
Kong et al. Journal of Translational Medicine          (2025) 23:545  
https://doi.org/10.1186/s12967-025-06562-8

RESEARCH

Deep learning‑based prediction 
of individualized Real‑time FSH doses in GnRH 
agonist long protocols
Na Kong1,2,3†, Yu Xia5†, Zhilong Wang2,3†, Hui Zhang2,3, Liyan Duan3, Yingchun Zhu2,3, Chenyang Huang2,3, 
Guijun Yan3,7,8, Jie Mei2,3*†, Wujun Li4,5,6*† and Haixiang Sun1,2,7,8*† 

Abstract 

Background  Individualizing follicle-stimulating hormone (FSH) dosing during controlled ovarian stimulation 
(COS) is critical for optimizing outcomes in assisted reproduction but remains difficult due to patient heterogeneity. 
Most existing models are limited to static predictions of initial doses and do not support real-time adjustments 
throughout stimulation.

Methods  We developed a deep learning model that integrates cross-temporal and cross-feature encoding 
(CTFE) to predict personalized daily FSH doses in patients undergoing COS using the GnRH agonist long protocol. 
A total of 13,788 IVF/ICSI cycles conducted between January 2018 and December 2020 were retrospectively 
analyzed. Women with baseline antral follicle counts between 7 and 30 were included. Data were randomly 
divided into training (n = 6761), validation (n = 2898), and test (n = 4135) sets. The model encodes both static (e.g., 
age, BMI, basic hormone levels) and dynamic (e.g., follicle development, hormone trends during COS) variables 
across stimulation days. Final dose predictions were generated using a K-nearest neighbor algorithm applied to low-
dimensional latent representations derived from the deep encoder layers.

Results  The CTFE model achieved a dose classification accuracy of 0.737 (± 0.004) and a weighted F1-score 
of 0.732 (± 0.005) on the test set. On key stimulation days 1 and 5, the CTFE model significantly outperformed 
traditional LASSO regression models (F1-score: 0.832 vs 0.699 on day 1; 0.817 vs 0.523 on day 5; p < 0.001). Prediction 
performance was maintained beyond day 13 using a sliding window mechanism, despite reduced data availability 
in longer stimulation cycles.

Conclusions  This is the first study to apply a cross-temporal and cross-feature deep learning framework for daily, 
individualized FSH dose prediction across the full duration of COS. The model demonstrated superior performance 
over conventional approaches and offers a promising tool for standardizing COS management. Although currently 
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Background
Global epidemiological data indicate that infertility 
impacts millions of individuals and couples across 
demographic and geographic boundaries [1, 2]. Since 
the pioneering implementation of in  vitro fertilization 
(IVF) in 1977, assisted reproductive techniques (ART) 
have become the predominant therapeutic intervention 
for addressing human infertility [3, 4]. Despite abundant 
technological and methodological advances in the field, 
considerable challenges persist in optimizing treatment 
protocols to maximize success rates while simultaneously 
minimizing procedural complications and ensuring 
comprehensive patient safety [5].

A pivotal component of in  vitro fertilization (IVF) is 
controlled ovarian hyperstimulation (COH), which is 
crucial for acquiring multiple oocytes. Among various 
protocols, the GnRH-agonist long protocol has been 
associated with higher oocyte quality and cumulative 
clinical pregnancy rates, according to Cochrane reviews 
[6]. This protocol employs a GnRH agonist to prevent 
premature luteinizing hormone (LH) surges and ensure 
controlled ovarian stimulation, followed by follicle-
stimulating hormone (FSH) administration to produce 
multiple follicles.

