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Abstract 

Introduction  Gastrointestinal disorders (GIDs) affect nearly 40% of the global population, with gut microbiome-
metabolome interactions playing a crucial role in gastric cancer (GC), colorectal cancer (CRC), and inflammatory 
bowel disease (IBD). This study aims to investigate how microbial and metabolic alterations contribute to disease 
development and assess whether biomarkers identified in one disease could potentially be used to predict another, 
highlighting cross-disease applicability. 

Methods  Microbiome and metabolome datasets from Erawijantari et al. (GC: n = 42, Healthy: n = 54), Franzosa et al. 
(IBD: n = 164, Healthy: n = 56), and Yachida et al. (CRC: n = 150, Healthy: n = 127) were subjected to three machine 
learning algorithms, eXtreme gradient boosting (XGBoost), Random Forest, and Least Absolute Shrinkage and Selec-
tion Operator (LASSO). Feature selection identified microbial and metabolite biomarkers unique to each disease 
and shared across conditions. A microbial community (MICOM) model simulated gut microbial growth and metabo-
lite fluxes, revealing metabolic differences between healthy and diseased states. Finally, network analysis uncovered 
metabolite clusters associated with disease traits. 

Results  Combined machine learning models demonstrated strong predictive performance, with Random For-
est achieving the highest Area Under the Curve(AUC) scores for GC(0.94[0.83–1.00]), CRC (0.75[0.62–0.86]), and IBD 
(0.93[0.86–0.98]). These models were then employed for cross-disease analysis, revealing that models trained on GC 
data successfully predicted IBD biomarkers, while CRC models predicted GC biomarkers with optimal performance 
scores.

Conclusion  These findings emphasize the potential of microbial and metabolic profiling in cross-disease characteri-
zation particularly for GIDs, advancing biomarker discovery for improved diagnostics and targeted therapies.

Keywords  Gastric cancer, Inflammatory bowel disease, Colorectal cancer, Microbiome, Metabolome, Biomarkers, 
Machine learning
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Introduction
Gastrointestinal diseases (GIDs) are disorders that 
impact the gastrointestinal tract, which extends from the 
esophagus to the rectum and includes the pancreas, liver, 
and gallbladder [1]. GIDs can be broadly categorized 
into those resulting from malignancies, such as gastric 
cancer (GC), pancreatic cancer, esophageal cancer, liver 
cancer, and colorectal cancer, also known as colon cancer 
(CRC) [2], and those driven by inflammatory responses, 
including inflammatory bowel disease (IBD) and irritable 
bowel syndrome (IBS) [3].

Among malignancy related GIDs, GC represents a 
significant global health burden. The primary risk factor 
for GC is infection by Helicobacter pylori (H. pylori), 
which causes chronic inflammation and significantly 
elevates the risk of malignant tumor formation in the 
gastric lining [4]. According to the Global Cancer 
Observatory (GLOBOCAN) 2022 data, GC is the fifth 
most common cancer worldwide, with 968,350 new 
cases and 659,853 deaths reported [5]. It ranks among 
the leading causes of mortality in 42 countries, with 
higher incidence rates in males compared to females, 
particularly in regions of Eastern Asia [6].

Likewise, CRC is characterized by malignant growths 
or polyps in the colon or rectum [7]. According to 
GLOBOCAN, CRC ranks as the third most commonly 
diagnosed cancer and the second leading cause of cancer 
related deaths globally, with 1.9 million new cases and 
903,859 deaths in 2022. The disease is more prevalent in 
men than women, with the highest incidence rates found 
in European countries such as Norway and Denmark [5].

In contrast, inflammation driven GIDs, such as IBD, 
are characterized by chronic morbidity resulting from 
immune mediated inflammatory processes. IBD serves 
as an umbrella term that includes Crohn’s disease (CD) 
and ulcerative colitis (UC) [8, 9]. According to the Global 
Burden of Disease (GBD) 2019, there were approximately 
4.9 million IBD cases worldwide, resulting in 41,000 
deaths. Prevalence rates were highest in Norway, 
followed by Canada, with both prevalence and mortality 
rates being higher in females compared to males [10].

