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.intimp.2024.112832.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang C, Zhao H, Li BL, et al. CpG-oligodeoxynucleotides may be effective for preventing ionizing radiation induced pulmonary fibrosis. Toxicol Lett. 2018;292:181–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.toxlet.2018.04.009.

    Article  CAS  PubMed  Google Scholar 

  80. Li N, Lin Z, Zhou Q, et al. Metformin alleviates crystalline silica-induced pulmonary fibrosis by remodeling endothelial cells to mesenchymal transition via autophagy signaling. Ecotoxicol Environ Saf. 2022;245: 114100. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ecoenv.2022.114100.

    Article  CAS  PubMed  Google Scholar 

  81. Noble PW, Barkauskas CE, Jiang D. Pulmonary fibrosis: patterns and perpetrators. J Clin Invest. 2012;122(8):2756–62. https://doiorg.publicaciones.saludcastillayleon.es/10.1172/JCI60323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest. 2007;117(3):524–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1172/JCI31487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Heukels P, Moor CC, von der Thüsen JH, Wijsenbeek MS, Kool M. Inflammation and immunity in IPF pathogenesis and treatment. Respir Med. 2019;147:79–91. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.rmed.2018.12.015.

    Article  CAS  PubMed  Google Scholar 

  84. Seibold MA, Wise AL, Speer MC, et al. A common MUC5B promoter polymorphism and pulmonary fibrosis. N Engl J Med. 2011;364(16):1503–12. https://doiorg.publicaciones.saludcastillayleon.es/10.1056/NEJMoa1013660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cj S, H S, C F, et al. Mucin 5B promoter polymorphism is associated with idiopathic pulmonary fibrosis but not with development of lung fibrosis in systemic sclerosis or sarcoidosis. Thorax. 2013;68: 5. https://doiorg.publicaciones.saludcastillayleon.es/10.1136/thoraxjnl-2012-201786

  86. Fingerlin TE, Murphy E, Zhang W, et al. Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. Nat Genet. 2013;45(6):613–20. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/ng.2609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Petrovski S, Todd JL, Durheim MT, et al. An exome sequencing study to assess the role of rare genetic variation in pulmonary fibrosis. Am J Respir Crit Care Med. 2017;196(1):82–93. https://doiorg.publicaciones.saludcastillayleon.es/10.1164/rccm.201610-2088OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hutchinson JP, McKeever TM, Fogarty AW, Navaratnam V, Hubbard RB. Increasing global mortality from idiopathic pulmonary fibrosis in the twenty-first century. Ann Am Thorac Soc. 2014;11(8):1176–85. https://doiorg.publicaciones.saludcastillayleon.es/10.1513/AnnalsATS.201404-145OC.

    Article  PubMed  Google Scholar 

  89. Esposito DB, Lanes S, Donneyong M, et al. Idiopathic Pulmonary Fibrosis in United States Automated Claims. Incidence, Prevalence, and Algorithm Validation. Am J Respir Crit Care Med. 2015;192(10):1200–1207. https://doiorg.publicaciones.saludcastillayleon.es/10.1164/rccm.201504-0818OC

  90. Yang DC, Gu S, Li JM, et al. Targeting the AXL receptor in combating smoking-related pulmonary fibrosis. Am J Respir Cell Mol Biol. 2021;64(6):734–46. https://doiorg.publicaciones.saludcastillayleon.es/10.1165/rcmb.2020-0303OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu Q, Niu Y, Pei Z, et al. Gas6-Axl signal promotes indoor VOCs exposure-induced pulmonary fibrosis via pulmonary microvascular endothelial cells-fibroblasts cross-talk. J Hazard Mater. 2024;474: 134786. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jhazmat.2024.134786.

    Article  CAS  PubMed  Google Scholar 

  92. Apostolo D, Ferreira LL, Di Tizio A, Ruaro B, Patrucco F, Bellan M. A review: the potential involvement of growth arrest-specific 6 and its receptors in the pathogenesis of lung damage and in coronavirus disease 2019. Microorganisms. 2023;11(8):2038. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/microorganisms11082038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. van Moorsel CHM, van der Vis JJ, Grutters JC. Genetic disorders of the surfactant system: focus on adult disease. Eur Respir Rev Off J Eur Respir Soc. 2021;30(159): 200085. https://doiorg.publicaciones.saludcastillayleon.es/10.1183/16000617.0085-2020.

