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Abstract 

TYRO3, MERTK, and AXL receptor tyrosine kinases, collectively known as TAM receptors, play a vital role in maintaining 
lung tissue homeostasis by regulating integrity and self-renewal. These receptors activate signalling pathways 
that inhibit apoptosis, promote cell proliferation and differentiation, mediate cell adhesion and migration, 
and perform other essential biological functions. Additionally, TAM receptors are implicated in mechanisms 
that suppress anti-tumor immunity and confer resistance to immune checkpoint inhibitors. Disruption 
of the homeostatic balances can lead to pathological conditions such as lung inflammation, fibrosis, or tumors. 
Recent studies highlight their significant role in COVID-19-induced lung injury. However, the exact mechanisms 
by which TAM receptors contribute to lung diseases remain unclear. This article reviews the potential mechanisms 
of TAM receptor involvement in disease progression, focusing on lung inflammation, fibrosis, cancer, and COVID-19-
induced lung injury. It also explores future research aspects and the therapeutic potentials of targeting TAM receptors, 
providing a theoretical foundation for understanding lung disease mechanisms and identifying treatment targets.
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Introduction
Lung diseases primarily encompass lung inflammation, 
fibrosis, and tumors. Lung inflammation involves the 
accumulation of immune cells, which are phagocytized 
by macrophages during apoptosis. However, secondary 
necrosis of these apoptotic cells can trigger uncontrolled 
inflammatory activity [1]. Pulmonary fibrosis can develop 
when lung inflammation persists and inflammatory 
activities worsens. It is a chronic, progressive disease, 
and the interstitial pneumonias are classified into three 

categories based on pathomorphological variants: 
major idiopathic interstitial pneumonias, rare idiopathic 
interstitial pneumonias, and non-classifiable idiopathic 
interstitial pneumonias [2]. The main effector cells in 
pulmonary fibrosis are fibroblasts, myofibroblasts, and 
differentiated fibroblasts. The primary cause of fibrosis 
is the imbalance of extracellular matrix (ECM) protein 
homeostasis and the dysfunction of fibroblasts and 
myofibroblasts [3, 4]. Lung cancer remains the leading 
cause of cancer-related deaths worldwide, with non-small 
cell lung cancer (NSCLC) being the commonest type [5]. 
The therapeutic targets for lung diseases for instance 
pneumonia, pulmonary fibrosis, and lung cancer are not 
yet well understood and require further investigation. 
Additionally, the pathogenesis of lung diseases is not 
fully elucidated, necessitating comprehensive research 
to explore their mechanisms and identify effective 
therapeutic targets.

Numerous studies indicate that TAM receptors play a 
significant role in lung homeostasis regulation, making 
them a potential therapeutic target for lung diseases. 
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TAM, a transmembrane receptor protein that includes 
TYRO3, AXL, and MERTK, consists of extracellular, 
transmembrane, and intracellular regions. It belongs to 
one of the 20 subfamilies of receptor tyrosine kinases 
(RTKs) [6]. Under normal physiological conditions, 
TAM performs various functions, including inhibiting 
cell apoptosis, promoting proliferation, and facilitating 
cell adhesion and migration. The ligand Gas6  (gene 
6) aids TAM in regulating inflammatory responses 
and fibrosis [7, 8]. However, in pathological states, 
TAM is overexpressed in damaged tissues, disrupting 
homeostasis and contributing to conditions like 
inflammation, fibrosis, and immune responses, evident 
in chronic obstructive pulmonary disease (COPD) and 
small cell lung cancer. In lung inflammation, TAM 
is vital for hemostasis and regulating macrophage 
activity and anti-inflammatory responses through its 
interaction with Gas6 [9, 10]. In lung fibrosis, AXL and 
TYRO3 activate lung fibroblasts [11], while MERTK 
is involved in myofibroblast activation [12]. AXL also 
regulates extracellular matrix homeostasis and the 
functions of fibroblasts and myofibroblasts, influencing 
fibrosis progression. In lung tumors, AXL and Gas6 
regulate cancer growth, metastasis, and epithelial-
mesenchymal transition (EMT), creating a favourable 
environment for tumor development [13]. This suggests 
that the Gas6/AXL pathway is a promising target 
for lung cancer therapy, offering anti-tumor effects, 
reducing invasion, and inhibiting migration [14–
17]. MERTK can contribute to cancer development 
through overexpression or inappropriate activation of 
ligands like Gas6 and PROS1 (protein S), alterations in 
chimeric receptor signalling (e.g., Colony-Stimulating 
Factor 1 (CSF-1)), and activation of signalling 
pathways such as PI3K (phosphatidylinositol 3-kinase), 
ERK (extracellular regulatory protein kinase), p38 (p38 
mitogen-activated protein kinase), and MEK (mitogen-
activated extracellular signal-regulated kinase) [18]. 
TYRO3, by binding to PROS1, can influence local 
coagulation, proliferation, or differentiation and may 
play a role in the advance or progression of lung cancer 
[19]. Additionally, since the COVID-19 pandemic, there 
has been robust research into how the viral infections 
damage lung tissues. This damage may involve lung 
injury, abnormal wound healing, the activation of pro-
inflammatory and pro-fibrotic signals [20]. The Gas6/
TAM system plays a significant role in the pathological 
processes of diseases [21, 22], highlighting its critical 
importance in understanding COVID-19 pathogenesis. 
This review explores the potential mechanisms of 
TAM in lung diseases, focusing on four key areas: 
lung inflammation, fibrosis, cancer, and COVID-
19-related injury. It underscores TAM’s impact on 

