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Abstract 

Objectives  This study aims to clarify the genetic associations between Sjögren’s Disease (SD) and cardiovascular 
disease (CVD) outcomes, and to conduct an in-depth exploration of specific pleiotropic susceptibility genes.

Methods  We performed two-sample and multivariable Mendelian randomization (MR) analysis to investigate the associa-
tion between SD and the risk of ischemic heart disease (IHD) and stroke. Linkage disequilibrium score regression (LDSC) 
and Bayesian co-localization analyses were employed to assess the genetic associations between traits. Cross-phenotype 
analyses were employed to identify shared variants and genes, followed by a Transcriptome-Wide Association Study (TWAS) 
and Multi-marker Analysis of Genomic Annotation (MAGMA) based on Multi-Trait Analysis of GWAS (MTAG) results. To validate 
the pleiotropic genes, we further analyzed tissue-specific differentially expressed genes (DEGs) related to SD using RNA 
sequencing data.

Results  The two-sample and multivariable MR analyses revealed that SD confers a genetic vulnerability to IHD and stroke. 
LDSC and co-localization analyses indicated a strong genetic linkage between SD and CVDs. Cross-phenotype analyses iden-
tified 38 and 37 pleiotropic single nucleotide polymorphisms (SNPs) for SD-Stroke and SD-IHD, respectively, primarily located 
within the MHC class region on 6p21.32:33 loci. Additionally, TWAS and MAGMA analyses identified pleiotropic genes located 
outside the MHC regions—seven associated with stroke (UHRF1BP1, SNRPC, BLK, FAM167A, ARHGAP27, C8orf12, and PLE-
KHM1) and two associated with IHD (UHRF1BP1 and SNRPC). Proxy variants within these genes in SD suggested an increased 
causal risk for stroke or IHD. Co-localization analysis further reinforced that SD and stroke share significant SNPs within the loci 
of FAM167A, BLK, C8orf12, SNRPC, and UHRF1BP1. DEG analysis revealed a significant up-regulation of the identified genes 
in SD-specific tissues.

Conclusions  SD appears genetically predisposed to an increased risk of CVDs. Moreover, this research not only identified 
pleiotropic genes shared between SD and CVDs, but also, for the first time, detected key gene expressions that elevate CVD 
risk in SD patients—findings that may offer promising therapeutic targets for patient management.
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Introduction
Sjögren’s Disease (SD) is a chronic immune inflammatory 
disorder, with an incidence rate of 6.92 cases and a 
prevalence rate of 60.82 cases per 100,000 individuals. 
It primarily affects women, particularly those between 
the ages of 40 and 50 [1] The SD, which can also occur 
secondary to conditions such as rheumatoid arthritis 
(RA), systemic lupus erythematosus (SLE), and systemic 
sclerosis (SSc), typically presents with lymphocytic 
infiltration of exocrine glands and frequently 
accompanied by various extraglandular manifestations 
[2]. An increasing number of observational studies 
have indicated that patients with SD, regardless of the 
presence of other rheumatic diseases, are at a significantly 
higher risk of cardiovascular events compared to healthy 
individuals [3]. For instance, a comprehensive review of 
data, encompassing a large cohort of SD subjects, has 
substantiated the increased risk of cardiovascular disease 
(CVD) in individuals diagnosed with SD [4]. Moreover, 
research has indicated that a greater percentage of 
individuals with SD are prone to developing dyslipidemia 
and hypertension, factors that might elevate the risk of 
cardiovascular events such as ischemic heart disease 
(IHD) in this population [5]. Extended follow-up 
investigations have further shown that Ro/SSA and La/
SSB autoantibodies can increase the likelihood of CVD 
by threefold [6].

These findings underscore an association between SD 
and CVD, identifying SD as a potential independent 
risk factor for cardiovascular conditions. However, the 
precise pathogenesis linking SD and CVD, as well as 
the genetic risk factors related to anti-Ro/La antibodies 
and CVD, remain unclear. Various modifiable all-known 
factors, such as smoking, obesity, et  al., may act as 
confounders, affecting both autoimmune diseases and 
CVDs. Bolstad’s research, utilizing single nucleotide 
variant (SNV) analysis, suggested there existed shared 
genetic variant in both SD and myocardial infarction [7]. 
Most recently, a Mendelian randomization (MR) analysis 
aimed at investigating the genetic predisposition of SD to 
various CVDs suggested a potential genetic risk for CVD 
development in SD patients, providing a foundation for 
the current study [8]. However, it should be noted that 
this study did not explore gene-trait associations, and 
there remains a need for larger-scale post-Genome-
Wide Association Study (GWAS) to further elucidate the 
underlying pathogenesis and pathways contributing to 
this phenomenon.

In the current study, we aimed to elucidate the genetic 
associations between SD and ischemic diseases, including 
stroke and IHD, using MR and cross-phenotype post-
GWAS analyses. This approach not only helps clarify the 
causal relationships between these two diseases but also 

explores the genetic basis of their comorbidity, laying the 
groundwork for the development of targeted therapies 
and personalized treatment strategies. Ultimately, this 
could lead to improved clinical outcomes and more 
efficient allocation of healthcare resources.

Methods
Overview
Given the background of the unclear association between 
SD and CVD events, this study aimed to elucidate the 
genetic causal associations between these conditions. The 
primary objectives were to determine whether patients 
with SD are genetically predisposed to cardiovascu-
lar outcomes and to detect potential pleiotropic genes 
and pathways involved in these phenotypes. This study 
employed a multi-level genetic analysis approach, includ-
ing MR to explore causal relationships, post-GWAS anal-
ysis to identify pleiotropic genes, and validation of these 
genes using RNA sequencing data from GSE84844 and 
GSE7451, as detailed below and illustrated in the flow-
chart (Fig. 1).

First, two-sample as well as multivariable MR analyses 
were carried out between the exposure GWAS of 
SD and CVDs, including IHD and stroke. Mendelian 
randomization leverages genetic variants, particularly 
single nucleotide polymorphisms (SNPs), to infer 
causal relationships between traits. This approach relies 
on three fundamental assumptions: (1) The genetic 
variants selected as instrumental variables (IVs) must 
be linked to the exposure; (2) These variants should be 
independent of confounders affecting both the exposure 
and outcome; (3) The genetic variants should influence 
the outcome exclusively through the exposure, without 
alternative pathways. These stringent conditions make 
MR comparable to a natural randomized controlled trial 
(RCT), thereby enhancing its credibility in identifying 
causal relationships [9].

