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TYRO3, MERTK, and AXL receptor tyrosine kinases, collectively known as TAM receptors, play a vital role in maintaining
lung tissue homeostasis by regulating integrity and self-renewal. These receptors activate signalling pathways

that inhibit apoptosis, promote cell proliferation and differentiation, mediate cell adhesion and migration,

and perform other essential biological functions. Additionally, TAM receptors are implicated in mechanisms

that suppress anti-tumor immunity and confer resistance to immune checkpoint inhibitors. Disruption

of the homeostatic balances can lead to pathological conditions such as lung inflammation, fibrosis, or tumors.
Recent studies highlight their significant role in COVID-19-induced lung injury. However, the exact mechanisms

by which TAM receptors contribute to lung diseases remain unclear. This article reviews the potential mechanisms

of TAM receptor involvement in disease progression, focusing on lung inflammation, fibrosis, cancer, and COVID-19-
induced lung injury. It also explores future research aspects and the therapeutic potentials of targeting TAM receptors,
providing a theoretical foundation for understanding lung disease mechanisms and identifying treatment targets.

Introduction

Lung diseases primarily encompass lung inflammation,
fibrosis, and tumors. Lung inflammation involves the
accumulation of immune cells, which are phagocytized
by macrophages during apoptosis. However, secondary
necrosis of these apoptotic cells can trigger uncontrolled
inflammatory activity [1]. Pulmonary fibrosis can develop
when lung inflammation persists and inflammatory
activities worsens. It is a chronic, progressive disease,
and the interstitial pneumonias are classified into three
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categories based on pathomorphological variants:
major idiopathic interstitial pneumonias, rare idiopathic
interstitial pneumonias, and non-classifiable idiopathic
interstitial pneumonias [2]. The main effector cells in
pulmonary fibrosis are fibroblasts, myofibroblasts, and
differentiated fibroblasts. The primary cause of fibrosis
is the imbalance of extracellular matrix (ECM) protein
homeostasis and the dysfunction of fibroblasts and
myofibroblasts [3, 4]. Lung cancer remains the leading
cause of cancer-related deaths worldwide, with non-small
cell lung cancer (NSCLC) being the commonest type [5].
The therapeutic targets for lung diseases for instance
pneumonia, pulmonary fibrosis, and lung cancer are not
yet well understood and require further investigation.
Additionally, the pathogenesis of lung diseases is not
fully elucidated, necessitating comprehensive research
to explore their mechanisms and identify effective
therapeutic targets.

Numerous studies indicate that TAM receptors play a
significant role in lung homeostasis regulation, making
them a potential therapeutic target for lung diseases.
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TAM, a transmembrane receptor protein that includes
TYRO3, AXL, and MERTK, consists of extracellular,
transmembrane, and intracellular regions. It belongs to
one of the 20 subfamilies of receptor tyrosine kinases
(RTKs) [6]. Under normal physiological conditions,
TAM performs various functions, including inhibiting
cell apoptosis, promoting proliferation, and facilitating
cell adhesion and migration. The ligand Gas6 (gene
6) aids TAM in regulating inflammatory responses
and fibrosis [7, 8]. However, in pathological states,
TAM is overexpressed in damaged tissues, disrupting
homeostasis and contributing to conditions like
inflammation, fibrosis, and immune responses, evident
in chronic obstructive pulmonary disease (COPD) and
small cell lung cancer. In lung inflammation, TAM
is vital for hemostasis and regulating macrophage
activity and anti-inflammatory responses through its
interaction with Gas6 [9, 10]. In lung fibrosis, AXL and
TYRO3 activate lung fibroblasts [11], while MERTK
is involved in myofibroblast activation [12]. AXL also
regulates extracellular matrix homeostasis and the
functions of fibroblasts and myofibroblasts, influencing
fibrosis progression. In lung tumors, AXL and Gas6
regulate cancer growth, metastasis, and epithelial-
mesenchymal transition (EMT), creating a favourable
environment for tumor development [13]. This suggests
that the Gas6/AXL pathway is a promising target
for lung cancer therapy, offering anti-tumor effects,
reducing invasion, and inhibiting migration [14—
17]. MERTK can contribute to cancer development
through overexpression or inappropriate activation of
ligands like Gas6 and PROS1 (protein S), alterations in
chimeric receptor signalling (e.g., Colony-Stimulating
Factor 1 (CSF-1)), and activation of signalling
pathways such as PI3K (phosphatidylinositol 3-kinase),
ERK (extracellular regulatory protein kinase), p38 (p38
mitogen-activated protein kinase), and MEK (mitogen-
activated extracellular signal-regulated kinase) [18].
TYRO3, by binding to PROSI1, can influence local
coagulation, proliferation, or differentiation and may
play a role in the advance or progression of lung cancer
[19]. Additionally, since the COVID-19 pandemic, there
has been robust research into how the viral infections
damage lung tissues. This damage may involve lung
injury, abnormal wound healing, the activation of pro-
inflammatory and pro-fibrotic signals [20]. The Gas6/
TAM system plays a significant role in the pathological
processes of diseases [21, 22], highlighting its critical
importance in understanding COVID-19 pathogenesis.
This review explores the potential mechanisms of
TAM in lung diseases, focusing on four key areas:
lung inflammation, fibrosis, cancer, and COVID-
19-related injury. It underscores TAM’s impact on
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the development of lung inflammation and fibrosis,
triggering new insights for targeted therapeutic
strategies in treating lung diseases.