Precise FSH dosing is fundamental to successful COH. 
Both overdosing and underdosing carry significant risks: 
excessive FSH can trigger ovarian hyperstimulation 
syndrome (OHSS) and compromise oocyte quality, while 
insufficient doses may lead to poor follicular development 
and cycle cancellation [7, 8]. To optimize outcomes, 
reproductive endocrinologists conduct comprehensive 
monitoring that integrates multiple parameters, 
including daily follicular development and serum levels 
of estrogen, progesterone, and luteinizing hormone. This 
information guides precise adjustments to gonadotropin 
dosing and timing, with the goal of maximizing mature 
oocyte retrieval and treatment success rates. However, 
current FSH dosing practices remain largely subjective, 
varying significantly among clinicians, facilities, and 
countries. This lack of standardization poses a major 
challenge to treatment optimization and can result in 
suboptimal outcomes, increased costs, and avoidable 
complications.

Several researchers have attempted to develop more 
objective approaches to FSH dosing [9, 10]. La Marca 
et  al. pioneered a predictive model incorporating age, 
serum FSH, and AMH levels to determine initial FSH 

doses [11]. Fanton et  al. employed a KNN regression 
model to determine the initial FSH dosage, aiming to 
enhance treatment standardization [12]. However, their 
model was limited by its reliance on only three indicators 
and its inability to guide daily dose adjustments. 
Meanwhile, Letterie et  al. utilized various machine 
learning methods to assist decision-making regarding 
the continuation of ovulation stimulation medications, 
the algorithm is robust but not as accurate for the 
dosing decision [13]. More recently, Xu et al. developed 
prediction models for both initial and day-6 FSH dosing 
for GnRH antagonist COS cycles [14], but this approach 
still falls short of addressing the need for continuous, 
real-time dose adjustment throughout the stimulation 
period.

The advent of Electronic Health Records (EHR) 
has created new opportunities for developing more 
sophisticated approaches to treatment optimization 
[15]. EHR data, with its complex temporal nature, high 
dimensionality, and heterogeneity, is particularly well-
suited for analysis using deep learning methods [16]. 
Among various approaches, long short-term memory 
networks (LSTM) [17] and temporal delay neural 
networks (TDNN), especially the recently introduced 
D-TDNN [18], have shown promise in efficiently 
processing medical time series data. However, while deep 
learning has been widely applied to disease progression 
prediction, the modeling of treatment processes—
particularly medication interactions and dosing—has 
received less attention.

To address these challenges, we propose a novel Cross-
Temporal and Cross-Feature Joint Encoding (CTFE) 
model, built upon the D-TDNN architecture. This 
model uniquely integrates both temporal monitoring 
data and time-invariant patient characteristics to 
generate personalized FSH dosing recommendations. 
By incorporating comprehensive patient data and real-
time monitoring information, CTFE aims to optimize 
treatment efficacy while minimizing complications and 
costs, ultimately providing more precise and effective 
care for individuals seeking fertility treatment.

Methods
Ethical approval and clinical data collection
This study was approved by the Ethics Committee 
of Nanjing Drum Tower Hospital (approval number: 
2021–384-01). We conducted a retrospective analysis of 

limited by its retrospective, single-center design, the model may support future clinical decision-making and improve 
COS outcomes. Prospective, multicenter validation studies are warranted to confirm its utility and generalizability.
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45,257 treatment cycles from the Reproductive Medicine 
Center of Nanjing Drum Tower Hospital between 
January 2018 and December 2020. Of these, 18,832 cycles 
using GnRHa long protocol (IVF/ICSI) were selected. 
The final study cohort comprised 13,788 patients with 
antral follicle counts between 7 and 30. This cohort was 
randomly divided into training (n = 6761), validation (n 
= 2898), and test (n = 4135) sets (Fig.  1). To avoid data 
leakage, only one cycle per patient was retained, and the 
dataset was split at the patient level. Hence, each patient’s 
data appears in only one of the training, validation, or 
test sets. A successful treatment cycle was defined as 
achieving 6–20 follicles ≥ 14 mm in diameter on hCG 
trigger day. All patient information were de-identified 
prior to analysis for leak-proof processing in accordance 
with institutional privacy protocols and ethical 
guidelines.