Established risk factors such as dietary habits [11–13], 
genetic predispositions [14–16], and lifestyle choices [17–
19] are more or less associated with GC, CRC, and IBD. 
Another significant risk factor is dysbiosis, which refers 
to an imbalance in the gut microbiome, the vast and 
diverse community of bacteria and other microorganisms 
residing in our digestive system. Research shows that 
the abundance or depletion of certain microbes in the 
gut, which is often referred to as the ‘second brain’, can 
play a pivotal role in GIDs [20]. For instance, Zeng et al. 
[21] demonstrated that in addition to H.pylori, microbes 
like Prevotella and Streptococcus were abundant, while 

beneficial microbes such as Bifidobacterium were 
depleted in the fecal samples from GC patients.

Similarly, Villéger et  al. [22] reported increased levels 
of Bacteroides and Prevotella in CRC, alongside reduced 
levels of Lactobacillus and Faecalibacterium. In IBD, 
Streptococcus levels were elevated in UC patients, and 
Lachnoclostridium and Fusobacterium were significantly 
increased in CD patients [23].

Beyond microbial composition, GIDs are influenced by 
the metabolites produced by the gut microbiome. Disrup-
tions in microbial metabolite production can lead to meta-
bolic reprogramming, contributing to GC, IBD, and CRC 
pathogenesis. For example, metabolic pathways involv-
ing lipids, nucleotides, and amino acids such as alanine 
and valine were found to be dysregulated in patients with 
GC [24, 25]. Zhang et al. [26] highlighted that microbiota 
derived metabolites such as trimethylamine-N-oxide, sec-
ondary bile acids, hydrogen sulfide, and N-nitroso com-
pounds could induce inflammation and modulate tumor 
immunity in the colon. In IBD, bile acids, such as deoxy-
cholic acid, activate inflammatory signaling pathways 
while dysregulated tryptophan metabolism, particularly in 
UC patients, further heightens intestinal inflammation [27, 
28].

GIDs are serious conditions with high mortality and 
morbidity rates, often going undiagnosed in their early 
stages [29]. This is partly because the symptoms can be 
subtle or easily overlooked. Unfortunately, delayed diag-
nosis allows these diseases to progress rapidly, with one 
condition often leading to another through shared patho-
logical mechanisms.

For instance, Fretwell et  al. [30], in their systemic 
review of case reports containing histopathology data, 
stated that although rare, GC can metastasize to the 
colorectum through lymphatic, vascular, or mesenteric 
routes.

Similarly, Tak et  al. [31] analyzed clinicopathological 
characteristics of patients in Korea and reported 
that individuals with CRC are at an increased risk of 
developing intestinal metaplasia and gastric adenomas, 
which are precursors to GC, within the first four years of 
CRC diagnosis. Furthermore, Sato et al. [32] emphasized 
in their study, which evaluated clinical studies, meta-
analyses, and systematic reviews, that chronic mucosal 
inflammation in UC can increase the chances of 
developing colorectal neoplasia by progressing from low-
grade to high-grade dysplasia, eventually developing into 
CRC.

Given the complexity of microbiome-metabolite 
interactions and their critical role in GIDs, it has become 
steadily more beneficial to train machine learning 
models to produce highly accurate, reproducible, and 
interpretable insights from large and complex datasets 
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[33]. Recent studies highlight the effectiveness of 
machine learning algorithms in differentiating diseased 
patients from healthy individuals [34, 35], detecting 
important microbial and metabolic biomarkers [36–39], 
and uncovering risk factors [40] associated with diseases 
that affect the gastrointestinal tract.