Recognizing that MR analysis alone may struggle 
to address the complex pleiotropy inherent in trait 
phenotypes, particularly in immune inflammatory 
diseases, a series of post-GWAS strategies were employed 
to understand the biological implications of risk loci. 
First, linkage disequilibrium (LD) score regression 
(LDSC) between SD and CVDs was calculated, followed 
by Bayesian co-localization to assess the shared genetic 
variants at the same genomic loci. Subsequently, cross-
phenotype analysis was conducted using Multi-Trait 
Analysis of GWAS (MTAG) [10] to amplify the effects 
of single SNPs within GWAS data, and the findings 
were further validated through the Cross-Phenotype 
Association (CPASSOC) approach [11]. Pleiotropic 
genes were identified through ANNOVAR mapping, 
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Fig. 1  Flowchart plot
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Transcriptome-Wide Association Study (TWAS), 
and Multi-marker Analysis of Genomic Annotation 
(MAGMA) [12].

Given the potential confounding from overlapping 
cases of SLE or RA in the FinnGen database, which 
could skew gene expression profiles in SD, further 
validation of the identified genes was performed using 
two independent Gene Expression Omnibus (GEO) RNA 
sequencing datasets from vulnerable SD tissues.

Data sources of GWAS summary
We leveraged the most extensive and up-to-date GWAS 
datasets available, utilizing primary data from the 
FinnGen 11 consortium (https://​riste​ys.​finre​gistry.​fi/) for 
SD as the exposure variable and CVD-related outcomes. 
FinnGen offers the most comprehensive genetic data 
for SD currently accessible [13]. Within the FinnGen 
consortium, the minimal genetic and epidemiological 
overlap between SD and other systemic connective tissue 
diseases implies that most SD cases arise as primary 
disorders. For multivariable MR analysis, additional 
datasets were employed, encompassing potential 
confounders such as body mass index (BMI), type 2 
diabetes mellitus (T2D), smoking status, low-density 
lipoprotein cholesterol (LDL-C), high-density lipoprotein 
cholesterol (HDL-C), and other autoimmune diseases 
including SSc, rheumatoid arthritis (RA) and SLE. 
These datasets were predominantly obtained from the 
IEU OpenGWAS Project and the FinnGen consortium. 
Detailed descriptions of all data sources are provided in 
Supplementary Table S1.

Statistical analysis
Mendelian randomization
To explore the causal link between SD and CVD risk, an 
initial two-sample MR analysis was conducted, with SD 
as the exposure and CVDs as the outcomes. SNPs sig-
nificantly associated with SD were identified and selected 
based on a clumping threshold using PLINK, with a cri-
terion of P < 5 × 10⁻⁷, r2 < 0.01, and a window size of 5000 
kb. Only SNPs with an F-statistic > 10, indicating a robust 
association with SD, were included in the MR analysis. 
The F-statistic calculation follows Burgess’s methodology 
[14].

To adhere to the core assumptions of MR and mitigate 
potential pleiotropy, we conducted a rigorous exclusion 
of SNPs associated with confounders such as SLE, RA, 
SSc, HDL-C, LDL-C, BMI, and smoking status. This was 
achieved through a meticulous screening process, elimi-
nating SNPs with a P-value < 5 × 10⁻8 or those with LD 
r2 > 0.8 with these confounding factors, employing the 
LDlink tool (ldlink.nih.gov/) [15].

The random-effects inverse-variance weighted (IVW) 
method was selected as the primary analytical approach 
due to its strong statistical power. To enhance the reli-
ability of our results, we conducted sensitivity analyses 
using complementary methods, including the weighted 
median, maximum likelihood estimation, and MR-Egger 
regression. A significance threshold of Bonferroni cor-
rected P < 0.025 (0.05/2) was set to infer robust evidence 
of causality on above methods. To address the vulnerabil-
ity of the IVW method to pleiotropy, the MR-Pleiotropy 
RESidual Sum and Outlier (MR-PRESSO) test [16] was 
applied to detect and exclude potential outlier SNPs for 
each outcome, with the number of distributions (NbDis-
tribution) set at 3000. Furthermore, we implemented 
Steiger directionality tests [17] to rigorously evaluate the 
stability of the causal direction, which involved compar-
ing the R-squared values of each SNP and the correlation 
strength between the SNPs and both exposure and out-
come summary statistics. This also served to assess plei-
otropy and enhanced the robustness of our findings. To 
account for identified confounders, a multivariable MR 
approach was employed, utilizing the same SNP inclu-
sion and clumping criteria. Furthermore, to determine 
whether the effects of SD on IHD and stroke are medi-
ated through risk factors such as HDL-C, LDL-C, BMI, 
and smoking status, we conducted two-sample Mende-
lian randomization analyses to assess the associations 
between SD and these factors. A significance threshold 
of Bonferroni-corrected P < 0.01 (0.05/5) was set to infer 
causal evidence. This approach also allows for the evalu-
ation of potential bias in the MR results, particularly the 
risk of an increased false positive rate due to population 
overlap between the FinnGen exposure and outcome 
cohorts.

Linkage disequilibrium magnitude and co‑localization 
analysis
To estimate trait heritability (h2) and assess genetic 
correlation (rg) between exposure and outcome traits, 
we applied LD Score Regression (LDSC) using GWAS 
summary statistics. LDSC dissects the polygenic 
architecture of complex traits, differentiating true 
polygenic signals from confounding factors by evaluating 
the contribution of individual SNPs to trait heritability 
and computing genetic correlations across traits. The 
strength of the genetic correlation (rg) quantifies the 
extent of shared genetic etiology, while the sign of rg 
denotes the directional relationship between traits [18].

To further investigate shared causal variant between 
traits, Bayesian co-localization analysis was performed, 
aiming to confirm that the observed genetic associations 
are attributable to shared causal variants rather than 
coincidental overlap [19]. Methodological details and 

https://risteys.finregistry.fi/
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assumptions underlying this approach were thoroughly 
described in previous literature. For this analysis, the 
most significant instrumental variable (IV) for SD was 
identified using PLINK, adhering to stringent clump-
ing criteria: P < 5 × 10⁻8, r2 < 0.01, and a window size of 
5000 kb. The co-localization analysis focused on a 1 Mb 
genomic interval centered on this IV (250 kb upstream 
and downstream), specifically targeting the region on 
chromosome 6 (chr 6, pos: 31442644–31942644). A 
posterior probability threshold of 0.8 for hypothesis 4 
(PPH4), which indicates a shared causal variant between 
the traits, was set to determine whether robust evidence 
exists for shared genetic variants between the exposure 
and outcome traits.