Data processing
The initial dataset comprised 274 variables encompassing 
essential clinical parameters for determining FSH dosing 
in fertility treatment. These included basic patient 
characteristics (height, weight, age), reproductive history 
(primary or secondary infertility, previous IVF outcomes, 
duration of infertility), ovarian reserve markers (AMH, 
baseline FSH, LH, estradiol, and progesterone levels on 
cycle days 2–3), antral follicle counts (AFC), and daily 
hormone measurements (estradiol, progesterone, LH, 
FSH) throughout the treatment cycle.

During data preprocessing, variables with excessive 
missing data (> 60%), such as laparoscopic records, were 
excluded. Categorical variables were converted using 
one-hot encoding. For static patient characteristics, 
missing continuous variables were filled using mean 
imputation, while missing categorical values were 

set as ‘None’ prior to one-hot encoding. For dynamic 
monitoring data, missing values were filled using the 
value of the previous observation (forward fill) to 
maintain temporal continuity. In addition, all continuous 
variables were scaled using the min–max scaling method 
to ensure that the feature values fall within a consistent 
range.

The daily follicle monitoring data encompassed 13 key 
characteristics, including hormonal measurements (FSH, 
E2, LH, P), endometrial thickness, and bilateral ovarian 
follicle measurements. These monitoring parameters 
were ultimately transformed into 52 daily follicle 
detection attributes for analysis.

CTFE embedding system
Overview of the proposed model
We propose a novel time series data processing model 
for FSH daily dose prediction, comprising three main 
components: a time series data encoder, a time-invariant 
data joint encoder, and a fusion gate. The model employs 
D-TDNN (Deep Time Delay Neural Network) for time 
series data processing. Unlike traditional RNN-based 
approaches, our model analyzes feature relationships 
across both time series and features, capturing 
interactions between different monitoring parameters 
and the influence of initial states on dosage selection. 
We implement a feature weight extraction method to 
derive statistical measures (mean, variance, kurtosis, and 
skewness) from time series data for subsequent network 
layer processing. Patient cycle recommendations are 
generated using a similarity-based cycle retrieval strategy 
(Fig. 2).

Joint coding for cross‑time series and cross‑feature
Following data preprocessing, a patient’s data can be 
represented as two distinct components: Ti, which 
encompasses the fundamental physiological information 
on day i of the current treatment cycle, like age, weight, 
GnRHa, etc. And Ts, which represents the sequential 
daily monitoring information as a time series (ts1, ts2, 
…, tsk), where k indicates the number of monitoring 
variables, like FSH, LH, E2, P, follicular size, etc.

After preprocessing the data, it is possible to describe 
the fundamental physiological information for a certain 
patient on day I of the current treatment cycle as Ti and 
the daily detection information as Ts = ts1, ts2, …, tsk.

The related inputs for the Ti and Ts generated by 
preprocessing the fundamental physiological information 
and daily detection information are ITi ∈ RB×D1 , 
ITs ∈ RB×L×D2 , respectively.

Repeat for ITi in the dimension of the time series 
to obtain I

′

Ti
∈ RB×L×D1, Then link ITi′ and ITs to get Fig. 1  Flow chart of the study selection process
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IT ∈ RB×L×(D1+D2).Using D-TDNN as an encoder, we 
get:

The DTDNN_1 and DTDNN_2 are two D-TDNN 
networks used in the model. DTDNN_1 is used to jointly 
extract cross-temporal and cross-feature relationships 
between basic physiological information and daily 
monitoring information, while DTDNN_2 is used to 
extract temporal features in the data. In DTDNN_2, 
one-dimensional convolution is used to obtain temporal 
feature correlations in the data, and multiple channels are 
used to capture corresponding feature correlations. E′

T 
and E′

TS are the results of IT and ITs passing through the 
D-TDNN networks, respectively.

D-TDNN extracts temporal feature weights. We input 
mean, variance, kurtosis, and skewness data to the next 
layer network during pooling. This approach enriches 
temporal feature representations, improving feature 
connections in temporal changes. Fully linked layers 
project the feature representation.