    Article  Google Scholar 

  94. Pan Z, Eslam M. MERTK and fibrosis: a new target for therapy. DNA Cell Biol. 2024;43(7):311–4. https://doiorg.publicaciones.saludcastillayleon.es/10.1089/dna.2024.0099.

    Article  CAS  PubMed  Google Scholar 

  95. Pan Z, El Sharkway R, Bayoumi A, et al. Inhibition of MERTK reduces organ fibrosis in mouse models of fibrotic disease. Sci Transl Med. 2024;16(741):eadj0133. https://doiorg.publicaciones.saludcastillayleon.es/10.1126/scitranslmed.adj0133

  96. Hewlett JC, Kropski JA, Blackwell TS. Idiopathic pulmonary fibrosis: epithelial-mesenchymal interactions and emerging therapeutic targets. Matrix Biol J Int Soc Matrix Biol. 2018;71–72:112–27. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.matbio.2018.03.021.

    Article  CAS  Google Scholar 

  97. Guzy R. Fibroblast growth factor inhibitors in lung fibrosis: friends or foes? Am J Respir Cell Mol Biol. 2020;63(3):273–4. https://doiorg.publicaciones.saludcastillayleon.es/10.1165/rcmb.2020-0156ED.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Aono Y, Kishi M, Yokota Y, et al. Role of platelet-derived growth factor/platelet-derived growth factor receptor axis in the trafficking of circulating fibrocytes in pulmonary fibrosis. Am J Respir Cell Mol Biol. 2014;51(6):793–801. https://doiorg.publicaciones.saludcastillayleon.es/10.1165/rcmb.2013-0455OC.

    Article  CAS  PubMed  Google Scholar 

  99. Pan LH, Yamauchi K, Uzuki M, et al. Type II alveolar epithelial cells and interstitial fibroblasts express connective tissue growth factor in IPF. Eur Respir J. 2001;17(6):1220–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1183/09031936.01.00074101.

    Article  CAS  PubMed  Google Scholar 

  100. Zhou Z, Jiang X, Yi L, et al. Mitochondria energy metabolism depression as novel adjuvant to sensitize radiotherapy and inhibit radiation induced-pulmonary fibrosis. Adv Sci Weinh Baden-Wurtt Ger. 2024;11(26): e2401394. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/advs.202401394.

    Article  CAS  Google Scholar 

  101. Ekman C, Stenhoff J, Dahlbäck B. Gas6 is complexed to the soluble tyrosine kinase receptor Axl in human blood. J Thromb Haemost JTH. 2010;8(4):838–44. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/j.1538-7836.2010.03752.x.

    Article  CAS  PubMed  Google Scholar 

  102. Fujino N, Kubo H, Maciewicz RA. Phenotypic screening identifies Axl kinase as a negative regulator of an alveolar epithelial cell phenotype. Lab Investig J Tech Methods Pathol. 2017;97(9):1047–62. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/labinvest.2017.52.

    Article  CAS  Google Scholar 

  103. Lee YJ, Kim M, Kim HS, Kang JL. Administration of Gas6 attenuates lung fibrosis via inhibition of the epithelial-mesenchymal transition and fibroblast activation. Cell Biol Toxicol. 2024;40(1):20. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s10565-024-09858-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. She Y, Xu X, Yu Q, Yang X, He J, Tang XX. Elevated expression of macrophage MERTK exhibits profibrotic effects and results in defective regulation of efferocytosis function in pulmonary fibrosis. Respir Res. 2023;24(1):118. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12931-023-02424-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhao X, Li Y, Yang S, et al. orderly regulation of macrophages and fibroblasts by Axl in bleomycin-induced pulmonary fibrosis in mice. J Cell Mol Med. 2025;29(1): e70321. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/jcmm.70321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nasim F, Sabath BF, Eapen GA. Lung cancer. Med Clin North Am. 2019;103(3):463–73. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.mcna.2018.12.006.