the development of lung inflammation and fibrosis, 
triggering new insights for targeted therapeutic 
strategies in treating lung diseases.

TAM
Structure of TAM
TAM receptors, members of the receptor tyrosine kinase 
family, include TYRO3, AXL, and MERTK [6] These 
transmembrane proteins consist of an extracellular 
region, a transmembrane domain, and an intracellular 
region. The extracellular region features two tandem 
immunoglobulins like domains and two fibronectin 
type III repeats, which enable ligand binding. The 
transmembrane region contains cleavage sites for 
ADAM17 (in AXL and MERTK) and ADAM10 (in AXL), 
allowing proteolytic processing. The intracellular region 
includes a tyrosine kinase catalytic domain, a conserved 
KWIAIES motif, and three tyrosine autophosphorylation 
sites [23], which are critical for signal transduction 
[24, 25]. The tyrosine kinase domain is implicated in 
oncogenic activity and can be activated both dependently 
and independently of extracellular stimuli [26].

TAM is activated by binding to its ligand’s growth 
inhibition specific gene 6 and PROS1 [27]. Compared 
to TYRO3, AXL exhibits higher structural similarity 
to MERTK receptors, with 31%—36% amino acid 
homology in the extracellular region and 54%—59% in 
the intracellular region [28]. TYRO3, AXL, and MERTK 
are homologous type I RTKs, sharing a conserved kinase 
domain sequence [KW  (I/L) and (I/L)  ES] and similar 
extracellular structures, including two immunoglobulin-
like domains and two fibronectin III domains [29]. TAM 
is expressed in monocytes, macrophages, dendritic cells 
(DCs), phagocytes, as well as in natural killer (NK) and 
natural killer T (NKT) cells [30, 31] (Fig. 1).

Mechanisms of AXL in disease
Activation of AXL under physiological conditions 
requires homodimerization of its ligand and is fully 
achieved through interaction with phosphatidylserine 
[32]. Binding of AXL to its ligand triggers 
autophosphorylation, receptor dimerization, and 
trans-autophosphorylation of tyrosine residues in the 
cytoplasmic domains [33]. Oxidative stress can also 
induce AXL phosphorylation, enhancing cell migration 
[15]. AXL activates downstream signalling pathways 
that promote processes such as proliferation, survival, 
migration, plasticity, and immunosuppression. In lung 
tissue, AXL expressed in platelet [34], endothelial cell, 
[35] and bronchial epithelial cell [19], affecting normal 
cell growth and immune regulation of the body [36]. For 
instance, AXL mediates contact dependent activation 
and platelet stabilization through interactions with 
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Gas6 [37–39], while also promoting inflammation by 
enhancing leukocyte extravasation [40]. AXL in the 
endothelium is cleaved into its soluble form, sAXL, 
which is released into the bloodstream. Plasma levels of 
sAXL serve as indicators of inflammation severity and 
trends in endothelial dysfunction, as seen in conditions 
like COVID-19 [41].

In the context of lung tumors, AXL modulates the 
tumor immune microenvironment to encourage tumor 
growth. It regulates cancer cell properties, influencing 
migration, growth, survival, and chemotherapy 
resistance [42]. AXL also facilitates immune evasion 
by reducing antigen presentation and immune cell 
killing [43]. Additionally, it promotes the secretion of 
immunosuppressive cytokines and chemokines, recruits 
immunosuppressive cells such as myeloid-derived 
suppressor cells (MDSCs) and regulatory T cells (Tregs), 
and reduces the infiltration of activated immune cells 
like cytotoxic T cells. Furthermore, AXL drives the 
polarization of M1 to M2 macrophages, contributing to 
tumor microenvironment remodelling [26].