(1)E′
T = DTDNN_1(IT )

(2)E′
TS = DTDNN_2(ITs)

(3)E′Ts = ReLU(Linear(ETs))

(4)E′T = ReLU(Linear(ET))

Linear_1 and Linear_2 are linear layers, and ReLU is the 
activation function used.

Cross‑feature information embedding
After obtaining temporal monitoring and cross-temporal 
cross-feature representations, we implement a novel 
fusion strategy. While temporal monitoring information 
is fundamental for medication dose prediction, it alone 
may not capture the complete clinical picture. The 
basic physiological information introduces important 
biases that influence temporal patterns. We address this 
through our AddGate mechanism, which integrates these 
complementary information sources.

Specifically:

Note: W and b are learnable matrix parameters, ETc is 
the bias representation after weighted fusion, and ReLU is 
the activation function used.

Model training and prediction
We use the SoftMax function to classify the obtained 
Embedding:

(5)H = AddGate(ETs;ET )

(6)ETc = ReLU(W [ETs;ET ] + b)

(7)H = ETs + ETc

(8)Y = Softmax(Linear(H))

Fig. 2  Model structure overview
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And use the cross-entropy function as the loss function 
for training.

In the prediction phase, we search for the most 
comparable patient COS cycles using a Cosine-Similarity-
KNN based method. The hidden layer representation 
set for the KNN retrieval sample is produced using the 
pre-network as the encoder:M = {H1,H2, . . . ,HN }; the 
predicted sample hidden layer representation Hy . For 
the case where the parameter K of KNN is set to k, the 
similarity period retrieved is Ms = {HS1,Hs2, . . . ,Hsk} , 
and then the predicted dose category C as well as the 
estimated success rate P can be obtained.

Our approach utilizes the Cross-Temporal and 
Cross-Feature Encoding (CTFE) framework to jointly 
encode both static patient attributes and dynamic 
monitoring data into a compact, low-dimensional 
latent representation. The CTFE model outputs fixed-
size embeddings by integrating temporal stimulation-
day variables with baseline clinical features, thereby 
effectively mitigating the challenges typically associated 
with high-dimensional input spaces. These embeddings 
are specifically optimized for cosine similarity 
calculations, allowing for efficient and meaningful 
proximity measurements in the latent space.

Rather than employing a traditional end-to-end 
deep neural regressor—such as a sequence of fully 
connected layers—for direct dose prediction, we adopt 
a cosine similarity–based K-nearest neighbor (KNN) 
retrieval strategy. This design enables the model to 
identify and reference prior IVF/ICSI cycles that exhibit 
similar encoded representations, thus generating dose 
recommendations grounded in clinically relevant 
precedents. In addition to yielding competitive prediction 
accuracy—particularly on critical stimulation days such 
as Day 1 and Day 5—this case-based retrieval approach 
enhances interpretability and clinical transparency. By 
presenting historical cases that are most similar to the 
current patient profile, the model can support clinicians 
in making personalized and evidence-informed dosing 
decisions.

We categorized the daily doses in the experiment 
because, in the operating process, the distribution of 
dosage data is discrete and different clinicians would 
treat patients at various doses differently. The FSH 
doses are grouped from high to low: 0 1 2 3 4 represent 
stop, low dose (< 80), medium and low dose (80 ~ 160), 
medium and high dose (160 ~ 240), high dose (> 240). 
The predicted result is the group in which the target dose 
is located, and the result is used for evaluation.

System implementation
We developed and implemented a real-time clinical 
decision support system for FSH dosage prediction. The 

system architecture comprises three main components: 
data acquisition, preprocessing, and prediction 
generation.

For data input, we designed a clinical interface that 
enables healthcare providers to input two categories of 
information: (1) patient baseline characteristics; and 
(2) daily monitoring parameters. The system processes 
these inputs through a data preprocessing pipeline 
implemented in Pandas framework, which performs 
standardization and validation procedures to ensure data 
quality and format consistency.