TAM

Structure of TAM

TAM receptors, members of the receptor tyrosine kinase
family, include TYRO3, AXL, and MERTK [6] These
transmembrane proteins consist of an extracellular
region, a transmembrane domain, and an intracellular
region. The extracellular region features two tandem
immunoglobulins like domains and two fibronectin
type III repeats, which enable ligand binding. The
transmembrane region contains cleavage sites for
ADAM17 (in AXL and MERTK) and ADAMI0 (in AXL),
allowing proteolytic processing. The intracellular region
includes a tyrosine kinase catalytic domain, a conserved
KWIAIES motif, and three tyrosine autophosphorylation
sites [23], which are critical for signal transduction
[24, 25]. The tyrosine kinase domain is implicated in
oncogenic activity and can be activated both dependently
and independently of extracellular stimuli [26].

TAM is activated by binding to its ligand’s growth
inhibition specific gene 6 and PROS1 [27]. Compared
to TYRO3, AXL exhibits higher structural similarity
to MERTK receptors, with 31%—36% amino acid
homology in the extracellular region and 54%—59% in
the intracellular region [28]. TYRO3, AXL, and MERTK
are homologous type I RTKs, sharing a conserved kinase
domain sequence [KW (I/L) and (I/L) ES] and similar
extracellular structures, including two immunoglobulin-
like domains and two fibronectin III domains [29]. TAM
is expressed in monocytes, macrophages, dendritic cells
(DCs), phagocytes, as well as in natural killer (NK) and
natural killer T (NKT) cells [30, 31] (Fig. 1).

Mechanisms of AXL in disease

Activation of AXL under physiological conditions
requires homodimerization of its ligand and is fully
achieved through interaction with phosphatidylserine
[32]. Binding of AXL to its ligand triggers
autophosphorylation, receptor  dimerization, and
trans-autophosphorylation of tyrosine residues in the
cytoplasmic domains [33]. Oxidative stress can also
induce AXL phosphorylation, enhancing cell migration
[15]. AXL activates downstream signalling pathways
that promote processes such as proliferation, survival,
migration, plasticity, and immunosuppression. In lung
tissue, AXL expressed in platelet [34], endothelial cell,
[35] and bronchial epithelial cell [19], affecting normal
cell growth and immune regulation of the body [36]. For
instance, AXL mediates contact dependent activation
and platelet stabilization through interactions with
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Fig. 1 Structure of TAM. TAM is a transmembrane receptor protein that consists of an extracellular region, a transmembrane region,

and an intracellular region. The extracellular region is composed of two tandem immunoglobulins and two fibronectin type Ill repeat sequences.
Transmembrane region consists of TYRO3, AXL, MERTK these 3 RTKs. The intracellular region contains the tyrosine kinase catalytic region, the highly
conserved KWIAIES motif, and three tyrosine autophosphorylation sites. TAM is able to bind to ligand-specific gene 6 and protein S

Gas6 [37-39], while also promoting inflammation by
enhancing leukocyte extravasation [40]. AXL in the
endothelium is cleaved into its soluble form, sAXL,
which is released into the bloodstream. Plasma levels of
sAXL serve as indicators of inflammation severity and
trends in endothelial dysfunction, as seen in conditions
like COVID-19 [41].

In the context of lung tumors, AXL modulates the
tumor immune microenvironment to encourage tumor
growth. It regulates cancer cell properties, influencing
migration, growth, survival, and chemotherapy
resistance [42]. AXL also facilitates immune evasion
by reducing antigen presentation and immune cell
killing [43]. Additionally, it promotes the secretion of
immunosuppressive cytokines and chemokines, recruits
immunosuppressive cells such as myeloid-derived
suppressor cells (MDSCs) and regulatory T cells (Tregs),
and reduces the infiltration of activated immune cells
like cytotoxic T cells. Furthermore, AXL drives the
polarization of M1 to M2 macrophages, contributing to
tumor microenvironment remodelling [26].