Post‑GWAS analysis
Multi‑trait analysis of  GWAS  MTAG is an advanced 
IVW meta-analysis method that leverages summary data 
from single-trait GWAS, improving association statistics 
for each trait. By allowing the combined analysis of mul-
tiple traits, MTAG substantially boosts statistical power, 
thereby improving the detection of shared genetic archi-
tectures among different traits. In our post-GWAS analy-
sis, we applied MTAG to SD-IHD and SD -Stroke, both of 
which demonstrated significant associations in the prior 
co-localization analysis. This analysis yielded four trait-
pairs: MTAG​SD-IHD, MTAG​IHD-SD, MTAG​SD-Stroke, and 
MTAG​Stroke-SD, which served as input for further down-
stream analyses. To mitigate the risk of false discover-
ies within the MTAG framework, we supplemented our 
analysis with a CPASSOC analysis as a supplementary 
analysis, with the SHet statistic playing a crucial role in 
discerning these shared genetic variants [20].

Independent significant SNP definition and function anno‑
tation  Variants meeting the stringent threshold of P < 
5 × 10–8 in the MTAG analysis, SHet < 5 × 10–8 in CPAS-
SOC, and < 5 × 10–8 in both GWAS summary datasets 
were designated as independent significant SNPs. These 
shared variants underwent further functional annotation 
using the ANNOVAR mapping method, allowing for the 
determination of their potential biological roles and iden-
tification of the nearest genes within approximately 100 
kb clumping regions.

Identification of  pleiotropic genes  Acknowledging that 
ANNOVAR’s proximity-based gene annotation approach 
may be overly simplistic, we extended our analysis by 
employing two complementary methods: Functional 
Summary-based Imputation (FUSION) for TWAS and 
MAGMA. FUSION leverages expression quantitative trait 
loci (eQTL) data [21], while MAGMA performs proxim-
ity-based gene burden testing. Only genes identified as 

significant by both FUSION and MAGMA were classi-
fied as pleiotropic. FUSION analysis was conducted using 
MTAG summary data in conjunction with eQTL data 
from pertinent tissues, including the artery, whole blood, 
brain, spleen, Epstein-Barr virus (EBV)-transformed lym-
phocytes, and whole blood. GTEx v8, the most extensive 
human eQTL database [22], was utilized to train locus-
based prediction models within the FUSION framework. 
Concurrently, MAGMA was applied to MTAG sum-
mary data for gene and gene set analysis, using the 1000 
Genomes European population as the reference panel for 
LD calculation. To control for false discovery, the Benja-
mini-Hochberg (BH) correction was applied to adjust P 
values in both methodologies.

Pathway enrichment and  functional prediction for pleio‑
tropic genes  Enrichment analysis of the identified genes 
was conducted using the Functional Mapping and Anno-
tation of Genetic Associations (FUMA) web-tool [23], 
integrating gene data from 53 normal tissues in the GTEx 
project to estimate tissue-specific differentially expressed 
genes (DEGs). Then, pathway enrichment was conducted 
utilizing the Molecular Signatures Database (MSigDB), 
identifying important biological pathways with an 
adjusted P-value < 0.05. Further genetic interactions and 
functional exploration were carried out utilizing Gene-
MANIA, providing insights into the biological roles of the 
identified genes [24].

Identification of therapeutic targets for reducing cardiovas‑
cular disease comorbidities  We identified 42 pleiotropic 
genes shared between SD and the comorbid conditions of 
stroke and IHD. These genes were then cross-referenced 
with the Drug Gene Interaction Database (DGIdb) and 
DrugBank to discover potential therapeutic targets, offer-
ing avenues for reducing cardiovascular disease risks 
associated with SS [25, 26].

Validation of  differential expression of  pleiotropic genes 
using GEO RNA sequencing data  Given the potential 
confounding effects due to overlapping cases of other 
immune inflammatory diseases in the FinnGen database, 
we sought to validate the pleiotropic genes identified ear-
lier by analyzing differentially expressed genes (DEGs) 
specific to SD. This analysis was conducted using RNA 
sequencing data from the GEO database, focusing on two 
GEO database series related to SD derived from minor 
salivary glands (GSE7451) and blood samples (GSE84844). 
Gene expression levels were meticulously analyzed and 
visualized using heatmaps and volcano plots, with P-val-
ues adjusted using the BH correction method [27–29]. 
DEGs were identified based on a corrected P-value < 0.05 
and a fold change > 1.
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Sensitivity analysis
Considering that our two-sample MR analysis in 
Sect."Multi-Trait analysis of GWAS"was constrained 
by the exclusion of confounding SNPs, which led to an 
insufficient number of SNPs and necessitated the use 
of relatively lenient thresholds for P-values and clump-
ing criteria, we conducted a sensitivity analysis of the 
MR analysis. Initially, we identified the most suscepti-
bility-associated SNPs for SD as reported in the stud-
ies by Lessard, Taylor et al., which are listed in Table S2 
[30–38]. These SNPs were extracted from the expo-
sure GWAS data under the conditions of P < 5 × 10⁻8, 
clumping with r2 < 0.001, and a window size of 10,000 
kb, to perform the two-sample MR analysis. Statistical 
significance was determined based on a Bonferroni-
corrected P-value threshold of < 0.025 (0.05/2).

To determine whether the association between the 
identified susceptible pleiotropic genes located outside 
the MHC class complex in the 3.3.4 section for SD and 
CVDs was direct, we performed an MR analysis. Ini-
tially, due to the limitation in the number of SNPs, we 
extracted SNPs located within the corresponding genes 
(including 50 kb upstream and downstream regions) that 
met a P-value threshold of 5 × 10⁻6, and applied clumping 
to identify independent SNPs (r2 < 0.001). Since only one 
independent IV was available, MR effect we assessed the 
by the Wald ratio method, using a significance thresh-
old of P < 0.05. Subsequently, a co-localization analysis 
was conducted to confirm whether SD and CVDs share 

causal variants within the corresponding genes (50 kb 
upstream and downstream). We restricted our analysis to 
genes with PPH3 + PPH4 ≥ 0.8 due to limited power in 
the co-localization analysis [39].

Results
LDSC
We performed LDSC to assess the heritability between 
SD and CVD outcomes. SNP-based heritability was 
acceptable for SD and CVDs, with relatively higher h2 
values and significant h2 P-values, although the h2 for 
SD had a lower Z-score than the recommended thresh-
old of 4 (Z = 2.51) (Table S3). Analysis using GWAS data 
revealed that the genetic correlation estimates between 
SD and CVDs were all significant (rg P < 0.05) (Table S4, 
Fig. 2).