Our goal is to implement machine learning models 
for GC, IBD, and CRC to identify the most significant 
and differential microorganisms and metabolites in 
fecal samples using publicly available datasets. These 
biomarkers are then used to stratify and predict cross-
disease associations. Specifically, the GC model was 
utilised to predict IBD and CRC, the IBD model was used 
to predict GC and CRC, and the CRC model was applied 
to predict GC and IBD. This approach allows us to 
uncover both shared and unique patterns among GIDs. 
Subsequently, the identified biomarkers are integrated 
into in-silico modeling techniques to assess microbial 
contributions to metabolite production. Finally, 
network analysis techniques are conducted to uncover 
correlations between features and biological pathways 
linking microbes and metabolites in diseased and healthy 
patients.

Methods
Data preprocessing
To mitigate overfitting and improve model performance, 
we eliminated sparse features from the dataset, and the 
remaining data was normalized using min–max scaling 
[41], transforming values to a range between 0 and 1. 
This prevented the dominance of features with larger 
ranges or values, ensuring that all the features contribute 
equally to the model.

Unsupervised machine learning models
Principal components analysis (PCA)
We applied PCA [42] for dimensionality reduction, 
identifying principal components (PC1 and PC2) that 
capture maximum variance for the metabolite datasets. 
Outliers were detected by calculating the Mahalanobis 
distance [43], with a 95% confidence interval threshold 
derived from the chi-squared distribution.

Principal coordinates analysis (PCoA)
We performed PCoA [44], or metric multidimensional 
scaling, for outlier detection on the microbiome 
datasets. The Bray–Curtis [45] dissimilarity matrix was 
calculated based on abundance data, and the resulting 
PCoA plot projected the high-dimensional data into a 
lower-dimensional space. This visualisation captured 
similarities and differences between samples using the 
first two principal coordinates. The 95% confidence 
ellipses for each group provide a visual means of 

identifying potential outliers by highlighting variations 
within and between sample groups.

Univariate statistical analysis
To prioritize the most promising features for the 
computationally intensive machine learning models, we 
applied non-parametric tests such as the Mann–Whitney 
U test [46] for GC and IBD and the Kruskal–Wallis H 
test [47] for CRC to assess differences between two 
independent groups, particularly when the data does not 
follow normal distribution. To control the rate of false 
positives, p-values were adjusted using the Benjamini-
Hochberg (BH) [48] method. To optimize computational 
efficiency, we considered features with adjusted p-values 
below 0.05 as significant, focusing our analysis on only 
the most differential microbes and metabolites.

Supervised machine learning models
Three machine learning models were used in this 
work to analyze the microbiome and metabolome 
datasets efficiently. The workflow can be seen in 
Supplementary Fig.  1. We employed eXtreme gradient 
boosting (XGBoost) [49] as an ensemble algorithm 
that excels at classification tasks by iteratively refining 
predictions through gradient boosting. It incorporates 
regularization techniques to minimize errors and prevent 
overfitting, ensuring a balance between accuracy and 
model complexity. Similarly, Random Forest [50] was 
employed due to its ability to handle high-dimensional 
microbiome data. It reduces overfitting and boosts 
overall performance by constructing numerous decision 
trees using random subsets of the input, thus reducing 
variance and improving model stability. In addition to 
the ensemble models, the Least Absolute Shrinkage & 
Selection Operator (LASSO) [51] was utilised due to its 
ability to combine classification and feature selection. 
In binary classification, LASSO uses the regularization 
parameter C to control regularization strength. Since C 
is the inverse of λ, which is the penalty term coefficient 
(C = 1/λ), a higher C value reduces regularization, 
allowing more features to stay in the model. Conversely, 
a lower C value strengthens regularization, shrinking 
more coefficients to zero. This eliminates the need for a 
separate feature selection method for LASSO.

Hyperparameter tuning through random search 
and Bayesian optimization
Hyperparameters are settings that control the behavior 
of machine learning algorithms, and hyperparameter 
tuning optimizes model performance by finding the best 
settings. In our study, this process begins with a random 
search [52], which explores random combinations of 
hyperparameters. However, this approach may miss 
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optimal feature combinations if the search space is 
sparse.