    Article  PubMed  Google Scholar 

  107. Bade BC, Dela Cruz CS. Lung cancer 2020: epidemiology, etiology, and prevention. Clin Chest Med. 2020;41(1):1–24. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ccm.2019.10.001.

    Article  PubMed  Google Scholar 

  108. Zhong C, Chen C, Yao F, Fang W. ZNF251 promotes the progression of lung cancer by activating ERK signaling. Cancer Sci. 2020;111(9):3236–44. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/cas.14547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kim H, Lee S, Shin E, et al. The emerging roles of exosomes as EMT regulators in cancer. Cells. 2020;9(4):861. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/cells9040861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hu C, Meiners S, Lukas C, Stathopoulos GT, Chen J. Role of exosomal microRNAs in lung cancer biology and clinical applications. Cell Prolif. 2020;53(6): e12828. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/cpr.12828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zeng Z, Li Y, Pan Y, et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun. 2018;9(1):5395. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41467-018-07810-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang D, Li D, Shen L, et al. Exosomes derived from Piwil2-induced cancer stem cells transform fibroblasts into cancer-associated fibroblasts. Oncol Rep. 2020;43(4):1125–32. https://doiorg.publicaciones.saludcastillayleon.es/10.3892/or.2020.7496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Olejarz W, Dominiak A, Żołnierzak A, Kubiak-Tomaszewska G, Lorenc T. Tumor-derived exosomes in immunosuppression and immunotherapy. J Immunol Res. 2020;2020:6272498. https://doiorg.publicaciones.saludcastillayleon.es/10.1155/2020/6272498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lobb RJ, Lima LG, Möller A. Exosomes: Key mediators of metastasis and pre-metastatic niche formation. Semin Cell Dev Biol. 2017;67:3–10. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.semcdb.2017.01.004.

    Article  CAS  PubMed  Google Scholar 

  115. Ye X, Li Y, Stawicki S, et al. An anti-Axl monoclonal antibody attenuates xenograft tumor growth and enhances the effect of multiple anticancer therapies. Oncogene. 2010;29(38):5254–64. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/onc.2010.268.

    Article  CAS  PubMed  Google Scholar 

  116. Li Y, Ye X, Tan C, et al. Axl as a potential therapeutic target in cancer: role of Axl in tumor growth, metastasis and angiogenesis. Oncogene. 2009;28(39):3442–55. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/onc.2009.212.

    Article  CAS  PubMed  Google Scholar 

  117. Wimmel A, Glitz D, Kraus A, Roeder J, Schuermann M. Axl receptor tyrosine kinase expression in human lung cancer cell lines correlates with cellular adhesion. Eur J Cancer Oxf Engl. 2001;37(17):2264–2274. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/s0959-8049(01)00271-4

  118. Fujimori T, Grabiec AM, Kaur M, et al. The Axl receptor tyrosine kinase is a discriminator of macrophage function in the inflamed lung. Mucosal Immunol. 2015;8(5):1021–30. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/mi.2014.129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Levin PA, Brekken RA, Byers LA, Heymach JV, Gerber DE. Axl receptor axis: a new therapeutic target in lung cancer. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2016;11(8):1357–62. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jtho.2016.04.015.

    Article  Google Scholar 

  120. Zhu J, Du W, Zeng Y, et al. CD73 promotes non–small cell lung cancer metastasis by regulating Axl signaling independent of GAS6. Proc Natl Acad Sci. 2024;121(43): e2404709121. https://doiorg.publicaciones.saludcastillayleon.es/10.1073/pnas.2404709121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wilson C, Ye X, Pham T, et al. AXL inhibition sensitizes mesenchymal cancer cells to antimitotic drugs. Cancer Res. 2014;74(20):5878–90. https://doiorg.publicaciones.saludcastillayleon.es/10.1158/0008-5472.CAN-14-1009.

    Article  CAS  PubMed  Google Scholar 

  122. Balaji K, Vijayaraghavan S, Diao L, et al. AXL Inhibition Suppresses the DNA damage response and sensitizes cells to PARP inhibition in multiple cancers. Mol Cancer Res MCR. 2017;15(1):45–58. https://doiorg.publicaciones.saludcastillayleon.es/10.1158/1541-7786.MCR-16-0157.