Mechanism of MERTK in disease
MERTK plays a critical role in various physiological 
processes, including lung tissue homeostasis and repair, 
platelet aggregation, and innate immune regulation. It 
is essential for phagocytosis and the efficient clearance 
of apoptotic cells, as macrophages lacking MERTK can 
recognize and bind apoptotic cells but fail to engulf them 
[44]. By mediating efferocytosis, MERTK suppresses 
inflammation, preventing the release of antigens from 
apoptotic cells and eliminating apoptotic debris [45]. This 
process also induces MERTK signalling, which promotes 
M2 macrophage polarization [46–49]. PROS1-mediated 
MERTK signalling serves as a late costimulatory 
signal, enhancing the proliferation and secretion of 
effector and memory cytokines [50]. Activated T cells 
expressing PROS1 and PtdSer (phosphatidylserine) can 
bind to MERTK on dendritic cells, further inhibiting 
inflammatory responses [51]. In platelet aggregation, 
MERTK promotes integrin signalling, fibrinogen 
adhesion, and platelet spreading [52–54], although 
its exact role in platelet activation remains unclear 
and requires further verification [37]. MERTK also 
maintains immune balance by preventing excessive 

Fig. 1 Structure of TAM. TAM is a transmembrane receptor protein that consists of an extracellular region, a transmembrane region, 
and an intracellular region. The extracellular region is composed of two tandem immunoglobulins and two fibronectin type III repeat sequences. 
Transmembrane region consists of TYRO3, AXL, MERTK these 3 RTKs. The intracellular region contains the tyrosine kinase catalytic region, the highly 
conserved KWIAIES motif, and three tyrosine autophosphorylation sites. TAM is able to bind to ligand-specific gene 6 and protein S
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pro-inflammatory responses to pathogens or tumor cells 
while avoiding autoimmune reactions that could lead 
to tissue damage or tumorigenesis [55]. In the context 
of lung cancer, MERTK overexpression contributes to 
oncogenic processes such as cell growth, proliferation, 
survival, and migration. Inhibiting MERTK can 
induce apoptosis, suppress colony formation, enhance 
chemosensitivity, and reduce tumor growth [56].

Mechanism of TYRO3 in disease
The endogenous ligands for TYRO3 are Gas6 and PROS1. 
Gas6 is significantly upregulated following growth 
arrest [57], while PROS1 is linked to the proliferation 
and differentiation of immune cells [6]. TYRO3 plays a 
role in platelet aggregation and is involved in vascular 
injury responses [58]. Gas6 activates TYRO3, promoting 
the activation of pro-inflammatory endothelial cells, 
adhesion molecule expression, platelet adhesion to 
endothelial cells [40], and tissue factor release, which 
triggers exogenous coagulation and thrombus formation 

[59]. Studies in mice with TYRO3 deficiency have 
shown reduced platelet granule secretion, impaired 
thrombus formation, and decreased platelet aggregation 
stability [34, 60, 61]. TYRO3 also inhibits inflammation 
by enhancing the phagocytosis of apoptotic tumor cells 
by dendritic cells and macrophages [62–65]. Activated 
T cells contribute to this process by producing PROS1, 
which forms a PROS1-PtdSer complex with exposed 
PtdSer on their surface, stimulating TYRO3 on dendritic 
cells [51].

TYRO3 has dual roles, regulating platelet aggregation, 
immune responses, and cell growth while also exhibiting 
oncogenic potential [60, 66]. It interacts with the PI3K 
pathway and induce transformations of NIH3T3 cells via 
the EGFR/TYRO3 chimeric receptor. The PI3K pathway 
mediates part of TYRO3’s oncogenic capacity [67]. 
Additionally, the synthesis and secretion of anticoagulant 
protein S, along with co-expression of the TYRO3 
receptor, may contribute to lung carcinogenesis [19] 
(Fig. 2).

Fig. 2 Four main mechanisms of action exist for TAM. First, TAM facilitates platelet aggregation by activating integrin αIIbβ3 through AXL 
or TYRO3, enabling sustained platelet contact to promote thrombosis. Second, TAM modulates the inflammatory response by inhibiting 
TLR signaling and inflammatory cytokine production through STAT1-induced AXL-IFNαR interactions, which co-drive SOCS1 and SOCS3 
feedback. Third, TAM mediates cytosolic burial by binding to PtdSer on apoptotic cells, activating downstream signaling via the VAV1-RHOA, 
p130cas-CRKII-DOCK180-ELMO, and related pathways to induce cytoskeletal reorganization. Finally, TAM promotes M2 polarization during wound 
healing by inhibiting NF-κB and activating the PI3K-AKT-STAT1-dependent LXRα/β pathway, while reducing M1 cytokine expression 
by disrupting the Jun transcription factor complex (Jun proto-oncogene is a member of AP-1 (activator protein-1) transcription factor family) 
through MERTK-PTP1B-p38α signalling
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The role of TAM in lung diseases
TAM and pulmonary inflammation
Lung inflammation can be either non-infectious or 
infectious in nature [68]. Pneumonia, a lung infection 
affecting susceptible individuals, often arises from 
chronic conditions (e.g., age, smoking, COPD, diabetes) 
or acute events (e.g., poisoning, air pollution, trauma) 
[69]. These factors lead to exudate accumulation 
in the lung parenchyma, impairing respiratory 
function [70]. The development of pneumonia, or 
pneumogenesis, is influenced by host biology, including 
immune resistance and tissue resilience [1]. Adaptive 
immunity significantly impacts pneumonia outcomes, 
particularly through recurrent respiratory infections 
and lung-resident memory cells triggered by atypical 
recall responses [71, 72]. Tissue resilience supports 
anti-inflammatory, pro-resolving, and reparative-
regenerative pathways. The severity of pneumonia 
ultimately depends on the strength of the host’s 
immune resistance and tissue elasticity [73].