Mechanism of MERTK in disease

MERTK plays a critical role in various physiological
processes, including lung tissue homeostasis and repair,
platelet aggregation, and innate immune regulation. It
is essential for phagocytosis and the efficient clearance
of apoptotic cells, as macrophages lacking MERTK can
recognize and bind apoptotic cells but fail to engulf them
[44]. By mediating efferocytosis, MERTK suppresses
inflammation, preventing the release of antigens from
apoptotic cells and eliminating apoptotic debris [45]. This
process also induces MERTK signalling, which promotes
M2 macrophage polarization [46—49]. PROS1-mediated
MERTK signalling serves as a late costimulatory
signal, enhancing the proliferation and secretion of
effector and memory cytokines [50]. Activated T cells
expressing PROS1 and PtdSer (phosphatidylserine) can
bind to MERTK on dendritic cells, further inhibiting
inflammatory responses [51]. In platelet aggregation,
MERTK promotes integrin signalling, fibrinogen
adhesion, and platelet spreading [52-54], although
its exact role in platelet activation remains unclear
and requires further verification [37]. MERTK also
maintains immune balance by preventing excessive
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pro-inflammatory responses to pathogens or tumor cells
while avoiding autoimmune reactions that could lead
to tissue damage or tumorigenesis [55]. In the context
of lung cancer, MERTK overexpression contributes to
oncogenic processes such as cell growth, proliferation,
survival, and migration. Inhibiting MERTK can
induce apoptosis, suppress colony formation, enhance
chemosensitivity, and reduce tumor growth [56].

Mechanism of TYRO3 in disease

The endogenous ligands for TYRO3 are Gas6 and PROSLI.
Gas6 is significantly upregulated following growth
arrest [57], while PROS1 is linked to the proliferation
and differentiation of immune cells [6]. TYRO3 plays a
role in platelet aggregation and is involved in vascular
injury responses [58]. Gas6 activates TYRO3, promoting
the activation of pro-inflammatory endothelial cells,
adhesion molecule expression, platelet adhesion to
endothelial cells [40], and tissue factor release, which
triggers exogenous coagulation and thrombus formation
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[59]. Studies in mice with TYRO3 deficiency have
shown reduced platelet granule secretion, impaired
thrombus formation, and decreased platelet aggregation
stability [34, 60, 61]. TYRO3 also inhibits inflammation
by enhancing the phagocytosis of apoptotic tumor cells
by dendritic cells and macrophages [62-65]. Activated
T cells contribute to this process by producing PROSI,
which forms a PROS1-PtdSer complex with exposed
PtdSer on their surface, stimulating TYRO3 on dendritic
cells [51].

TYRO3 has dual roles, regulating platelet aggregation,
immune responses, and cell growth while also exhibiting
oncogenic potential [60, 66]. It interacts with the PI3K
pathway and induce transformations of NIH3T3 cells via
the EGFR/TYRO3 chimeric receptor. The PI3K pathway
mediates part of TYRO3’s oncogenic capacity [67].
Additionally, the synthesis and secretion of anticoagulant
protein S, along with co-expression of the TYRO3
receptor, may contribute to lung carcinogenesis [19]
(Fig. 2).
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Fig. 2 Four main mechanisms of action exist for TAM. First, TAM facilitates platelet aggregation by activating integrin allbB3 through AXL

or TYRO3, enabling sustained platelet contact to promote thrombosis. Second, TAM modulates the inflammatory response by inhibiting

TLR signaling and inflammatory cytokine production through STAT1-induced AXL-IFNaR interactions, which co-drive SOCS1 and SOCS3
feedback. Third, TAM mediates cytosolic burial by binding to PtdSer on apoptotic cells, activating downstream signaling via the VAV1-RHOA,
p130cas-CRKII-DOCK180-ELMO, and related pathways to induce cytoskeletal reorganization. Finally, TAM promotes M2 polarization during wound
healing by inhibiting NF-kB and activating the PI3K-AKT-STAT1-dependent LXRa/(3 pathway, while reducing M1 cytokine expression

by disrupting the Jun transcription factor complex (Jun proto-oncogene is a member of AP-1

through MERTK-PTP1B-p38a signalling

(activator protein-1) transcription factor family)
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The role of TAM in lung diseases

TAM and pulmonary inflammation

Lung inflammation can be either non-infectious or
infectious in nature [68]. Pneumonia, a lung infection
affecting susceptible individuals, often arises from
chronic conditions (e.g., age, smoking, COPD, diabetes)
or acute events (e.g., poisoning, air pollution, trauma)
[69]. These factors lead to exudate accumulation
in the lung parenchyma, impairing respiratory
function [70]. The development of pneumonia, or
pneumogenesis, is influenced by host biology, including
immune resistance and tissue resilience [1]. Adaptive
immunity significantly impacts pneumonia outcomes,
particularly through recurrent respiratory infections
and lung-resident memory cells triggered by atypical
recall responses [71, 72]. Tissue resilience supports
anti-inflammatory, pro-resolving, and reparative-
regenerative pathways. The severity of pneumonia
ultimately depends on the strength of the host’s
immune resistance and tissue elasticity [73].