    Article  CAS  PubMed  Google Scholar 

  123. Gjerdrum C, Tiron C, Høiby T, et al. Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival. Proc Natl Acad Sci U S A. 2010;107(3):1124–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1073/pnas.0909333107.

    Article  PubMed  Google Scholar 

  124. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nrc822.

    Article  CAS  PubMed  Google Scholar 

  125. Suda K, Tomizawa K, Fujii M, et al. Epithelial to mesenchymal transition in an epidermal growth factor receptor-mutant lung cancer cell line with acquired resistance to erlotinib. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2011;6(7):1152–61. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/JTO.0b013e318216ee52.

    Article  Google Scholar 

  126. Sequist LV, Waltman BA, Dias-Santagata D, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3(75):75ra26. https://doiorg.publicaciones.saludcastillayleon.es/10.1126/scitranslmed.3002003

  127. Chen T, You Y, Jiang H, Wang ZZ. Epithelial-mesenchymal transition (EMT): A biological process in the development, stem cell differentiation, and tumorigenesis. J Cell Physiol. 2017;232(12):3261–72. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/jcp.25797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wu F, Li J, Jang C, Wang J, Xiong J. The role of Axl in drug resistance and epithelial-to-mesenchymal transition of non-small cell lung carcinoma. Int J Clin Exp Pathol. 2014;7(10):6653–61.

    PubMed  PubMed Central  Google Scholar 

  129. Zhao H, Sun Y, Feng H, et al. PFKP silencing suppresses tumor growth via the AXL-MET axis. Int J Biol Sci. 2024;20(15):6056–72. https://doiorg.publicaciones.saludcastillayleon.es/10.7150/ijbs.100525.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Namiki K, Wongsirisin P, Yokoyama S, et al. (-)-Epigallocatechin gallate inhibits stemness and tumourigenicity stimulated by AXL receptor tyrosine kinase in human lung cancer cells. Sci Rep. 2020;10(1):2444. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41598-020-59281-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Iida K, Sakai R, Yokoyama S, et al. Cell softening in malignant progression of human lung cancer cells by activation of receptor tyrosine kinase AXL. Sci Rep. 2017;7(1):17770. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41598-017-18120-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pei JP, Wang Y, Ma LP, et al. AXL antibody and AXL-ADC mediate antitumor efficacy via targeting AXL in tumor-intrinsic epithelial-mesenchymal transition and tumor-associated M2-like macrophage. Acta Pharmacol Sin. 2023;44(6):1290–303. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41401-022-01047-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang Z, Lee JC, Lin L, et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet. 2012;44(8):852–60. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/ng.2330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Taniguchi H, Yamada T, Wang R, et al. AXL confers intrinsic resistance to osimertinib and advances the emergence of tolerant cells. Nat Commun. 2019;10(1):259. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41467-018-08074-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Qu XH, Liu JL, Zhong XW, Li XI, Zhang QG. Insights into the roles of hnRNP A2/B1 and AXL in non-small cell lung cancer. Oncol Lett. 2015;10(3):1677–85. https://doiorg.publicaciones.saludcastillayleon.es/10.3892/ol.2015.3457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wu Z, Bai F, Fan L, et al. Coexpression of receptor tyrosine kinase AXL and EGFR in human primary lung adenocarcinomas. Hum Pathol. 2015;46(12):1935–44. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.humpath.2015.08.014.

    Article  CAS  PubMed  Google Scholar 

  137. Liu Z, Chen L, Zhang J, et al. Recent discovery and development of AXL inhibitors as antitumor agents. Eur J Med Chem. 2024;272: 116475. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ejmech.2024.116475.

    Article  CAS  PubMed  Google Scholar 

  138. Rayford A. AXL expression reflects tumor-immune cell dynamics impacting outcome in non-small cell lung cancer patients treated with immune checkpoint inhibitor monotherapy. Front Immunol.