Gas6 significantly impacts haemostasis and reduces 
inflammation by interacting with TAM [10]. The 
Gas6/TAM axis regulates inflammatory responses and 
fibrosis progression [8]. Physiologically, this axis plays 
a dual role, either promoting tissue repair or causing 
organ damage and dysfunction. Its activation can 
exhibit anti-inflammatory effects in certain cells and 
tissues, such as upregulating AXL phosphorylation in 
the alveolar epithelium during ischemia–reperfusion-
induced acute lung injury (IR-ALI), where Gas6/AXL 
signalling activates the SOCS3-mediated pathway 
to reduce IR-related inflammation and injury [74]. 
However, it can also maintain pro-inflammatory 
responses in other contexts, depending on its anti-
inflammatory or pro-fibrotic properties.

The anti-inflammatory effects of the Gas6/TAM 
system primarily stem from its regulation of macrophage 
activity [9]. When overexpressed in damaged tissues, 
Gas6 inhibits pro-inflammatory cytokine production, 
mediates apoptotic body cytotoxicity, and limits 
antigen presentation to antigen-presenting cells (APCs) 
by attenuating Toll-like receptors (TLRs) and type 
I IFN signalling. Additionally, it suppresses NLRP3 
inflammasome activation through autophagy [22].

Studies have shown that MERTK and AXL specialize 
in coordinating apoptotic cell clearance across different 
contexts and play critical roles in inflammatory 
regulation [75]. MERTK facilitates the phagocytosis of 
microparticles by alveolar macrophages during acute 
lung injury, thereby reducing the pro-inflammatory 
effects on alveolar epithelial cells [76]. endothelial 
MERTK supports endothelial barrier function and 
mitigates inflammation by regulating neutrophil 

transmigration and endothelial permeability [77]. 
Dexmedetomidine (DEX) has been shown to alleviate 
sepsis-associated acute lung injury by inhibiting the 
ROS/ADAM10/AXL signalling pathway, reducing 
macrophage cytotoxicity, upregulating AXL expression 
in mouse alveolar macrophages, and enhancing apoptotic 
cell clearance [78]. If lung inflammation persists and 
worsens, it can progress to pulmonary fibrosis.

TAM and pulmonary fibrosis
Pulmonary fibrosis is a chronic and progressive lung 
disease marked by thickening of the alveolar walls, 
impaired gas exchange, and eventual respiratory failure 
[79, 80]. Based on pathomorphological characteristics, 
interstitial pneumonias are categorized into three 
groups: major idiopathic interstitial pneumonia, rare 
idiopathic interstitial pneumonia, and unclassifiable 
idiopathic interstitial pneumonia. Among these, 
idiopathic pulmonary fibrosis (IPF), a subset of major 
idiopathic interstitial pneumonia, is the most severe 
and irreversible form, characterized by progressive 
fibrosis of the lung parenchyma [81]. Fibrosis arises 
from dysfunctional wound healing [82], with chronic 
lung inflammation being a key contributing factor 
[83]. The primary effector cells in pulmonary fibrosis 
are fibroblasts and myofibroblasts. The disease is 
characterized by excessive ECM deposition and 
structural remodelling of the lung, which disrupts the 
dynamic equilibrium between ECM synthesis and 
degradation [3]. Two major regulatory mechanisms are 
involved: the proliferation and apoptosis of fibroblasts 
and myofibroblasts, and the synthesis and degradation 
of ECM components [4]. The main cause of pulmonary 
fibrosis is an imbalance in ECM homeostasis and a 
disruption in the physiological functions of fibroblasts 
and myofibroblasts.

IPF is a rare and heterogeneous disease with a complex 
etiology that remains poorly understood. Multiple 
factors contribute to its development, including genetic 
mutation [84–87], age, sex [88, 89], and environmental 
factors ( smoking [90], Indoor pollutants [91]). However, 
recurrent epithelial injury from various aetiologies 
emphasize the IPF initiation [92]. For instance, mutations 
in surfactant-related genes, which are essential for normal 
epithelial function, can promote pulmonary fibrosis [93]. 
Additionally, dysfunction in pro-inflammatory cytokines, 
such as transforming growth factor-β (TGF-β), plays a 
significant role in the disease process [94, 95]. Elevated 
levels of connective tissue growth factor (CTGF), 
platelet-derived growth factor (PDGF), and fibroblast 
growth factors (FGFs) are known to exacerbate lung 
fibrosis. Inhibitors targeting these growth factors [96–
99], such as TGF-β inhibitors [100], have shown potential 
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in halting fibrotic progression and improving outcomes 
for patients. The TAM receptor tyrosine kinase family, 
including AXL, TYRO3, and MERTK, plays a pivotal role 
in IPF. AXL forms a complex with Gas6, regulating Gas6-
mediated signalling and modulating ligand availability 
[101]. This interaction negatively regulates the alveolar 
epithelial phenotypes, leading to a loss of epithelial 
integrity [102]. Interestingly, Gas6 exhibits antifibrotic 
effects, as demonstrated by studies where recombinant 
Gas6 (rGas6) reduced pulmonary fibrosis in mice by 
inhibiting EMT, apoptosis, and fibroblast activation in 
alveolar epithelial type II (ATII) cells [103].