Gas6 significantly impacts haemostasis and reduces
inflammation by interacting with TAM [10]. The
Gas6/TAM axis regulates inflammatory responses and
fibrosis progression [8]. Physiologically, this axis plays
a dual role, either promoting tissue repair or causing
organ damage and dysfunction. Its activation can
exhibit anti-inflammatory effects in certain cells and
tissues, such as upregulating AXL phosphorylation in
the alveolar epithelium during ischemia-reperfusion-
induced acute lung injury (IR-ALI), where Gas6/AXL
signalling activates the SOCS3-mediated pathway
to reduce IR-related inflammation and injury [74].
However, it can also maintain pro-inflammatory
responses in other contexts, depending on its anti-
inflammatory or pro-fibrotic properties.

The anti-inflammatory effects of the Gas6/TAM
system primarily stem from its regulation of macrophage
activity [9]. When overexpressed in damaged tissues,
Gas6 inhibits pro-inflammatory cytokine production,
mediates apoptotic body cytotoxicity, and limits
antigen presentation to antigen-presenting cells (APCs)
by attenuating Toll-like receptors (TLRs) and type
I IFN signalling. Additionally, it suppresses NLRP3
inflammasome activation through autophagy [22].

Studies have shown that MERTK and AXL specialize
in coordinating apoptotic cell clearance across different
contexts and play critical roles in inflammatory
regulation [75]. MERTK facilitates the phagocytosis of
microparticles by alveolar macrophages during acute
lung injury, thereby reducing the pro-inflammatory
effects on alveolar epithelial cells [76]. endothelial
MERTK supports endothelial barrier function and
mitigates inflammation by regulating neutrophil
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transmigration and endothelial permeability [77].
Dexmedetomidine (DEX) has been shown to alleviate
sepsis-associated acute lung injury by inhibiting the
ROS/ADAMI10/AXL  signalling pathway, reducing
macrophage cytotoxicity, upregulating AXL expression
in mouse alveolar macrophages, and enhancing apoptotic
cell clearance [78]. If lung inflammation persists and
worsens, it can progress to pulmonary fibrosis.

TAM and pulmonary fibrosis

Pulmonary fibrosis is a chronic and progressive lung
disease marked by thickening of the alveolar walls,
impaired gas exchange, and eventual respiratory failure
[79, 80]. Based on pathomorphological characteristics,
interstitial pneumonias are categorized into three
groups: major idiopathic interstitial pneumonia, rare
idiopathic interstitial pneumonia, and unclassifiable
idiopathic interstitial pneumonia. Among these,
idiopathic pulmonary fibrosis (IPF), a subset of major
idiopathic interstitial pneumonia, is the most severe
and irreversible form, characterized by progressive
fibrosis of the lung parenchyma [81]. Fibrosis arises
from dysfunctional wound healing [82], with chronic
lung inflammation being a key contributing factor
[83]. The primary effector cells in pulmonary fibrosis
are fibroblasts and myofibroblasts. The disease is
characterized by excessive ECM deposition and
structural remodelling of the lung, which disrupts the
dynamic equilibrium between ECM synthesis and
degradation [3]. Two major regulatory mechanisms are
involved: the proliferation and apoptosis of fibroblasts
and myofibroblasts, and the synthesis and degradation
of ECM components [4]. The main cause of pulmonary
fibrosis is an imbalance in ECM homeostasis and a
disruption in the physiological functions of fibroblasts
and myofibroblasts.

IPF is a rare and heterogeneous disease with a complex
etiology that remains poorly understood. Multiple
factors contribute to its development, including genetic
mutation [84-87], age, sex [88, 89], and environmental
factors ( smoking [90], Indoor pollutants [91]). However,
recurrent epithelial injury from various aetiologies
emphasize the IPF initiation [92]. For instance, mutations
in surfactant-related genes, which are essential for normal
epithelial function, can promote pulmonary fibrosis [93].
Additionally, dysfunction in pro-inflammatory cytokines,
such as transforming growth factor-p (TGEF-p), plays a
significant role in the disease process [94, 95]. Elevated
levels of connective tissue growth factor (CTGF),
platelet-derived growth factor (PDGF), and fibroblast
growth factors (FGFs) are known to exacerbate lung
fibrosis. Inhibitors targeting these growth factors [96—
99], such as TGF-p inhibitors [100], have shown potential
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in halting fibrotic progression and improving outcomes
for patients. The TAM receptor tyrosine kinase family,
including AXL, TYRO3, and MERTK, plays a pivotal role
in IPF. AXL forms a complex with Gas6, regulating Gas6-
mediated signalling and modulating ligand availability
[101]. This interaction negatively regulates the alveolar
epithelial phenotypes, leading to a loss of epithelial
integrity [102]. Interestingly, Gas6 exhibits antifibrotic
effects, as demonstrated by studies where recombinant
Gas6 (rGas6) reduced pulmonary fibrosis in mice by
inhibiting EMT, apoptosis, and fibroblast activation in
alveolar epithelial type II (ATII) cells [103].