  139. Simoni-Nieves A, Lindzen M, Giri S, et al. A bispecific antibody targeting EGFR and AXL delays resistance to osimertinib. Cell Rep Med. 2024;5(9): 101703. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.xcrm.2024.101703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Han R, Lu CH, Hu C, et al. Brigatinib, a newly discovered AXL inhibitor, suppresses AXL-mediated acquired resistance to osimertinib in EGFR-mutated non-small cell lung cancer. Acta Pharmacol Sin. 2024;45(6):1264–75. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41401-024-01237-4.

    Article  CAS  PubMed  Google Scholar 

  141. Matsui Y, Yamada T, Katayama Y, et al. Initial AXL and MCL-1 inhibition contributes to abolishing lazertinib tolerance in EGFR-mutant lung cancer cells. Cancer Sci. 2024;115(10):3333–45. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/cas.16292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Huang HN, Hung PF, Chen YP, Lee CH. Leucine Zipper Downregulated in Cancer-1 Interacts with Clathrin Adaptors to Control Epidermal Growth Factor Receptor (EGFR) Internalization and Gefitinib Response in EGFR-Mutated Non-Small Cell Lung Cancer. Int J Mol Sci. 2024;25(3):1374. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ijms25031374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhao S, Ma Y, Liu L, et al. Ningetinib plus gefitinib in EGFR-mutant non-small-cell lung cancer with MET and AXL dysregulations: A phase 1b clinical trial and biomarker analysis. Lung Cancer Amst Neth. 2024;188: 107468. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.lungcan.2024.107468.

    Article  CAS  Google Scholar 

  144. Huang S, Zhang J, Wu X, et al. RP11–874 J12.4 promotes erlotinib resistance in non-small cell lung cancer via increasing AXL expression. Life Sci. 2024;351:122849. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.lfs.2024.122849

  145. Nakamura R, Yamada T, Tokuda S, et al. Triple combination therapy comprising osimertinib, an AXL inhibitor, and an FGFR inhibitor improves the efficacy of EGFR-mutated non-small cell lung cancer. Cancer Lett. 2024;598: 217124. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.canlet.2024.217124.

    Article  CAS  PubMed  Google Scholar 

  146. Tran TTT, Phung CD, Yeo BZJ, et al. Customised design of antisense oligonucleotides targeting EGFR driver mutants for personalised treatment of non-small cell lung cancer. EBioMedicine. 2024;108: 105356. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ebiom.2024.105356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jiang Z, Gu Z, Yu X, Cheng T, Liu B. Research progress on the role of bypass activation mechanisms in resistance to tyrosine kinase inhibitors in non-small cell lung cancer. Front Oncol. 2024;14:1447678. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fonc.2024.1447678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lierman E, Van Miegroet H, Beullens E, Cools J. Identification of protein tyrosine kinases with oncogenic potential using a retroviral insertion mutagenesis screen. Haematologica. 2009;94(10):1440–4. https://doiorg.publicaciones.saludcastillayleon.es/10.3324/haematol.2009.007328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chen CJ, Liu YP. MERTK Inhibition: Potential as a Treatment Strategy in EGFR Tyrosine Kinase Inhibitor-Resistant Non-Small Cell Lung Cancer. Pharm Basel Switz. 2021;14(2):130. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ph14020130.

    Article  CAS  Google Scholar 

  150. Uehara H, Shacter E. Auto-oxidation and oligomerization of protein S on the apoptotic cell surface is required for Mer tyrosine kinase-mediated phagocytosis of apoptotic cells. J Immunol Baltim Md 1950. 2008;180(4):2522–2530. https://doiorg.publicaciones.saludcastillayleon.es/10.4049/jimmunol.180.4.2522

  151. Manfioletti G, Brancolini C, Avanzi G, Schneider C. The protein encoded by a growth arrest-specific gene (gas6) is a new member of the vitamin K-dependent proteins related to protein S, a negative coregulator in the blood coagulation cascade. Mol Cell Biol. 1993;13(8):4976–85. https://doiorg.publicaciones.saludcastillayleon.es/10.1128/mcb.13.8.4976-4985.1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Au N, Lg Y. Galectin-3--a jack-of-all-trades in cancer. Cancer Lett. 2011;313(2). https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.canlet.2011.09.003

  153. Ling L, Kung HJ. Mitogenic signals and transforming potential of Nyk, a newly identified neural cell adhesion molecule-related receptor tyrosine kinase. Mol Cell Biol. 1995;15(12):6582–92. https://doiorg.publicaciones.saludcastillayleon.es/10.1128/MCB.15.12.6582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mm G, Kh K, T S, C Z, H H. Biological effects of c-Mer receptor tyrosine kinase in hematopoietic cells depend on the Grb2 binding site in the receptor and activation of NF-kappaB. Mol Cell Biol. 1999;19(2). https://doiorg.publicaciones.saludcastillayleon.es/10.1128/MCB.19.2.1171

  155. Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009;9(8):537–49. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nrc2694.