The preprocessed data is then analyzed by our 
trained model, which generates three key outputs: the 
KNN-predicted dosage recommendations, selection 
rates for each proposed dose, and their corresponding 
anticipated success rates. This provides clinicians with 
comprehensive information to support treatment 
decisions.

The model training and validation were performed on 
a high-performance computing system running Ubuntu 
16.04 LTS, equipped with an NVIDIA GeForce RTX 2080 
TI graphics processing unit. This infrastructure ensures 
efficient processing of complex calculations required for 
real-time clinical applications.

Results
Model performance comparison and analysis
The joint pair ETS and ET (AddGate) model framework 
exhibited the highest performance metrics, specifically 
in terms of Accuracy and Weighted-F1 scores. Through 
comprehensive analysis of the single-day model (day 9) 
across multiple model architectures, we demonstrated 
that the ETS and ET (AddGate) framework consistently 
achieved superior results compared to alternative 
approaches (DTDNN, LSTM, CTFE).

Implementation of our CTFE model, specifically 
designed to analyze relationships between cross-time-
series and cross-feature data, yielded a significant 2.8% 
accuracy improvement over the baseline model (Table 1). 
The performance analysis revealed several key findings 
across different model configurations:

When utilizing ET only, the DTDNN achieved 
an accuracy of 0.7018 (± 0.0082), while the LSTM 
model reached 0.6978 (± 0.0100) on the test set. After 
introducing the independent Ets, simple FC layer can 
improve the results substantially, with DTDNN accuracy 
increasing to 0.7230 (± 0.0053) and LSTM accuracy 
reaching 0.7206 (± 0.0026).

The incorporation of the AddGate mechanism further 
enhanced model performance, resulting in accuracy 
measurements of 0.7301 (± 0.0081) for DTDNN and 
0.7242 (± 0.0046) for LSTM. These improvements 
underscore the effectiveness of AddGate in capturing 
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complex relationships between cross-time-series and 
cross-feature data.

Our proposed CTFE model ultimately achieved the 
highest performance metrics, with an accuracy of 0.7367 
(± 0.0043) and a Weighted-F1 score of 0.7320 (± 0.0048). 
These results demonstrate the robust capability of our 
CTFE model in handling both accuracy requirements 
and comprehensive class-specific metrics, establishing its 
effectiveness in clinical applications.

To validate the effectiveness of our proposed 
approach, we conducted a comparative analysis against 
traditional regression methods. It should be noted that 
our prediction target is the categorical grouping of FSH 
doses, where doses are classified as: stop, low dose (< 
80), medium–low dose (80–160), medium–high dose 
(160–240), and high dose (> 240). Thus, the evaluation 
metrics are defined in terms of classification accuracy 
and weighted F1 score. Lasso regression was selected as 
a benchmark model due to its established role in medical 
dose prediction. The comparison focused on two critical 
time points in the treatment protocol: Day 1 (initial dose 
determination) and Day 5 (first dose adjustment).

For both our proposed method and Lasso regression, 
we utilized identical training and testing datasets 
to ensure a fair comparison. The evaluation metrics 
primarily focused on prediction accuracy, defined as 
the proportion of correct dosage predictions within the 
acceptable clinical range. All experiments were conducted 
using consistent data preprocessing procedures and 
validation protocols to maintain methodological rigor.

The results showed that our method significantly 
outperformed the lasso regression-based method. In 
terms of results, Lasso regression achieved an accuracy 
of 0.699 and 0.523 on Day 1 and Day 5, respectively, 
while our method achieved accuracies of 0.832 and 0.817, 
respectively (Table 2).