Furthermore, AXL, TYRO3, and their ligand Gas6
contribute to the activation of lung fibroblasts in IPF,
while MERTK is not expressed in these cells [11].
However, MERTK expression is upregulated in certain
macrophage subpopulations within IPF, where it is
involved in myofibroblast activation and fibrosis [12,
104]. Gas6 has the highest affinity for AXL, suggesting
that the Gas6/TAM system primarily exerts its effects
through AXL in IPF. The roles of MERTK and TYRO3 in
IPF require further investigation. Notably, AXL inhibition
has shown differential effects depending on the disease
stage: worsening inflammation and fibrosis in the acute
phase, but alleviating pulmonary fibrosis in the fibrotic
phase. These highlights need for staged and targeted
therapeutic approaches in treating pulmonary fibrosis
[105]. The Gas6/TAM system has been implicated in the
pathogenesis of pulmonary fibrosis, particularly in IPF.
Further exploration of its role in other fibrotic diseases
may provide valuable insights into broader therapeutic
applications.

TAM and lung tumor

Mechanisms of lung tumor

Lung cancer is one of the most common and deadly
malignancies worldwide, with NSCLC being the most
prevalent form [5]. Smoking remains the primary risk
factor, and countries with high or rising smoking rates
are expected to see increased lung cancer incidence
[106, 107]. A key feature of lung cancer is the aberrant
activation of the extracellular regulatory protein kinase
signalling pathway. The zinc finger protein ZNF251,
which is overexpressed in clinical lung cancer samples
and promotes tumor cell growth, has emerged as a
potential therapeutic target. ZNF251 inhibits the
expression of dual specificity phosphatases 6 (DUSP6), a
negative regulator of ERK activation, by directly binding
to its promoter region [108]. Additionally, exosomes
derived from lung cancer tumors have been shown to
play a significant role in promoting cancer progression.
These  exosomes induce epithelial-mesenchymal
transition, foster a favourable tumor microenvironment,
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enhance cell proliferations, inhibit apoptosis, regulate
invasion and metastasis, mediate immunosuppression
and immune evasion, promote angiogenesis, drive
cancer-related fibroblast transformation, and contribute
to resistance against radiotherapy and chemotherapy
[109-114].

AXL and lung tumors

AXL is recognized for its carcinogenic potential,
particularly in NSCLC, where it is co-expressed with its
ligand Gas6 in specific cell lines [115, 116], contrasting
with its absence in normal bronchial epithelial and small
cell lung cancer cells. This expression pattern may relate
to histochemical and adhesive phenotypes [117]. AXL
promotes NSCLC progression by enhancing tumor
growth, metastasis, invasion, drug resistance, and EMT,
encouraging a conducive environment for tumorigenesis
[13]. AXL also plays a role in immune regulation by
clearing apoptotic cells [118], reducing inflammation,
and creating an immune-tolerant microenvironment that
influences lung cancer growth [117, 119]. Oxidative stress
exacerbates AXL-mediated cell migration and invasion
via the AKT1/Racl pathway [15]. Additionally, CD73
activates AXL by binding to its R55 site, independently
of Gas6, promoting metastasis and EMT through the
CD73/AXL axis [120].

AXL is closely linked to the epithelial-mesenchymal
transition [121-123]. a process where polarized epithelial
cells lose adhesion and gain migratory and invasive
mesenchymal properties [124]. EMT plays a key role in
the progression of NSCLC [124-127]. AXL expression
is higher in NSCLC mesenchymal cancer cells than
in epithelial cancer cells, and its abnormal expression
promotes EMT-related phenotypes, enhancing cell
migration and invasion [17], while maintaining the EMT
state [128]. The AXL-MET axis represents a potential
therapeutic target for NSCLC. Research indicates that
Phosphofructokinase platelet (PFKP), a metabolic
enzyme essential for cancer hyperglycolysis, binds to
AXL, activating its signalling pathway and promoting
MET phosphorylation to drive NSCLC progression.
Nanoparticle system (NPs)-mediated PFKP silencing
reduces cell proliferation, migration, invasion, and
colony formation by inhibiting the AXL-MET axis.
A nanoparticle system encapsulating PFKP siRNAs
enhances the stability of siRNA and promotes its
release into the cytoplasm, effectively inhibiting PFKP
expression, enhancing the targeted inhibition of the
PFKP-mediated AXL-MET axis in tumors, and ultimately
hindering tumor growth in vivo [129].