Causal relationship between SD and CVDs
We first conducted a two-sample MR analysis. After 
applying standard clumping thresholds, 19 SNPs were 
identified as significantly associated with SD. To ensure 
the validity of our instruments, we excluded 8 SNPs that 
links with potential confounding factors (P < 5 × 10⁻⁸ or 
LD r2 > 0.8), including rs10174238 (SLE), rs75782365 
(HDL-C), rs185466530 (BMI), rs3093958 (blood pres-
sure), rs41423345 (RA), rs9277476 (SLE), rs150724213 
(SLE), and rs2004640 (RA). Following these exclu-
sions, 11 SNPs were retained as IVs for SD, includ-
ing rs35948093, rs2517830, rs1056429, rs72891915, 

Exposure

Sjögren's Disease

Sjögren's Disease

Sjögren's Disease

Sjögren's Disease

Sjögren's Disease

Sjögren's Disease

Sjögren's Disease

Sjögren's Disease

Outcome

Ischemic heart disease

Ischemic heart disease

Ischemic heart disease

Ischemic heart disease

Stroke

Stroke

Stroke

Stroke
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11

11

11

11

11

11

11

Method

Inverse variance weighted

Weighted median

Maximum likelihood

MR Egger

Inverse variance weighted

Weighted median

Maximum likelihood

MR Egger

OR(95% CI)

1.04(1.01,1.06)

1.03(1,1.06)

1.04(1.02,1.06)

1.08(1.01,1.15)

1.1(1.08,1.13)

1.1(1.06,1.13)

1.11(1.08,1.13)

1.13(1.06,1.21)

P value

9.78e−03

3.50e−02

5.37e−04

4.29e−02

5.22e−13

2.22e−07

2.04e−14

6.35e−03

PPH4

0.93

0.93

0.93

0.93

1.00

1.00

1.00

1.00

1 1.05 1.1 1.15 1.2
Effect size(OR)

Fig. 2  Causal relationship between Sjögren’s syndrome (SD) and cardiovascular events in two-sample Mendelian Randomization (MR) analysis
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rs9469586, rs79756150, rs9366833, rs1064994, 
rs9277928, rs62404122, and rs937033 (Table S5).

As shown in Fig.  2, the IVW analysis demonstrated 
positive causal effects of SD on CVD events of IHD 
(OR: 1.04, 95% CI: 1.01–1.06, P = 9.78 × 10⁻3) and 
stroke (OR: 1.10, 95% CI: 1.08–1.13, P = 5.22 × 10⁻13). 
Even under the Bonferroni correction condition of P < 
0.025, the result still reached significance. Cochran’s 
Q test yielded P values > 0.05, indicating no significant 
heterogeneity exists. The results from the maximum 
likelihood, weighted median and MR-Egger methods 
were aligned with the IVW results (Fig.  2, Figure S1). 
The MR-PRESSO test did not identify any of horizon-
tal pleiotropy across all CVD outcomes (Table  S6). 
The leave-one-out analysis further confirmed that the 
results remained robust, with no significant changes 
observed upon the exclusion of any single SNP associ-
ated with SD (Figure S2). Moreover, we conducted the 
Steiger directionality test, which confirmed that all 
causal directions were correctly specified (Table S7).

In the multivariate MR analysis, consistent results 
were both observed IHD (OR: 1.02, 95% CI: 1.00–1.03, 
P = 0.03) and stroke (OR: 1.03, 95% CI: 1.02–1.05, P = 
5.35 × 10⁻5) after controlling for confounding vari-
ables (Fig.  3, Table  S8). In addition, we evaluated the 
causal effects of SD on common risk factors for CVDs; 

however, no significant associations were observed 
(Figure S3).

Co‑localization
To further confirm the complex genetic association 
between SD and CVD events, we conducted 
co-localization analysis based on the selected loci region 
(chr 6, pos: 31442644–31942644). The analysis identified 
shared causal variants between SD and stroke, as well 
as between SD and IHD, both with the most significant 
SNP of rs3093958, with PPH4 values of 0.99 and 0.93, 
respectively (Fig. 2, Figure S4, Table S9).

Post‑GWAS analysis
Cross‑trait meta‑analysis
In MTAG, we conducted cross-phenotype analyses 
between GWASSD and GWASStroke, as well as between 
GWASSD and GWASIHD. This resulted in four MTAG 
trait-pairs: MTAG​SD-IHD, MTAG​IHD-SD, MTAG​SD-Stroke, 
and MTAG​Stroke-SD, which will serve as input for subse-
quent FUSION TWAS and MAGMA analyses. For SD-
Stroke, MTAG​SD-Stroke and MTAG​Stroke-SD shared a total 
of 4,487 variants with P of MTAG < 5 × 10⁻8, whereas for 
SD-IHD, MTAG​SD-IHD and MTAG​IHD-SD shared a total 
of 519 variants. In CPASSOC, 13,341 and 13,222 vari-
ants were identified for SD-Stroke and SD-IHD, respec-
tively, with a P of SHet < 5 × 10⁻8. The substantial overlap 
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Rheumatoid arthritis
Systemic lupus erythematosus
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High−density lipoprotein cholesterol
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1.05(1.03,1.07)
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1(0.99,1.01)
1.01(1,1.02)
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1.03(1.02,1.05)
1.04(1.01,1.08)
0.92(0.88,0.96)
1.05(1.03,1.06)

1.18(1.15,1.2)

P value
3.20e−03
4.42e−01
8.27e−01
2.08e−02
3.38e−02
2.55e−03
1.82e−06
2.95e−08
2.20e−48
6.79e−01
5.29e−01
2.25e−01
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1.98e−02
3.34e−04
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Effect size(OR)

Fig. 3  Causal relationship between SD and cardiovascular events (CVDs) in multivariable MR analysis
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between the MTAG and CPASSOC results highlights the 
robustness of the MTAG analysis (Table S10).

Identification and functional annotation of independent 
significant variants
After applying a stringent P-value threshold of 5 × 10⁻⁸ 
across MTAG, CPASSOC, and GWAS analyses, we 
identified 38 and 37 independent significant variants for 
SD-Stroke and SD-IHD, respectively. Notably, only one 
SNP, rs62397687, was shared between SD-Stroke and 
SD-IHD. Among the non-coding variants identified, 
intergenic variants were the most prevalent, account-
ing for 54.79% of the total SNPs, suggesting a potential 
regulatory role rather than direct involvement in protein-
coding functions. Furthermore, a significant proportion 
of SNPs were located within ncRNA intronic (16.44%) 
and intronic (13.70%) regions. Four SNPs—rs1041981, 
rs14597, rs1766, and rs7383287—were mapped to exonic 
regions, directly impacting the nearest genes LTA, 
HCG26, HLA-DQB1-AS1, and HLA-DOB, respectively, 
thereby contributing substantially to disease susceptibil-
ity. As a result, 19 and 15 nearest genes within the 100 kb 
clumping regions were mapped from the identified SNPs 
for SD-Stroke and SD-IHD, respectively. All these genes 
are situated within the 6p21.32 and 6p21.33 loci, regions 
recognized for their dense concentration of immune-
related genes (Table S11).