Experimental results and effect of sliding window 
approach
In the dataset, as the number of treatment days increases, 
the amount of data decreases, making it difficult to train 
the model for the subsequent days. Therefore, in the 
model training after day 13, a sliding window of 10 data 
segments is used as the input data for the model, and 
the data for the later days are combined for training. The 
results are shown in the table below, and in the figure, 
using the sliding window (indicated by the"sw"suffix) 
leads to a significant improvement in the results for the 
subsequent days, alleviating the problem of decreasing 
training results over time.

Implementation of the sliding window approach 
demonstrated significant improvements in prediction 
accuracy for later treatment stages. While performance 
remained identical for days 1–12, marked improvements 
emerged from day 13 onward. The sliding window 
method achieved accuracy rates of 0.732 (day 16), 0.720 
(day 17), and 0.781 (day 18), representing improvements 
of 4.6%, 5.6%, and 11.0% respectively over the standard 
approach. The most substantial improvement was 
observed on day 18, where the 11.0% accuracy gain 
highlighted the effectiveness of our approach in 
addressing data scarcity challenges during later treatment 
phases (Table 3, Fig. 3).

Qualitative evaluation
The output of the model is given to the doctor as a 
reference during the real prediction procedure so that 
more data may be generated. The model generated three 
key metrics for each dosage recommendation: predicted 
dosage, selection rate (frequency of dosage choice in 
similar cases), and success rate (proportion of successful 
outcomes with the recommended dosage).

To assess the practical utility of our model, 
we conducted qualitative evaluations using one 
representative case. For patient 1****, the model 
accurately predicted the progression of dosage 
adjustments from days 7–10, recommending low-
to-medium doses initially, transitioning to low dose, 
and finally suggesting treatment termination. These 
predictions aligned with the actual treatment course 
(shows in Fig. 4).

Table 1  Performance comparison

CTFE shows the best result

FC Layer uses a simple fully connected layer to add ETS and ET .MAG uses 
multimodal fusion to align data

Model Accuracy Weighted_F1

ET

 LSTM 0.6978(± 0.0100) 0.6921(± 0.0107)

 DTDNN 0.7018(± 0.0082) 0.6952(± 0.0082)

ETS&ET

 LSTM(FC Layer) 0.7206(± 0.0026) 0.7155(± 0.0030)

 DTDNN(FC Layer) 0.7230(± 0.0053) 0.7189(± 0.0067)

 DTDNN(MAG) 0.7261(± 0.0064) 0.7218(± 0.0064)

 DTDNN(AddGate) 0.7301(± 0.0081) 0.7254(± 0.0082)

 CTFE(AddGate) 0.7367(± 0.0043) 0.7320(± 0.0048)

Table 2  Performance comparison between Lasso regression 
and our model (CTFE). CTFE shows better result

Day1 accuracy Day5 accuracy

Lasso regression 0.699 0.523

CTFE 0.832 0.817
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The model’s ability to provide selection and success 
rates for each recommendation enhanced its clinical 
interpretability. This feature allows physicians to 
evaluate recommendation reliability based on historical 
outcomes in similar cases, potentially improving 
clinical decision-making.

Discussion
The advent of Electronic Health Records (EHRs) has 
revolutionized medical data analysis, particularly in time 
series applications. EHR data’s complex characteristics—
including high dimensionality, multimodality, and 
heterogeneity—make it particularly suitable for deep 
learning approaches [19]. This digital transformation has 
accelerated the development of computational methods 
for analyzing patient histories, identifying cohorts, 
predicting risks, and exploring practical applications. 
In our study, rigorous data preprocessing – including 
mean imputation for static continuous features, forward 
filling for dynamic measurements, and min–max scaling 
to standardize all continuous variables – was applied to 
ensure data integrity for deep learning analysis.