Cancer stem cells (H1299-sdCSCs) are obtained from
tumor spheres of the human NSCLC cell line H1299.
AXL is highly expressed in H1299-sdCSCs and regulates
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their biophysical properties, including low stiffness and
soft elasticity. AXL knockdown significantly reduces
tumor sphere formation [130, 131]. In addition, AXL may
play a role in promoting pro-tumor macrophages. Studies
have shown that targeted inhibition of AXL on M2
polarized tumor-associated macrophages (M2-TAMs)
helps to polarize them towards the M1 type and activate
macrophage anti-tumor immunity. Direct inhibition of
AXL carried by macrophages and AXL on tumor cells
can effectively interfere with M2 polarization and its pro-
tumor activit [132].

The activation and overexpression of MERTK and AXL
are key factors promoting NSCLC, with complementary
and overlapping roles. These receptors are aberrantly
expressed in NSCLC but are absent or present at
low levels in NHBE cells (Normal Human Bronchial
Epithelial Cells) [133-136]. MERTK promotes tumor
cell proliferation and anti-apoptotic signalling, while
AXL reduces sensitivities to chemotherapy. Together,
MERTK and AXL enhance tumor cell survival by
inhibiting apoptosis, fostering growth, and decreasing

chemosensitivity in NSCLC cells [56]. However,
the precise mechanisms by which AXL contributes
to drug resistance requires further investigation,

potentially involving EMT status and interactions with
other receptors in targeted signalling pathways. AXL
expression is linked to aggressive tumor phenotypes, and
its upregulation and hyperactivation influence the tumor
microenvironment. Therefore, combining AXL inhibitors
[137] with current chemoimmunotherapy regimens,
such as immune checkpoint Inhibitors ( ICIs) [138] and
epidermal growth factor receptor tyrosine kinase
inhibitor (EGFR-TKI) [139-147] may benefit NSCLC
patients.

Notably, AXL exhibits dual functionality, supporting
normal cell growth while also possessing oncogenic
properties. It can induce cancer cell apoptosis, inhibit
tumor growth, and reduce drug resistance by preventing
AXL overexpression or its co-expression with ligands,
offering potential strategies for lung cancer treatment.

MERKT and lung tumor

MERTK’s role in cancer is linked to the inappropriate
expression of its ligands and alterations in chimeric
receptor signalling pathways [18]. Unbiased gain-of-
function retroviral insertion screens have also highlighted
MERTK’s oncogenic potential [148]. MERTK promotes
tumorigenesis through its ligands, primarily Gas6 and
PROS1, which activate the PI3K/AKT and mitogen-
activated protein kinase (MAPK) signaling cascades,
pathways also associated with the Epidermal Growth
Factor Receptor (EGFR) [149]. Protein S, another ligand,
requires modification to activate MERTK-mediated
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phagocytosis of apoptotic cells [150, 151]. Additionally,
galectin-3, which is overexpressed in many cancers, may
contribute to MERTK signalling [152].

MERTK also contributes to lung tumorigenesis via
chimeric receptor signalling. For instance, human
CSE-1 induces MERTK autophosphorylation, activating
phospholipase Cg, PI3K, p70S6 kinases, MEK, and ERK
[153]. Furthermore, a constitutively active MERTK
chimera, formed by fusing the extracellular domain of
CD8 with MERTK’s intracellular region [154], activates
MEK], ERK, PI3K, and the p38 pathway, influencing the
proliferation, migration, and survival of lung cancer cells
[155].

In NSCLC, Gas6-induced phosphorylation of p38,
ERK1/2, MEK1/2, AKT (Protein Kinase B), CREB, and
FAK (Focal Adhesion Kinase) promotes tumor cell
migration and invasion [56]. MERTK activation triggers
multiple pro-oncogenic signalling pathways, including
MAPK, p38, and PI3K, which drive lung carcinogenesis
by enhancing cell proliferation and migration while
reducing apoptosis and chemosensitivity [18]. Inhibiting
MERTK in NSCLC increases apoptosis, reduces colony
formation, enhances chemosensitivity, and decreases
tumor formation.