Furthermore, AXL, TYRO3, and their ligand Gas6 
contribute to the activation of lung fibroblasts in IPF, 
while MERTK is not expressed in these cells [11]. 
However, MERTK expression is upregulated in certain 
macrophage subpopulations within IPF, where it is 
involved in myofibroblast activation and fibrosis [12, 
104]. Gas6 has the highest affinity for AXL, suggesting 
that the Gas6/TAM system primarily exerts its effects 
through AXL in IPF. The roles of MERTK and TYRO3 in 
IPF require further investigation. Notably, AXL inhibition 
has shown differential effects depending on the disease 
stage: worsening inflammation and fibrosis in the acute 
phase, but alleviating pulmonary fibrosis in the fibrotic 
phase. These highlights need for staged and targeted 
therapeutic approaches in treating pulmonary fibrosis 
[105]. The Gas6/TAM system has been implicated in the 
pathogenesis of pulmonary fibrosis, particularly in IPF. 
Further exploration of its role in other fibrotic diseases 
may provide valuable insights into broader therapeutic 
applications.

TAM and lung tumor
Mechanisms of lung tumor
Lung cancer is one of the most common and deadly 
malignancies worldwide, with NSCLC being the most 
prevalent form [5]. Smoking remains the primary risk 
factor, and countries with high or rising smoking rates 
are expected to see increased lung cancer incidence 
[106, 107]. A key feature of lung cancer is the aberrant 
activation of the extracellular regulatory protein kinase 
signalling pathway. The zinc finger protein ZNF251, 
which is overexpressed in clinical lung cancer samples 
and promotes tumor cell growth, has emerged as a 
potential therapeutic target. ZNF251 inhibits the 
expression of dual specificity phosphatases 6 (DUSP6), a 
negative regulator of ERK activation, by directly binding 
to its promoter region [108]. Additionally, exosomes 
derived from lung cancer tumors have been shown to 
play a significant role in promoting cancer progression. 
These exosomes induce epithelial-mesenchymal 
transition, foster a favourable tumor microenvironment, 

enhance cell proliferations, inhibit apoptosis, regulate 
invasion and metastasis, mediate immunosuppression 
and immune evasion, promote angiogenesis, drive 
cancer-related fibroblast transformation, and contribute 
to resistance against radiotherapy and chemotherapy 
[109–114].

AXL and lung tumors
AXL is recognized for its carcinogenic potential, 
particularly in NSCLC, where it is co-expressed with its 
ligand Gas6 in specific cell lines [115, 116], contrasting 
with its absence in normal bronchial epithelial and small 
cell lung cancer cells. This expression pattern may relate 
to histochemical and adhesive phenotypes [117]. AXL 
promotes NSCLC progression by enhancing tumor 
growth, metastasis, invasion, drug resistance, and EMT, 
encouraging a conducive environment for tumorigenesis 
[13].  AXL also plays a role in immune regulation by 
clearing apoptotic cells [118], reducing inflammation, 
and creating an immune-tolerant microenvironment that 
influences lung cancer growth [117, 119]. Oxidative stress 
exacerbates AXL-mediated cell migration and invasion 
via the AKT1/Rac1 pathway [15]. Additionally, CD73 
activates AXL by binding to its R55 site, independently 
of Gas6, promoting metastasis and EMT through the 
CD73/AXL axis [120].

AXL is closely linked to the epithelial-mesenchymal 
transition [121–123]. a process where polarized epithelial 
cells lose adhesion and gain migratory and invasive 
mesenchymal properties [124]. EMT plays a key role in 
the progression of NSCLC [124–127]. AXL expression 
is higher in NSCLC mesenchymal cancer cells than 
in epithelial cancer cells, and its abnormal expression 
promotes EMT-related phenotypes, enhancing cell 
migration and invasion [17], while maintaining the EMT 
state [128]. The AXL-MET axis represents a potential 
therapeutic target for NSCLC. Research indicates that 
Phosphofructokinase platelet (PFKP), a metabolic 
enzyme essential for cancer hyperglycolysis, binds to 
AXL, activating its signalling pathway and promoting 
MET phosphorylation to drive NSCLC progression. 
Nanoparticle system (NPs)-mediated PFKP silencing 
reduces cell proliferation, migration, invasion, and 
colony formation by inhibiting the AXL-MET axis. 
A nanoparticle system encapsulating PFKP siRNAs 
enhances the stability of siRNA and promotes its 
release into the cytoplasm, effectively inhibiting PFKP 
expression, enhancing the targeted inhibition of the 
PFKP-mediated AXL-MET axis in tumors, and ultimately 
hindering tumor growth in vivo [129].