Controlled ovarian stimulation (COS) is a crucial 
component of ART, directly determining embryo quality 
and pregnancy outcomes. However, COS faces numerous 
clinical challenges, including significant individual patient 
variability, varying ovarian responses, and asynchronous 
follicular development, all of which can impact treatment 
efficacy and safety. In recent years, artificial intelligence 
(AI) applications in COS have garnered increasing 
attention. By integrating and analyzing multidimensional 
data, including patients’ clinical characteristics, ovarian 
ultrasound imaging features, and endocrine hormone 
levels, AI can construct predictive models to support 
clinicians in developing individualized COS protocols, 
thereby enhancing treatment safety and effectiveness 
[20].

Previous studies have demonstrated promising 
applications of artificial intelligence in controlled ovarian 
stimulation, yet significant limitations persist in existing 

Table 3  Daily accuracy results for the prediction

The sliding window (sw) starts to work from day 13 and the performance is 
improved in most days

Day Daily count CFTE CFTE-sw

1 3037 0.832 0.832

2 3031 0.981 0.981

3 3012 0.974 0.974

4 2979 0.974 0.974

5 2939 0.817 0.817

6 2882 0.933 0.933

7 2809 0.798 0.798

8 2695 0.858 0.858

9 2397 0.737 0.737

10 1999 0.798 0.798

11 1529 0.723 0.723

12 1126 0.782 0.782

(sw start)13 745 0.705 0.672

14 471 0.758 0.759

15 291 0.663 0.677

16 194 0.686 0.732

17 125 0.664 0.720

18 73 0.671 0.781

19 43 0.721 0.744

Fig. 3  Results shows that sliding window mechanism helps maintain good performance despite decreasing accuracy due to insufficient data
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approaches. The CONSORT calculator, while pioneering 
in its machine learning-based individualization of 
r-FSH dosing, was constrained by its small sample 
size and singular focus on initial dosing [21]. Similarly, 

Fanton’s explainable machine learning model, despite 
incorporating comprehensive patient characteristics and 
employing advanced Random Forest algorithms, was 
limited by its retrospective nature and inability to provide 

Fig. 4  Partial prediction outputs for patient 1****. On day 10, the patient’s cycle was terminated, and the model accurately predicted 
the termination of the cycle
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real-time adjustments [12]. The Stim Assist platform, 
though validated through multicenter prospective 
studies, primarily focused on starting dose optimization 
without addressing dynamic treatment adjustments [22]. 
In the realm of trigger timing prediction, while various AI 
systems have shown impressive accuracy [13, 23, 24], they 
typically function as standalone solutions, disconnected 
from the broader context of COS management.

To address these limitations, we propose a Cross-
Temporal and Cross-Feature Encoding (CTFE) 
model that uniquely combines real-time FSH dose 
adjustment capabilities with trigger timing prediction. 
This comprehensive approach represents a significant 
advancement over existing models by providing dynamic, 
personalized treatment optimization throughout the 
entire COS cycle.

Our proposed represents a significant advancement 
in medication dosing prediction during ovulation 
stimulation. The model’s innovative approach 
successfully captures the dynamic relationship between 
patients’baseline physiological characteristics and 
sequential treatment information, resulting in superior 
drug dosage prediction performance compared to 
traditional regression-based and temporal-related 
methods. A key strength of CTFE is its ability to provide 
interpretable outputs, including dosage selection rates 
and success probabilities, enhancing its clinical utility.

The application of deep neural networks (DNNs) 
to drug dosage prediction [25], particularly in IVF 
treatment, addresses a critical clinical need. IVF’s 
complexity and cost necessitate precise FSH dosing, 
which must account for multiple patient-specific factors 
including age, body weight, AMH, FSH, LH, and ovarian 
reserve [13]. By reformulating IVF as a medication 
dose prediction problem, CTFE represents the first 
comprehensive DNN-based approach to predicting time-
series FSH daily dosing.