Cancer progression is often linked to MERTK
mutations, ligand overexpression, or altered chimeric
receptor signalling. Targeting MERTK in tumor cells
offers a promising therapeutic strategy, with potential
inhibitors including ligand traps, monoclonal antibodies,
and small molecule tyrosine kinase inhibitors. A novel
macrocyclic dual MERTK/AXL inhibitor, lead compound
43, shows therapeutic potentials with low nanomolar
potency against MERTK and AXL, demonstrating anti-
tumor activity in lung cancer cell lines [156].

TYRO3 and lung tumor

Studies have shown that the co-expression of TYRO3
and protein S is a common feature in most lung cancer
cell lines. Unlike Gas6, protein S does not stimulate
TYROS3 kinase activity [157, 158]. However, as an active
anticoagulant protein produced by cancer epithelial cells
[159], protein S may contribute to lung carcinogenesis
or progression through a receptor-ligand system that
influences local anticoagulation, proliferation, or
differentiation [19]. The interaction between protein
S and TYRO3 may also promote cell survival or aid
in tissue repair, suggesting a dual role in lung cancer
development and progression, with mechanisms that
require further investigation. Additionally, combining
TYRO3-targeted inhibitors with checkpoint inhibitors
may enhance antitumor activity and benefit NSCLC
patients [160]. Furthermore research is needed to explore
whether TYRO3 influences lung cancer through other
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mechanisms or pathways, as current studies on its role
remain limited.

Mechanisms of TAM in COVID-19-induced lung
injury

SARS-CoV-2, the virus responsible for COVID-19, is
a pathogen that causes an acute respiratory disease. It
encodes four major structural proteins: spike protein
(S), membrane protein (M), nucleocapsid protein (N),
and envelope protein (E) [161]. The spike protein, a
glycoprotein, consists of two functional subunits, S1
and S2. The S1 subunit, exposed on the surface, contains
a receptor-binding domain (RBD) that specifically
recognizes angiotensin-converting enzyme 2 (ACE2)
on host cells, facilitating viral entry [162, 163]. The S2
subunit is primarily involved in membrane fusion [164]
(Fig. 3).

Gas6 binds PtdSer on viral surfaces and interacts with
TAM to connect viruses to macrophages and other
phagocytes, facilitating either lattice protein-mediated
endocytosis or viral megalocytosis [24], leading to viral
internalization [165, 166]. Serum ACE2 and AXL levels
are linked to the severity of COVID-19, particularly
with pulmonary inflammation [167], and targeting these

proteins provides an effective strategy to block viral entry
into cells [168, 169]. AXL facilitates the entry of viruses
into cells [20], while increased galectin-3, a ligand for
MERTK and TYRO3 activation, correlates with fibrosis,
inflammation, and tissue damage [170]. Plasma levels of
Gas6 and soluble AXL (sAXL) correlate with COVID-19
severity, progressing with disease intensity and serving as
potential biomarkers for prognosis [171]. TAM receptors
may play a role in both adaptive and non-adaptive
immunity [172]. The Gas6/TAM axis is a key regulator
of the innate immune system, and under inflammatory
conditions, elevated levels of sAXL, sMERTK, and
STYRO3 help modulate the inflammatory response and
protect against tissue damage [21, 22].

The development of pulmonary fibrosis following viral
infection can be attributed to two main mechanisms:
virus-induced lung injury with abnormal wound
healing and immune-mediated injury, which involves
the activation of pro-inflammatory and pro-fibrotic
signals [20]. Clinical studies in COVID-19 patients
have demonstrated that SARS-CoV-2 disrupts normal
re-epithelialization, leading to abnormal wound healing
and subsequent lung injury [173]. This injury is often
accompanied by thrombotic activation, as thrombosis
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and disseminated intravascular coagulation are
common in these patients [174—176]. PROS], a critical
regulator of the coagulation cascade, plays a key role in
preventing coagulopathy [177]. However, its depletion
due to SARS-CoV-2 infection of blood vessels can
result in uncontrolled cytokine production, triggering
cytokine storms and damaging lung vasculature.
Coagulation dysfunction, vascular necrosis, and bleeding
complications may also reduce TAM ligand levels, as
thrombus exposure accelerates PROS1 consumption
[178]. In contrast, the Gas6/TAM axis is essential for
maintaining vascular homeostasis and regulating platelet
activation, serving as a protective mechanism against
vascular damage and endothelial repair [39, 179]. ADP-
P2Y12 and Gas6 work synergistically to activate PI3K
signalling, promoting sustained activation of alIbp3 and
stabilizing thrombus [180]. However, moderate inhibition
of the Gas6/TAM axis can reduce platelet activation and
thrombosis while still allowing platelet plugs to form,
thereby maintaining haemostatic function [181].