Cancer stem cells (H1299-sdCSCs) are obtained from 
tumor spheres of the human NSCLC cell line H1299. 
AXL is highly expressed in H1299-sdCSCs and regulates 
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their biophysical properties, including low stiffness and 
soft elasticity. AXL knockdown significantly reduces 
tumor sphere formation [130, 131]. In addition, AXL may 
play a role in promoting pro-tumor macrophages. Studies 
have shown that targeted inhibition of AXL on M2 
polarized tumor-associated macrophages (M2-TAMs) 
helps to polarize them towards the M1 type and activate 
macrophage anti-tumor immunity. Direct inhibition of 
AXL carried by macrophages and AXL on tumor cells 
can effectively interfere with M2 polarization and its pro-
tumor activit [132].

The activation and overexpression of MERTK and AXL 
are key factors promoting NSCLC, with complementary 
and overlapping roles. These receptors are aberrantly 
expressed in NSCLC but are absent or present at 
low levels in NHBE cells (Normal Human Bronchial 
Epithelial Cells) [133–136]. MERTK promotes tumor 
cell proliferation and anti-apoptotic signalling, while 
AXL reduces sensitivities to chemotherapy. Together, 
MERTK and AXL enhance tumor cell survival by 
inhibiting apoptosis, fostering growth, and decreasing 
chemosensitivity in NSCLC cells [56]. However, 
the precise mechanisms by which AXL contributes 
to drug resistance requires further investigation, 
potentially involving EMT status and interactions with 
other receptors in targeted signalling pathways. AXL 
expression is linked to aggressive tumor phenotypes, and 
its upregulation and hyperactivation influence the tumor 
microenvironment. Therefore, combining AXL inhibitors 
[137] with current chemoimmunotherapy regimens, 
such as immune checkpoint Inhibitors ( ICIs) [138] and 
epidermal growth factor receptor tyrosine kinase 
inhibitor (EGFR-TKI) [139–147] may benefit NSCLC 
patients.

Notably, AXL exhibits dual functionality, supporting 
normal cell growth while also possessing oncogenic 
properties. It can induce cancer cell apoptosis, inhibit 
tumor growth, and reduce drug resistance by preventing 
AXL overexpression or its co-expression with ligands, 
offering potential strategies for lung cancer treatment.

MERKT and lung tumor
MERTK’s role in cancer is linked to the inappropriate 
expression of its ligands and alterations in chimeric 
receptor signalling pathways [18]. Unbiased gain-of-
function retroviral insertion screens have also highlighted 
MERTK’s oncogenic potential [148]. MERTK promotes 
tumorigenesis through its ligands, primarily Gas6 and 
PROS1, which activate the PI3K/AKT and mitogen-
activated protein kinase (MAPK) signaling cascades, 
pathways also associated with the Epidermal Growth 
Factor Receptor (EGFR) [149]. Protein S, another ligand, 
requires modification to activate MERTK-mediated 

phagocytosis of apoptotic cells [150, 151]. Additionally, 
galectin-3, which is overexpressed in many cancers, may 
contribute to MERTK signalling [152].

MERTK also contributes to lung tumorigenesis via 
chimeric receptor signalling. For instance, human 
CSF-1 induces MERTK autophosphorylation, activating 
phospholipase Cg, PI3K, p70S6 kinases, MEK, and ERK 
[153]. Furthermore, a constitutively active MERTK 
chimera, formed by fusing the extracellular domain of 
CD8 with MERTK’s intracellular region [154], activates 
MEK1, ERK, PI3K, and the p38 pathway, influencing the 
proliferation, migration, and survival of lung cancer cells 
[155].

In NSCLC, Gas6-induced phosphorylation of p38, 
ERK1/2, MEK1/2, AKT (Protein Kinase B), CREB, and 
FAK (Focal Adhesion Kinase) promotes tumor cell 
migration and invasion [56]. MERTK activation triggers 
multiple pro-oncogenic signalling pathways, including 
MAPK, p38, and PI3K, which drive lung carcinogenesis 
by enhancing cell proliferation and migration while 
reducing apoptosis and chemosensitivity [18]. Inhibiting 
MERTK in NSCLC increases apoptosis, reduces colony 
formation, enhances chemosensitivity, and decreases 
tumor formation.

Cancer progression is often linked to MERTK 
mutations, ligand overexpression, or altered chimeric 
receptor signalling. Targeting MERTK in tumor cells 
offers a promising therapeutic strategy, with potential 
inhibitors including ligand traps, monoclonal antibodies, 
and small molecule tyrosine kinase inhibitors. A novel 
macrocyclic dual MERTK/AXL inhibitor, lead compound 
43, shows therapeutic potentials with low nanomolar 
potency against MERTK and AXL, demonstrating anti-
tumor activity in lung cancer cell lines [156].