    Article  CAS  PubMed  Google Scholar 

  156. Kong D, Tian Q, Chen Z, et al. Discovery of Novel Macrocyclic MERTK/AXL Dual Inhibitors. J Med Chem. 2024;67(7):5866–82. https://doiorg.publicaciones.saludcastillayleon.es/10.1021/acs.jmedchem.4c00148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Nagata K, Ohashi K, Nakano T, et al. Identification of the product of growth arrest-specific gene 6 as a common ligand for Axl, Sky, and Mer receptor tyrosine kinases. J Biol Chem. 1996;271(47):30022–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1074/jbc.271.47.30022.

    Article  CAS  PubMed  Google Scholar 

  158. Ohashi K, Nagata K, Toshima J, et al. Stimulation of sky receptor tyrosine kinase by the product of growth arrest-specific gene 6. J Biol Chem. 1995;270(39):22681–4. https://doiorg.publicaciones.saludcastillayleon.es/10.1074/jbc.270.39.22681.

    Article  CAS  PubMed  Google Scholar 

  159. Dahlbäck B. New molecular insights into the genetics of thrombophilia. Resistance to activated protein C caused by Arg506 to Gln mutation in factor V as a pathogenic risk factor for venous thrombosis. Thromb Haemost. 1995;74(1):139–148.

  160. He K, Berz D, Gadgeel SM, et al. MRTX-500 Phase 2 Trial: Sitravatinib With Nivolumab in Patients With Nonsquamous NSCLC Progressing On or After Checkpoint Inhibitor Therapy or Chemotherapy. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2023;18(7):907–21. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jtho.2023.02.016.

    Article  CAS  Google Scholar 

  161. Arya R, Kumari S, Pandey B, et al. Structural insights into SARS-CoV-2 proteins. J Mol Biol. 2021;433(2): 166725. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jmb.2020.11.024.

    Article  CAS  PubMed  Google Scholar 

  162. V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19(3):155–170. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41579-020-00468-6

  163. Shum MHH, Lee Y, Tam L, et al. Binding affinity between coronavirus spike protein and human ACE2 receptor. Comput Struct Biotechnol J. 2024;23:759–70. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.csbj.2024.01.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5(4):562–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41564-020-0688-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Meertens L, Carnec X, Lecoin MP, et al. The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe. 2012;12(4):544–57. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.chom.2012.08.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Morizono K, Chen ISY. Role of phosphatidylserine receptors in enveloped virus infection. J Virol. 2014;88(8):4275–90. https://doiorg.publicaciones.saludcastillayleon.es/10.1128/JVI.03287-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. You J, Huang R, Zhong R, et al. Serum AXL is a potential molecular marker for predicting COVID-19 progression. Front Immunol. 2024;15:1394429. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fimmu.2024.1394429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Fang JY, Huang KY, Wang TH, et al. Development of nanoparticles incorporated with quercetin and ACE2-membrane as a novel therapy for COVID-19. J Nanobiotechnology. 2024;22(1):169. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12951-024-02435-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Oliveira KX, Suzuki YJ. Angiotensin peptides enhance SARS-CoV-2 spike protein binding to its host cell receptors. BioRxiv Prepr Serv Biol. Published online December 13, 2024:2024.12.12.628247. https://doiorg.publicaciones.saludcastillayleon.es/10.1101/2024.12.12.628247