Viruses can trigger immune-mediated injury by
activating pro-inflammatory and pro-fibrotic signals.
In the case of SARS-CoV-2, the immune response
can become overactive, leading to excessive cytokine
production, recruitment of neutrophils, monocytes,
and macrophages, which express phosphatidylinositol
3-kinase gamma (PI3Ky) [182]. This exacerbates immune
damage and contributes to pulmonary fibrosis [173].
Elevated levels of cytokines such as IL-6 and tumor
necrosis factors (TNF) in COVID-19 patients have been
linked to widespread lung damage [183, 184]. PROSI1
plays a critical role in cytokine regulation by binding to
the extracellular domain of MERTK, activating its kinase
to suppress cytokine release during infections caused by
viral, bacterial, and other pathogens [185]. In COVID-
19 patients, reduced PROS1 expression impairs TAM
signalling, resulting in chronic immune hyperactivation,
ineffective clearance of apoptotic cells, and an increased
risk of autoimmune diseases. Interestingly, PROS1 has
dual functions, acting as both an anticoagulant and a
potential inducer of excessive blood coagulation and
immune responses, possibly linked to its role as a TAM
ligand.

The Gas6/TAM system is implicated in the
pathological processes of COVID-19, with receptors
like AXL potentially mediating viral entry, inflammatory
regulation, and the coagulation cascades. This suggests
the system’s significance in understanding COVID-
19 pathogenesis. Exploring the role of Gas6/TAM in
pulmonary inflammation and fibrosis could offer novel
therapeutic strategies for COVID-19 patients (Table 1).
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Summary and outlook

This review focuses on the role of TAM (TYRO3, AXL,
and MERTK) in the haematopoietic, immune, fibrotic,
and inflammatory systems of the lung. TAM exhibits
dual roles in regulating lung cell biology, highlighting
its complexity as a highly regulated system. To elucidate
TAM'’s impact on lung disease progression, this review
examines its function alongside its ligands, Gas6
and PROSI, in processes such as proliferation and
differentiation. It provides a comprehensive analysis of
TAM’s involvement in four key areas: lung inflammation,
fibrosis, tumour development, and COVID-19-related
lung injury.

This review highlights that TAM receptors can
exacerbate lung inflammation and fibrosis via the Gas6/
TAM axis. While MERTK and AXL can collaborate to
clear apoptotic cells and limit inflammatory progression,
AXL plays a role in lung cancer by driving tumor growth,
metastasis, invasion, drug resistance, and epithelial-
mesenchymal transition. Mutations in MERTK, abnormal
ligand expression, and altered chimeric receptor
signalling can activate pro-cancer pathways, enhancing
cell proliferation and migration while reducing apoptosis
and chemotherapy sensitivity, thereby promoting lung
cancer development. Additionally, the co-expression of
TYRO3 and protein S is a common feature in most lung
cancer cell lines and contributes to tumor progression.

A detailed review of the progress in understanding
the mechanism of action of TAM in lung diseases
can help identify new therapeutic targets for lung
tumor treatment. Inhibition of the TAM signalling
pathways has shown promise in lung tumor therapy by
blocking the co-expression of AXL and its ligand Gasé6,
thereby reducing cell adhesion, mitotic activity, and
proliferation, which inhibits tumor growth. The AXL-
MET axis is a potential therapeutic target for NSCLC
patients, as inhibiting AXL expression can reduce EMT-
related phenotypic transformation and stabilize the
cytoskeleton, thereby inhibiting metastasis, invasion, and
drug resistance. Additionally, targeting MERTK, which is
selectively demanded by tumor cells, offers a strategy for
developing inhibitors, such as ligand traps, monoclonal
antibodies, and small molecule tyrosine kinase inhibitors,
to inhibit lung tumor occurrence and development.
The co-expression of TYRO3 and protein S, a common
feature in most lung cancer cell lines, also contributes to
tumor development. Furthermore, targeting ACE2 and
AXL provides an effective strategy to inhibit the entry of
the COVID-19 virus into cells.

TAM inhibitors can restore drug sensitivity, inhibit
angiogenesis, reduce lung tumorigenesis and prevent
lung tumor formation. Current therapeutic candidates
include the dual MERTK/AXL inhibitor compound
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43, immune checkpoint inhibitors, EGFR-TKIs,
TYRO3-targeted inhibitors combined with checkpoint
inhibitors. However, the long-term effects of TAM
signalling inhibition on lung disease development remain
unexplored, and population-based trials are lacking.
There is also a scarcity of research data and statistics
needed to translate the theoretical framework into
practical applications. Conducting relevant population
trials to emphasize TAM’ role and impact in lung
diseases could lead to more rational treatment strategies,
enabling targeted therapy for lung diseases without
affecting other cells and tissues.
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rGas6 Recombinant Gasé

RTKs Receptor tyrosine kinases

SAXL Soluble AXL

TGF-B Transforming growth factor-
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