TYRO3 and lung tumor
Studies have shown that the co-expression of TYRO3 
and protein S is a common feature in most lung cancer 
cell lines. Unlike Gas6, protein S does not stimulate 
TYRO3 kinase activity [157, 158]. However, as an active 
anticoagulant protein produced by cancer epithelial cells 
[159], protein S may contribute to lung carcinogenesis 
or progression through a receptor-ligand system that 
influences local anticoagulation, proliferation, or 
differentiation [19]. The interaction between protein 
S and TYRO3 may also promote cell survival or aid 
in tissue repair, suggesting a dual role in lung cancer 
development and progression, with mechanisms that 
require further investigation. Additionally, combining 
TYRO3-targeted inhibitors with checkpoint inhibitors 
may enhance antitumor activity and benefit NSCLC 
patients [160]. Furthermore research is needed to explore 
whether TYRO3 influences lung cancer through other 
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mechanisms or pathways, as current studies on its role 
remain limited.

Mechanisms of TAM in COVID‑19‑induced lung 
injury
SARS-CoV-2, the virus responsible for COVID-19, is 
a pathogen that causes an acute respiratory disease. It 
encodes four major structural proteins: spike protein 
(S), membrane protein (M), nucleocapsid protein (N), 
and envelope protein (E) [161]. The spike protein, a 
glycoprotein, consists of two functional subunits, S1 
and S2. The S1 subunit, exposed on the surface, contains 
a receptor-binding domain (RBD) that specifically 
recognizes angiotensin-converting enzyme 2 (ACE2) 
on host cells, facilitating viral entry [162, 163].  The S2 
subunit is primarily involved in membrane fusion [164] 
(Fig. 3).

Gas6 binds PtdSer on viral surfaces and interacts with 
TAM to connect viruses to macrophages and other 
phagocytes, facilitating either lattice protein-mediated 
endocytosis or viral megalocytosis [24], leading to viral 
internalization [165, 166]. Serum ACE2 and AXL levels 
are linked to the severity of COVID-19, particularly 
with pulmonary inflammation [167], and targeting these 

proteins provides an effective strategy to block viral entry 
into cells [168, 169]. AXL facilitates the entry of viruses 
into cells [20], while increased galectin-3, a ligand for 
MERTK and TYRO3 activation, correlates with fibrosis, 
inflammation, and tissue damage [170]. Plasma levels of 
Gas6 and soluble AXL (sAXL) correlate with COVID-19 
severity, progressing with disease intensity and serving as 
potential biomarkers for prognosis [171]. TAM receptors 
may play a role in both adaptive and non-adaptive 
immunity [172]. The Gas6/TAM axis is a key regulator 
of the innate immune system, and under inflammatory 
conditions, elevated levels of sAXL, sMERTK, and 
sTYRO3 help modulate the inflammatory response and 
protect against tissue damage [21, 22].

The development of pulmonary fibrosis following viral 
infection can be attributed to two main mechanisms: 
virus-induced lung injury with abnormal wound 
healing and immune-mediated injury, which involves 
the activation of pro-inflammatory and pro-fibrotic 
signals [20]. Clinical studies in COVID-19 patients 
have demonstrated that SARS-CoV-2 disrupts normal 
re-epithelialization, leading to abnormal wound healing 
and subsequent lung injury [173]. This injury is often 
accompanied by thrombotic activation, as thrombosis 

Fig. 3 SARS-CoV-2 utilizes its surface spike (S) protein for receptor recognition and membrane fusion. The viral genome encodes four structural 
proteins: S, membrane (M), nucleocapsid (N), and envelope (E). The S protein, a glycoprotein composed of S1 and S2 subunits, mediates viral entry. 
Specifically, the S1 receptor-binding domain (RBD) binds ACE2, while S2 facilitates membrane fusion
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and disseminated intravascular coagulation are 
common in these patients [174–176]. PROS1, a critical 
regulator of the coagulation cascade, plays a key role in 
preventing coagulopathy [177]. However, its depletion 
due to SARS-CoV-2 infection of blood vessels can 
result in uncontrolled cytokine production, triggering 
cytokine storms and damaging lung vasculature. 
Coagulation dysfunction, vascular necrosis, and bleeding 
complications may also reduce TAM ligand levels, as 
thrombus exposure accelerates PROS1 consumption 
[178]. In contrast, the Gas6/TAM axis is essential for 
maintaining vascular homeostasis and regulating platelet 
activation, serving as a protective mechanism against 
vascular damage and endothelial repair [39, 179]. ADP-
P2Y12 and Gas6 work synergistically to activate PI3K 
signalling, promoting sustained activation of αIIbβ3 and 
stabilizing thrombus [180]. However, moderate inhibition 
of the Gas6/TAM axis can reduce platelet activation and 
thrombosis while still allowing platelet plugs to form, 
thereby maintaining haemostatic function [181].