Pleiotropic genes and pathways
Given the limitations of proximity-based gene annota-
tion, we extended our analysis by performing FUSION-
TWAS and MAGMA analyses on the MTAG summary 
results to identify pleiotropic genes (Fig.  4). The com-
bined FUSION and MAGMA analyses identified two 
genes, UHRF1BP1 and SNRPC, as being shared between 
both SD and IHD, with a BH-corrected P value < 0.05 
(Table  1, Table  S12). Additionally, seven genes—
UHRF1BP1, SNRPC, BLK, FAM167 A, ARHGAP27, 
C8orf12 (FAM167 A-AS1), and PLEKHM1—were found 
to be shared between SD and stroke (Table S13). Notably, 
UHRF1BP1 and SNRPC were shared across SD, stroke, 
and IHD.

In total, 21 and 22 pleiotropic genes shared between 
SD-IHD and SD-Stroke were identified through ANNO-
VAR annotation of pleiotropic SNPs, FUSION-TWAS, 
and MAGMA gene set analyses (Table S14). These genes 
were further visualized using FUMA gene2function 
across 54 different normal tissues. Predominant expres-
sion of these genes was observed in tissues such as the 
small intestine, EBV-transformed lymphocytes, spleen, 
blood and lung highlighting their primary involvement 
in immune system processes (Fig. 5A). This was particu-
larly evident for genes such as HLA-DOB, HLA-DQA1, 
HLA-DQA2, HLA-DQB1, HLA-DRB5, LTA, LST1, BLK, 
ARHGAP27, AIF1, MICB, and UHRF1BP1, which play 
crucial roles in immune response pathways and exhib-
ited significantly elevated expression levels in EBV-trans-
formed lymphocytes and spleen (Fig. 5B).

A total of 401 pathways were identified with signifi-
cant adjusted P values using the MSigDB database. The 
15 most significant pathways, illustrated in Fig. 5C, were 
primarily related to immune cell activation, particularly 
those involved in T cell-mediated immunity and leu-
kocyte adhesion. This underscores the critical roles of 
adaptive immune responses in these conditions. The net-
work analysis through GeneMANIA revealed significant 
interconnections between antigen processing, MHC-
mediated presentation, and the cellular infrastructure 
that supports these functions. Co-expression and physi-
cal interaction comprised approximately 77% of the total 
network, suggesting that these genes likely collaborate 
within the same biological processes, pathways, or cel-
lular structures. This strong connectivity emphasizes the 
coordinated activity of these genes in immune responses, 
particularly in antigen presentation and immune cell reg-
ulation (Fig. 5D).

Validation of DEGs using the gene expression omnibus 
database
To account for potential confounding effects due to over-
lapping cases of other immune inflammatory diseases in 
the FinnGen database, we validated the pleiotropic genes 
identified in our analysis by examining DEGs specific to 
SD using RNA sequencing data. A total of 27 genes were 
identified, excluding 7 non-coding RNA genes that were 

Fig. 4  Manhattan plots. A Manhattan plot of MAGMA analysis based on MTAG results for IHD-SD (IHD as input data); B Manhattan plot of MAGMA 
analysis based on MTAG results for SD-IHD (SD as input data); C Manhattan plot of MAGMA analysis based on MTAG results for Stroke-SD (Stroke 
as input data); D Manhattan plot of MAGMA analysis based on MTAG results for SD-Stroke (SD as input data); E Manhattan plot of FUSION-TWAS 
analysis based on MTAG results for IHD-SD (IHD as input data); F Manhattan plot of FUSION-TWAS analysis based on MTAG results for SD-IHD 
(SD as input data); G Manhattan plot of FUSION-TWAS analysis based on MTAG results for Stroke-SD (Stroke as input data); H Manhattan plot 
of FUSION-TWAS analysis based on MTAG results for SD-Stroke (SD as input data). The red dashed line indicates the significance threshold 
for adjusted P values. MAGMA: Multi-marker Analysis of Genomic Annotation; MTAG: Multi-Trait Analysis of GWAS; IHD: ischemic heart disease; 
FUSION: Functional Summary-based Imputation; TWAS: Transcriptome-Wide Association Study

(See figure on next page.)



Page 9 of 18Yi et al. Journal of Translational Medicine          (2025) 23:531 	

Fig. 4  (See legend on previous page.)
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not detected. Among these, 26 DEGs were validated in 
blood tissue (GSE84844, Fig. 6A) and 23 DEGs in minor 
salivary gland tissue (GSE7451, Fig.  6B). These results 
indicate a high validation rate of pleiotropic genes across 
different SD tissues, which are consistent with findings 

from post-GWAS analyses, confirming the specific 
involvement of these genes in SD. This validation step 
effectively reduces the potential confounding influence of 
overlapping cases from SLE or RA in the FinnGen data.

Table 1  MAGMA Results for SD and CVDs Analysis

SD, Sjögren’s Disease; CVDs, cardiovascular diseases. P values were adjusted using the Benjamini–Hochberg correction

Trait pair Gene_name START​ STOP Z statistics P_Trait P_SS Gene_biotype

SD-Stroke UHRF1BP1 34759857 34850915 5.136 3.08E-05 1.14E-03 protein_coding

SD-Stroke SNRPC 34725183 34741571 5.3243 1.20E-05 1.36E-03 protein_coding

SD-Stroke BLK 11351510 11422113 4.6968 2.33E-04 3.71E-03 protein_coding

SD-Stroke FAM167 A 11278972 11332224 4.3812 9.17E-04 5.77E-05 protein_coding

SD-Stroke ARHGAP27 43471275 43511787 3.6712 1.36E-02 1.25E-04 protein_coding

SD-Stroke C8orf12 11225911 11296167 4.4714 6.22E-04 3.71E-03 protein_coding

SD-Stroke PLEKHM1 43513266 43568115 3.7655 9.69E-03 8.30E-05 protein_coding

SD-IHD UHRF1BP1 34759857 34850915 3.6765 8.21E-03 8.22E-03 protein_coding

SD-IHD SNRPC 34725183 34741571 3.8185 5.37E-03 1.07E-02 protein_coding

Fig. 5  Tissue-specific gene expression differences, pathway enrichment, and gene–gene interaction analysis. A Differentially Expressed Genes 
(DEGs) across 54 normal tissues using the FUMA tool and GTEx v8. B Tissue-specific gene expression differences in 54 normal tissues using 
the FUMA tool and GTEx v8. C The 15 most significantly enriched pathways identified through GOMF, GOBP, GOCC, and KEGG analyses in MSigDB. 
D Gene-gene interaction and functional exploration conducted using GeneMANIA. DEGs: Differentially Expressed Genes; GOMF: Gene Ontology 
Molecular Function; GOBP: Gene Ontology Biological Process; GOCC: Gene Ontology Cellular Component; KEGG: Kyoto Encyclopedia of Genes 
and Genomes; MSigDB: Molecular Signatures Database.
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Sensitivity analysis
As shown in Table S2, a total of 42 SNPs were extracted 
from the SD GWAS data based on previously published 
research [29–36]. Among these, 15 SNPs reached the 
significance threshold of 5 × 10⁻⁸. After applying strin-
gent clumping criteria (r2 < 0.001 within a 10,000 kb win-
dow), 4 independent SNPs were identified: rs11889341 
(STAT4), rs3135394 (HLA-DRA), rs117026326 (NCF1), 

and rs3757387 (IRF5). IVW analysis demonstrated 
that genetic proxies for SD have causal effects on CVD 
events, including IHD (OR: 1.05, 95% CI: 1.02–1.081, P = 
9.41 × 10⁻4) and stroke (OR: 1.08, 95% CI: 1.036–1.127, 
P = 3.15 × 10⁻4) (Fig. 7). Even under the Bonferroni cor-
rection condition of P < 0.025, the result still reached 
significance.