  170. Kuśnierz-Cabala B, Maziarz B, Dumnicka P, et al. Diagnostic Significance of Serum Galectin-3 in Hospitalized Patients with COVID-19-A Preliminary Study. Biomolecules. 2021;11(8):1136. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/biom11081136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Morales A, Rojo Rello S, Cristóbal H, et al. Growth Arrest-Specific Factor 6 (GAS6) Is Increased in COVID-19 Patients and Predicts Clinical Outcome. Biomedicines. 2021;9(4):335. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/biomedicines9040335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhou T, Su TT, Mudianto T, Wang J. Immune asynchrony in COVID-19 pathogenesis and potential immunotherapies. J Exp Med. 2020;217(10): e20200674. https://doiorg.publicaciones.saludcastillayleon.es/10.1084/jem.20200674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hirawat R, Jain N, Aslam Saifi M, Rachamalla M, Godugu C. Lung fibrosis: Post-COVID-19 complications and evidences. Int Immunopharmacol. 2023;116: 109418. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.intimp.2022.109418.

    Article  CAS  PubMed  Google Scholar 

  174. Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020;7(6):e438–40. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/S2352-3026(20)30145-9.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet Lond Engl. 2020;395(10229):1054–62. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/S0140-6736(20)30566-3.

    Article  CAS  Google Scholar 

  176. Paranjpe I, Fuster V, Lala A, et al. Association of Treatment Dose Anticoagulation With In-Hospital Survival Among Hospitalized Patients With COVID-19. J Am Coll Cardiol. 2020;76(1):122–4. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jacc.2020.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Burstyn-Cohen T, Heeb MJ, Lemke G. Lack of protein S in mice causes embryonic lethal coagulopathy and vascular dysgenesis. J Clin Invest. 2009;119(10):2942–53. https://doiorg.publicaciones.saludcastillayleon.es/10.1172/JCI39325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Lemke G, Silverman GJ. Blood clots and TAM receptor signalling in COVID-19 pathogenesis. Nat Rev Immunol. 2020;20(7):395–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41577-020-0354-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ahmad F, Kannan M, Ansari AW. Role of SARS-CoV-2 -induced cytokines and growth factors in coagulopathy and thromboembolism. Cytokine Growth Factor Rev. 2022;63:58–68. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cytogfr.2021.10.007.

    Article  CAS  PubMed  Google Scholar 

  180. Martín-Rojas RM, Pérez-Rus G, Delgado-Pinos VE, et al. COVID-19 coagulopathy: An in-depth analysis of the coagulation system. Eur J Haematol. 2020;105(6):741–50. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/ejh.13501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Law LA, Graham DK, Di Paola J, Branchford BR. GAS6/TAM Pathway Signaling in Hemostasis and Thrombosis. Front Med. 2018;5:137. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fmed.2018.00137.

    Article  Google Scholar 

  182. Shepard RM, Ghebremedhin A, Pratumchai I, et al. PI3Kγ inhibition circumvents inflammation and vascular leak in SARS-CoV-2 and other infections. Sci Transl Med. 2024;16(754):eadi6887. https://doiorg.publicaciones.saludcastillayleon.es/10.1126/scitranslmed.adi6887

  183. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China Lancet Lond Engl. 2020;395(10223):497–506. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/S0140-6736(20)30183-5.

    Article  CAS  Google Scholar 

  184. Ghazavi A, Ganji A, Keshavarzian N, Rabiemajd S, Mosayebi G. Cytokine profile and disease severity in patients with COVID-19. Cytokine. 2021;137: 155323. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cyto.2020.155323.

    Article  CAS  PubMed  Google Scholar 

  185. Rothlin CV, Ghosh S, Zuniga EI, Oldstone MBA, Lemke G. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell. 2007;131(6):1124–36. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cell.2007.10.034.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Natural Science Research Projects of Higher Education Institutions of Guizhou Provincial Department of Education (grant no. [2024] J98).

Author information

Authors and Affiliations

Authors

Contributions

Jiaqi Ban, Jiayi Qian, and Chi Zhang: Conceptualization, validation. Jiaqi Ban, Jiayi Qian, and Chi Zhang, Jun Li: writing-review and editing, supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jun Li.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, J., Qian, J., Zhang, C. et al. Recent advances in TAM mechanisms in lung diseases. J Transl Med 23, 479 (2025). https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12967-025-06398-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12967-025-06398-2

Keywords