Viruses can trigger immune-mediated injury by 
activating pro-inflammatory and pro-fibrotic signals. 
In the case of SARS-CoV-2, the immune response 
can become overactive, leading to excessive cytokine 
production, recruitment of neutrophils, monocytes, 
and macrophages, which express phosphatidylinositol 
3-kinase gamma (PI3Kγ) [182]. This exacerbates immune 
damage and contributes to pulmonary fibrosis [173]. 
Elevated levels of cytokines such as IL-6 and tumor 
necrosis factors (TNF) in COVID-19 patients have been 
linked to widespread lung damage [183, 184]. PROS1 
plays a critical role in cytokine regulation by binding to 
the extracellular domain of MERTK, activating its kinase 
to suppress cytokine release during infections caused by 
viral, bacterial, and other pathogens [185]. In COVID-
19 patients, reduced PROS1 expression impairs TAM 
signalling, resulting in chronic immune hyperactivation, 
ineffective clearance of apoptotic cells, and an increased 
risk of autoimmune diseases. Interestingly, PROS1 has 
dual functions, acting as both an anticoagulant and a 
potential inducer of excessive blood coagulation and 
immune responses, possibly linked to its role as a TAM 
ligand.

The Gas6/TAM system is implicated in the 
pathological processes of COVID-19, with receptors 
like AXL potentially mediating viral entry, inflammatory 
regulation, and the coagulation cascades. This suggests 
the system’s significance in understanding COVID-
19 pathogenesis. Exploring the role of Gas6/TAM in 
pulmonary inflammation and fibrosis could offer novel 
therapeutic strategies for COVID-19 patients (Table 1).

Summary and outlook
This review focuses on the role of TAM (TYRO3, AXL, 
and MERTK) in the haematopoietic, immune, fibrotic, 
and inflammatory systems of the lung. TAM exhibits 
dual roles in regulating lung cell biology, highlighting 
its complexity as a highly regulated system. To elucidate 
TAM’s impact on lung disease progression, this review 
examines its function alongside its ligands, Gas6 
and PROS1, in processes such as proliferation and 
differentiation. It provides a comprehensive analysis of 
TAM’s involvement in four key areas: lung inflammation, 
fibrosis, tumour development, and COVID-19-related 
lung injury.

This review highlights that TAM receptors can 
exacerbate lung inflammation and fibrosis via the Gas6/
TAM axis. While MERTK and AXL can collaborate to 
clear apoptotic cells and limit inflammatory progression, 
AXL plays a role in lung cancer by driving tumor growth, 
metastasis, invasion, drug resistance, and epithelial-
mesenchymal transition. Mutations in MERTK, abnormal 
ligand expression, and altered chimeric receptor 
signalling can activate pro-cancer pathways, enhancing 
cell proliferation and migration while reducing apoptosis 
and chemotherapy sensitivity, thereby promoting lung 
cancer development. Additionally, the co-expression of 
TYRO3 and protein S is a common feature in most lung 
cancer cell lines and contributes to tumor progression.

A detailed review of the progress in understanding 
the mechanism of action of TAM in lung diseases 
can help identify new therapeutic targets for lung 
tumor treatment. Inhibition of the TAM signalling 
pathways has shown promise in lung tumor therapy by 
blocking the co-expression of AXL and its ligand Gas6, 
thereby reducing cell adhesion, mitotic activity, and 
proliferation, which inhibits tumor growth. The AXL-
MET axis is a potential therapeutic target for NSCLC 
patients, as inhibiting AXL expression can reduce EMT-
related phenotypic transformation and stabilize the 
cytoskeleton, thereby inhibiting metastasis, invasion, and 
drug resistance. Additionally, targeting MERTK, which is 
selectively demanded by tumor cells, offers a strategy for 
developing inhibitors, such as ligand traps, monoclonal 
antibodies, and small molecule tyrosine kinase inhibitors, 
to inhibit lung tumor occurrence and development. 
The co-expression of TYRO3 and protein S, a common 
feature in most lung cancer cell lines, also contributes to 
tumor development. Furthermore, targeting ACE2 and 
AXL provides an effective strategy to inhibit the entry of 
the COVID-19 virus into cells.

TAM inhibitors can restore drug sensitivity, inhibit 
angiogenesis, reduce lung tumorigenesis and prevent 
lung tumor formation. Current therapeutic candidates 
include the dual MERTK/AXL inhibitor compound 
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43, immune checkpoint inhibitors, EGFR-TKIs, 
TYRO3-targeted inhibitors combined with checkpoint 
inhibitors. However, the long-term effects of TAM 
signalling inhibition on lung disease development remain 
unexplored, and population-based trials are lacking. 
There is also a scarcity of research data and statistics 
needed to translate the theoretical framework into 
practical applications. Conducting relevant population 
trials to emphasize TAM’s role and impact in lung 
diseases could lead to more rational treatment strategies, 
enabling targeted therapy for lung diseases without 
affecting other cells and tissues.
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