Fig. 6  Expression of identified pleiotropic genes in SD patients. A Heatmap and volcano plot of differentially expressed genes (DEGs) in blood 
tissue from SD patients. B Heatmap and volcano plot of DEGs in minor salivary gland tissue from SD patients
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Four independent SNPs were identified to represent 
susceptibility genes outside the MHC class regions. Spe-
cifically, rs62065377 represents ARHGAP27 and PLE-
KHM1; rs7001675 represents BLK, FAM167 A, and 
FAM167 A-AS1; rs184242965 represents UHRF1BP1; 
and rs546271365 represents SNRPC. Mendelian rand-
omization analysis using the Wald ratio method indi-
cated that the predicted enhanced expression of these 
genes in SD patients was significantly correlated with an 
increased risk of IHD and stroke (Fig. 8). Co-localization 
results for SD-stroke showed that BLK, FAM167 A, and 

FAM167 A-AS1 (with the most significant SNP being 
rs998683), SNRPC (with the most significant SNP being 
rs2744944), and UHRF1BP1 (with the most significant 
SNP being rs142415291) further strengthened the asso-
ciation of these genes with SD and its associated compli-
cations. However, this analysis did not demonstrate that 
UHRF1BP1 and SNRPC for SD-IHD, or ARHGAP27 and 
PLEKHM1 for SD-stroke, met the pre-defined threshold 
of PPH3 + PPH4 > 0.8, indicating that the causal relation-
ship between these genes and SD-related complications 
requires further validation (Table S15).

Exposure

Sjögren's Disease

Sjögren's Disease

Sjögren's Disease

Sjögren's Disease

Sjögren's Disease

Sjögren's Disease

Sjögren's Disease

Sjögren's Disease

SNP

4

4

4

4

4

4

4

4

Outcome

Stroke

Stroke

Stroke

Stroke

Ischemic heart disease

Ischemic heart disease

Ischemic heart disease

Ischemic heart disease

Method

Inverse variance weighted

Weighted median

Maximum likelihood

MR Egger

Inverse variance weighted

Weighted median

Maximum likelihood

MR Egger

OR(95% CI)

1.080(1.036,1.127)

1.105(1.065,1.146)

1.082(1.050,1.115)

1.150(1.085,1.220)

1.050(1.020,1.081)

1.049(1.020,1.079)

1.050(1.025,1.077)

1.047(0.974,1.126)

P value

3.15e−04

8.68e−08

3.06e−07

4.31e−02

9.41e−04

7.95e−04

1.02e−04

3.36e−01

0.975 1.05 1.1 1.15 1.2
Effect size(OR)

Fig. 7  Causal relationship between SD and cardiovascular events in a two-sample MR analysis using genetic proxies identified from published 
studies

Exposure

ARHGAP27

BLK

UHRF1BP1

FAM167A

FAM167A−AS1

PLEKHM1

SNRPC

UHRF1BP1

SNRPC

SNP

rs62065377

rs7001675

rs184242965

rs7001675

rs7001675

rs62065377

rs546271365

rs184242965

rs546271365

Outcome

Stroke

Stroke

Stroke

Stroke

Stroke

Stroke

Stroke

Ischemic heart disease

Ischemic heart disease

Method

Wald ratio

Wald ratio

Wald ratio

Wald ratio

Wald ratio

Wald ratio

Wald ratio

Wald ratio

Wald ratio

OR(95% CI)

1.177(1.050,1.320)

1.181(1.050,1.329)

1.256(1.092,1.444)

1.181(1.050,1.329)

1.181(1.050,1.329)

1.177(1.050,1.320)

1.252(1.089,1.440)

1.146(1.017,1.290)

1.148(1.019,1.294)

P value

5.20e−03

5.68e−03

1.37e−03

5.68e−03

5.68e−03

5.20e−03

1.63e−03

2.51e−02

2.27e−02

11.075 1.2 1.3 1.4
Effect size(OR)

Fig. 8  Association between predicted expression of pleiotropic genes located outside MHC regions and the risk of CVDs in SD patients
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Potential drugs for reducing the likelihood of CVD events
By utilizing the pleiotropic genes shared between SD 
and CVDs, we queried drug databases such as DGIdb 
and DrugBank to directly identify potential therapeutic 
agents. Among the 77 approved drugs identified, several 
corticosteroids and Disease-Modifying Anti-Rheumatic 
Drugs (DMARDs) were found to have potential in 
reducing SD and its cardiovascular complications risks, 
including triamcinolone (HCG22), etanercept (LTA, 
HLA-B, HLA-DRB1), infliximab (HLA-DRB1, HLA-B), 
mercaptopurine (HLA-DRB1, HLA-DQA1), azathioprine 
(HLA-DQA1, HLA-DRB1), tocilizumab (HLA-DRB1), 
rilonacept (HLA-DRB1), and canakinumab (HLA-DRB1). 
These hormone-based or monoclonal antibody drugs 
for treating inflammatory connective tissue diseases 
demonstrate potential in reducing CVD risks. However, 
further pathway analyses and clinical studies should 
be conducted in the future to validate their efficacy 
(Table S16).