Technical innovations in our model include the use 
of D-TDNN architecture for time-series data encoding, 
enhanced by our novel cross-temporal and cross-feature 
joint encoding approach. This combination effectively 
addresses a common limitation of existing deep 
learning models: the challenge of integrating temporal 
and time-invariant data. The superior performance of 
CTFE (accuracy: 0.7367 ± 0.0043, Weighted_F1: 0.7320 
± 0.0048) compared to simpler models using only 
temporal data demonstrates the value of this integrated 
approach. Although this study reports overall accuracy 
and weighted F1 score to evaluate model performance, 
we acknowledge the importance of class-wise precision 
and recall for assessing prediction fidelity across specific 
FSH dose groups. These metrics are particularly relevant 
in clinical scenarios where distinguishing between 

adjacent or less frequent dose categories may inform 
treatment safety and personalization. Due to current 
limitations in our experiment pipeline, detailed per-class 
metrics were not available for this version but will be 
included in subsequent analyses.

A notable methodological advancement of our 
study is the development of an innovative solution to 
address the common challenge of diminishing patient 
numbers during treatment progression. Our sliding 
window approach represents a significant technical 
contribution with three distinct advantages. First, it 
enables effective aggregation of multi-day treatment 
data, ensuring sufficient sample size for model training. 
Second, it transforms the traditional modeling paradigm 
by emphasizing treatment process patterns rather than 
fixed starting points. Third, it substantially expands the 
retrievable dataset, thereby enhancing overall model 
robustness.

The effectiveness of this approach is particularly 
evident in the later stages of treatment, where we 
observed significant improvements in prediction 
accuracy: 4.6% for day 16, 5.6% for day 17, and 11.0% for 
day 18. These improvements are especially meaningful 
given the traditional challenges in maintaining model 
performance during advanced treatment stages.

Despite these promising results, several limitations 
warrant consideration. The model’s performance may be 
influenced by inherent biases arising from variations in 
treatment protocols and individual physician preferences. 
Additionally, the temporal scope (2018–2020) and size of 
our dataset may constrain the model’s generalizability. 
Furthermore, while our results are encouraging, 
randomized controlled trials are necessary to definitively 
establish the model’s clinical utility.

Future research directions should prioritize several 
key areas. First, expanding the dataset both temporally 
and geographically will enable further optimization 
and generalizability of the model, with prospective 
multicenter validations planned to confirm clinical 
applicability. Second, implementing mechanisms for 
continuous model updates would ensure adaptability to 
evolving clinical practices. Third, conducting rigorous 
randomized clinical trials will be essential to validate 
the system’s real-world effectiveness. Finally, exploring 
the integration of alternative interpretability methods—
such as attention mechanisms and SHAP values—and 
the application of this methodology to other sequential 
treatment scenarios in reproductive medicine and 
beyond will further enhance the impact of this approach.

In conclusion, CTFE represents a significant 
advancement in personalized FSH dosing for long-
protocol ovulation induction. Its ability to provide 
data-driven, interpretable dosing recommendations 
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has the potential to enhance treatment efficacy, 
optimize resource utilization, and improve patient 
outcomes. While further validation is needed, this 
work establishes a promising framework for AI-assisted 
precision medicine in reproductive healthcare.

Conclusions
This study presents a novel deep learning model 
using cross-temporal and cross-feature joint 
encoding (CTFE) for optimizing daily FSH dosing 
during controlled ovarian stimulation. The model 
demonstrated robust performance with 73.7% accuracy 
in predicting personalized FSH doses, significantly 
outperforming conventional methods. By successfully 
integrating both static patient characteristics and 
dynamic monitoring data, our model addresses a 
critical gap in current COS management approaches.

While the single-center retrospective design presents 
certain limitations, the model’s strong performance 
suggests its potential as a valuable clinical decision 
support tool. Future multicenter prospective studies 
are warranted to validate these findings and assess their 
impact on clinical outcomes. This work represents a 
significant step toward standardizing COS protocols 
through artificial intelligence, potentially advancing 
personalized medicine in reproductive healthcare and 
improving treatment outcomes. Notably, with a 19–56% 
improvement over LASSO on critical treatment days, 
the CTFE model demonstrates superior adaptability to 
dynamic patient responses.
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