Discussion
Recent years have seen increased recognition of the 
potential cardiovascular implications of SD, independent 
of associations with other systemic immune-mediated 
conditions such as RA and SLE. The proposed 
mechanisms include chronic systemic inflammation, 
which may drive accelerated atherosclerosis, contribute 
to endothelial dysfunction, and facilitate plaque 
formation-key processes in the pathogenesis of CVDs 
[40]. However, it is important to consider that various 
factors, including smoking, obesity, and vitamin 
D deficiency, may act as confounders, influencing 
both autoimmune diseases and CVDs. This interplay 
complicates the elucidation of a direct causal relationship 
between SD and CVDs, highlighting the need for 
rigorous research to disentangle these associations 
[41–44]. To ensure the robustness of the MR study, it is 
crucial to rigorously adhere to the principle of removing 
confounding IVs. In the current study, SNPs associated 
with mutual risk factor confounders such as RA, SLE, 
SSc, smoking, obesity, among others, were excluded 
based on both P values and LD values. This conclusion 
was also validated using genetic proxies identified from 
previously published studies [30–38]. The stringent 
approaches substantiate a direct causal relationship 
from SD to cardiovascular diseases, including stroke 
and IHD. The causal relationship was further validated 
using multivariate MR, which confirmed that both of 
stroke and IHD retained significance after accounting 
for potential confounding factors. Furthermore, through 
sufficient sensitivity tests, including maximum likelihood, 
MR-Egger regression, weighted median, MR-PRESSO, 
and Steiger methodology, the absence of pleiotropy and 

correct directionality was assured. Previous retrospective 
and cross-sectional study have confirmed that CVD 
outcomes may be correlated with immune dysregulation 
of SD patients [2–6]. Some observational studies have 
suggested a higher prevalence of dyslipidemia in SD 
patients; however, these studies observed imbalances 
in age and gender as confounding variables [45, 46]. In 
contrast, in a comparable observational study, SD showed 
similar distributions of total cholesterol (TC), HDL, 
LDL, triglycerides (TG), and TC/HDL [47]. Our genetic 
analysis also did not reveal a causal relationship between 
SD and dyslipidemia. Therefore, this result may support 
the notion that SD’s susceptibility to CVDs may not be 
influenced by lipids, but rather more likely by immune 
responses.

SD developed owing to patient’s genetic variants 
triggering from environmental risk factors which 
activating innate and adaptive immune responses. In SD, 
critical immunopathological factors include heightened 
interferon system activity and B cell hyperactivation, 
resulting in hypergammaglobulinemia and the 
generation of autoantibodies [48, 49]. The presence of 
common anti-Ro/La antibodies are linked to endothelial 
dysfunction, increased intima-media thickness and 
impaired nitric oxide, serving as indicators of higher 
immune inflammatory activity and an elevated risk of 
cardiovascular events [50, 51].

The genes within the MHC region have long posed 
a challenge for understanding and exploration due to 
extensive LD, yet they have been consistently shown 
to be strongly correlated with chronic inflammatory 
processes, particularly in autoimmune diseases. In 2001, 
Bolstad et  al. reported a strong association between 
SD-specific autoantibodies and the HLA-DQB1 allele 
[52]. Further analysis revealed that the SNP rs1041981, 
causing an amino acid substitution in exon 3 of the LTA 
gene, was in complete LD with rs909253 and significantly 
associated with SD. These associations were particularly 
pronounced in seropositive individuals carrying anti-SSA 
and anti-SSB antibodies [52]. Additionally, rs909253 has 
been strongly associated with an increased likelihood 
of myocardial infarction and infection [53]. These 
findings not only reinforce the critical role of anti-Ro/La 
antibodies in the comorbidity between SD and IHD but 
also validate our observation of significant up-regulation 
of LTA and its LD-associated genes of LST1 and NCR3 
in both conditions. Additional research has provided 
valuable insights, suggesting that genes within the 
MHC region may work synergistically, contributing to 
autoimmune inflammation. Notably, Yau and colleagues 
identified the LTA-LST1-NCR3 haplotype as a conserved 
unit, where genes may interact directly or indirectly. 
They observed notable variations in both allele-specific 
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gene expression and alternative RNA splicing, which 
were strongly associated with arthritis susceptibility [54]. 
Yau’s findings are also mirrored in our study. Specifically, 
our evidence indicates that LTA, LST1, NCR3, and the 
LD-linked gene AIF1 within the MHC class III region 
may function as pleiotropic genes, contributing to the 
pathogenesis of both SD and IHD. AIF1 within the MHC 
III region is recognized as a highly pleiotropic gene, 
critically involved in the activation of macrophages and 
implicated in antibody production processes in various 
immune inflammatory diseases, and cardiovascular 
diseases like IHD, where it promotes the growth of blood 
vessel smooth muscle cells and T cells [55–60]. In our 
analysis, MAGMA identified a significant association 
between AIF1 and SD (PFDR = 6.23 × 10–8). Additionally, 
the SNP rs3130632, located near AIF1 at chr6:31592986–
31596987, showed strong associations in GWAS datasets 
for both SD (P = 4.71 × 10–38) and IHD (P = 4.73 × 10–9), 
as well as in MTAG results for SD (P = 6.95 × 10–41) 
and IHD (P = 5.26 × 10–12). Consistently, Nevado et  al. 
reported AIF1 as a critical mediator of IHD in T2DM 
patients, demonstrating strong statistical significance 
(P < 0.001) [61]. However, despite earlier evidence 
implicating AIF1 in cytokine-induced ischemic stroke, 
our current findings do not corroborate this association.

MHC-II genes, including HLA-DQA1, HLA-DQA2, 
HLA-DQB1, HLA-DQB2, and HLA-DOB, HLA-DRA, 
HLA-DRB1, HLA-DRB5, along with MHC-I genes such 
as HCG26, MICB, and HLA-B, were identified as key 
genetic factors contributing to the comorbidity between 
SD and CVDs. Pathway analysis of these genes indicated 
that their primary role involves the presentation of 
antigenic peptides that are critical for adaptive immune 
responses and the development of immune inflammatory 
diseases. The involvement of these MHC class genes 
in the pathophysiology of SD aligns with established 
research findings [62–66]. Moreover, the targeted drug 
RO5459072, which inhibits a specific cysteine protease 
involved in MHC-II expression on antigen-presenting 
cells, has shown efficacy in treating SD and other 
autoimmune diseases [67].

In 2000, a strong association was first reported between 
unstable plaques in IHD and CD4 + T lymphocyte prolif-
eration, attributed to chronic inflammation [68]. Tuttolo-
mondo et al. highlighted that interactions between HLA 
genes and killer immunoglobulin-like receptors (KIRs) 
might contribute to the pathogenesis of ischemic stroke 
or coronary artery disease [69]. Furthermore, research 
has shown a strong association between HLA gene 
expression and dysregulated autophagy genes in ischemic 
stroke patients [70]. Further research has shown a strong 

relationship between MHC-II genes, particularly HLA-
DRB1 and HLA-DQB1, and DNA methylation, which 
may contribute to the onset of ischemic stroke [71]. 
Here, we validated that MHC class genes act as a criti-
cal link, rendering SD patients genetically predisposed to 
ischemic outcomes-a relationship earlier also identified 
in diseases like SLE and RA [72, 73]. The pathway enrich-
ment of genes within MHC region revealed that the most 
significant pathways were associated with immune cell 
activation, particularly those involved in T cell-mediated 
immunity and leukocyte adhesion.

Another important finding of our study was the 
identification of susceptibility genes located outside 
the MHC region that contribute to both SD and 
CVDs, achieved through the application of TWAS and 
MAGMA. Using these approaches, we identified two 
genes (SNRPC, UHRF1BP1) associated with SD-IHD 
and seven genes (SNRPC, UHRF1BP1, FAM167 A, BLK, 
C8orf12 [FAM167 A-AS1], ARHGAP27, and PLEKHM1) 
associated with SD-stroke. Subsequent MR analyses 
revealed that elevated expression of these genes in SD 
patients was genetically linked to an increased risk of 
CVDs. Furthermore, co-localization analyses showing 
that these loci share significant variants provide robust 
genetic evidence that FAM167 A, BLK, C8orf12, SNRPC, 
and UHRF1BP1 act as key pleiotropic genes contributing 
to both SD and stroke pathogenesis. Notably, FAM167 
A, BLK, and C8orf12 demonstrated the highest PPH4 
values, approaching 0.80. The involvement of the 
FAM167 A-BLK locus in SD is consistent with previous 
findings and has been substantiated in European and 
Han Chinese cohorts [74]. Notably, the FAM167 A-BLK 
locus has been associated with EBV infection and the 
enhancement of B-cell processes. Expression of the 
FAM167 A-BLK gene has also been implicated in SLE, 
chronic myeloid leukemia (CML), and aging [75–81]. 
Although its direct role in cardiovascular diseases has 
not been previously reported, recent research indicates 
a 14-fold increase in BLK expression in hypertension 
patients, as determined by microarray analyses [82], 
with a significant longitudinal association with stroke. 
The BLK protein plays a critical role in B-cell receptor 
signaling and B-cell development. This may contribute to 
stroke risk by enhancing B-cell activation in response to 
angiotensin II (AngII), leading to increased production 
of IgG autoantibodies, which exacerbate vascular 
inflammation and oxidative stress. Additionally, BLK 
may promote the secretion of pathogenic IgG antibodies 
targeting plaque antigens through the regulation of B2 
cells, thereby accelerating plaque instability and elevating 
the risk of stroke [83]. SNRPC has been reported to have 
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its upregulation significantly correlated with metabolic 
diseases such as obesity [84]. It also regulates the 
expression of the ADIPOQ and SLC2 A4 genes, which 
encode adiponectin and GLUT4 proteins, respectively. 
The downregulation of these genes is closely associated 
with insulin resistance and the development of diabetes, 
thereby linking SNRPC expression to stroke and IHD 
[85]. However, regarding the UHRF1BP1 gene, Veroniqa 
et  al. observed that the regulation of UHRF1BP1 
expression leads to a transient and modest increase in the 
expression of adipogenesis genes (PPARG and CEBPA), 
but it has no impact on glycerol release in the medium 
[85].

To further substantiate our findings, we validated 34 
unique contributing genes using two independent GEO 
RNA sequencing datasets, with careful consideration of 
potential confounding from overlapping cases of SLE 
or RA that might skew gene expression profiles in SD. 
Out of the 27 detected genes, 26 DEGs were validated 
in blood tissue and 23 in minor salivary gland tissue of 
SD patients, demonstrating strong concordance with 
post-GWAS analysis. These results not only reinforce 
the reliability of our findings but also suggest that gene 
expression in blood tissue could operate as a valuable 
biomarker for predicting CVDs in SD patients.

In our drug identification analysis, we preliminarily 
explored potential drugs that interact with pleiotropic 
genes, identifying candidates such as etanercept, 
infliximab, and azathioprine. However, it is important 
to highlight that some of these drugs have not been 
approved by clinical guidelines for the treatment of SD or 
CVDs. Moreover, TNF-alpha inhibitors like etanercept 
and infliximab have not been shown in clinical trials to 
significantly reduce inflammatory markers in SD patients, 
falling short of expected outcomes [86, 87]. Despite these 
challenges, new targeted therapies, such as the BTK 
inhibitor remibrutinib, have demonstrated promising 
results in phase II clinical trials, offering improved 
symptom relief and a favorable safety profile. This drug 
functions by blocking B-cell activation and autoantibody 
production, which subsequently disrupts pathogenic 
antigen presentation. Additionally, our findings indicate 
that remibrutinib may play a significant role in reducing 
the risk of CVDs, suggesting potential beneficial effects 
in this domain [88].

Although this research presents a comprehensive 
variant-based analysis, it has certain limitations. 
First, the study included only individuals of European 
ancestry due to data availability, which may limit the 
generalizability of the findings to other populations. 
Second, it should be noted that due to the high LD in 

the MHC region, the results should be interpreted with 
caution. Further laboratory validation is necessary to 
confirm the identified pleiotropic genes and variants. 
Thirdly, although this research identified a series of 
pleiotropic genes associated with SD, IHD, and ischemic 
stroke, which were validated using RNA sequencing data, 
the detailed regulatory mechanisms and pathways still 
require further validation through functional validation 
in vivo. Fourthly, this study did not explore the mediating 
roles of plasma proteins in pleiotropy, which we plan 
to address in future research. Lastly, this study utilized 
exposure and outcome GWAS data from the FinnGen11 
consortium. Although we employed various methods 
to as comprehensively as possible capture genetic 
associations, the potential for type I errors remains. In 
future research, we plan to leverage larger-scale GWAS 
datasets to verify these pleiotropic susceptibility genes 
and to further validate the findings through biological or 
animal-based experiments.

Conclusion
In conclusion, this study employed MR and post-
GWAS analyses to assess the genetic susceptibility of 
SD to the risk of IHD and stroke. Both the univariable 
and multivariable MR analyses showed significant 
associations across CVDs, with sensitivity analyses 
confirming these results. LDSC revealed significant 
genetic correlations between SD and all CVDs, while 
Bayesian co-localization indicated pleiotropy between 
SD-IHD and SD-Stroke, with PPH4 > 0.8 at specific loci. 
Leveraging MTAG and CPASSOC for meta-analysis, we 
identified 38 and 37 independent significant SNPs for 
SD-Stroke and SD-IHD, respectively. MHC class I, II, and 
III genes emerged as primary pleiotropic determinants 
for SD and CVDs, with pathway enrichment analyses 
underscoring the extensive influence of antigen 
presentation and immune response. Notably, excluding 
the MHC region, the expression of two genes (SNRPC, 
UHRF1BP1) was associated with an increased risk 
of IHD in SD patients, while the expression of seven 
genes (SNRPC, UHRF1BP1, FAM167 A, BLK, C8orf12 
[FAM167 A-AS1], ARHGAP27, and PLEKHM1) was 
associated with stroke risk. Co-localization analysis 
further reinforced that SD and stroke share significant 
SNPs within the loci of FAM167 A, BLK, C8orf12, 
SNRPC, and UHRF1BP1. DEG analysis using RNA 
sequencing data from SD provided further reinforcement 
for these conclusions.
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