To address this, Bayesian optimization (BO) [53] 
was employed. BO used a Gaussian process to build a 
probabilistic model from the best random search results, 
guiding the selection of subsequent hyperparameters. In 
this study, the data was split 75% for training and 25% for 
testing.

The random search was followed by fivefold cross-
validation to refine the parameter grid, which was then 
optimized using BO with fivefold cross-validation to 
identify the best-performing hyperparameters, which 
were initially applied on the training data and then on the 
unseen test data.

Model evaluation
Performance metrics, like Receiver Operating Charac-
teristic Area Under Curve (ROC-AUC) [54], were calcu-
lated across the models for all the diseases in our study 
because of their ability to consider trade-offs between 
specificity and recall, with higher values indicating better 
discrimination. Alongside ROC-AUC, other metrics such 
as accuracy, precision, recall, F1-score, and specificity 
were calculated, which provided a more comprehensive 
evaluation of the models. To further assess the reliabil-
ity of these scores, the 95% confidence intervals (CI) were 
computed for each performance metric.

Feature selection
We applied Recursive Feature Elimination with Cross-
Validation (RFECV) to XGBoost and Random Forest to 
refine the feature sets. This process iteratively removed 
less important features through cross-validation, select-
ing the optimal set based on the highest cross-validation 
scores. Overlapping features selected by RFECV and 
those automatically chosen by LASSO were identified. 
However, since the number of microbes and metabo-
lites remained high, we further evaluated feature subsets 
by computing ROC-AUC scores for the best performing 
models. Subsets with the top 5, 10, 15, 20, 25, and 30 fea-
tures were iteratively tested, and the model achieving the 
highest AUC with the fewest features was chosen for all 
diseases. Feature rankings were determined using either 
LASSO coefficients or Gini feature importance. Finally, 
a Spearman correlation cluster map with hierarchical 
clustering was generated to visualise clusters of microbes 
and metabolites that were strongly correlated, which pro-
vided more understanding into their relationships.

Diversity analysis
To understand the complexity and diversity of the 
microbial communities in the gut within the healthy 
and diseased groups, we measured alpha diversity [55] 

indices, which quantify both richness (the number 
of distinct genera) and evenness (the uniformity of 
distribution among those genera). The diversity index 
(D) value increases with higher richness and evenness. 
Among these, the Shannon-Weiner index [56] is the most 
used metric due to its ease of interpretation. It measures 
the uncertainty of predicting a species from a community 
and is particularly sensitive to species richness.

The probability that two randomly chosen microbes 
belong to the same species is measured by Simpson’s 
Index [57] with lower values indicating greater diversity. 
It is often expressed as the Gini-Simpson index (1 − D). 
Statistical significance within groups was evaluated by 
calculating p-values and applying FDR correction.

Beta diversity [58] captures the variation or 
dissimilarity in genera between the sample groups. We 
utilised the non-metric dimensional scaling (NMDS) 
to visualise the similarities or dissimilarities in a low-
dimensional space, employing the Jaccard distance. The 
stress values obtained from NMDS indicate the accuracy 
of 2D representations with lower stress values indicating 
a better fit between the original dissimilarity matrix and 
the NMDS ordination (see Table 1).

Microbial community model (MICOM)
To explore connections between the microbes and metabo-
lites identified, a microbial community model was cre-
ated for each disease, stimulating gut communities for each 
sample. MICOM uses an L2 normalisation based model to 
calculate the community growth rate, denoted as µc , for all 
the microbes in a metagenomic sample [59]. This method 
enables what Diener et al. define as selfish individual growth 
maximization [59], allowing each microbe to reach its maxi-
mal growth ( µi) rather than just a maximal overall com-
munity growth. Simulated growth rates are determined 
based on the microbes relative abundance, known metabo-
lite fluxes, and growth rates from an input database, as well 
as user input minimal and maximal abundance values and 
growth rates. Utilizing the relative abundance of each genus 
selected by the machine learning process and its correspond-
ing classification, a manifest for each disease was built using 
the build function from micom.workflows. The model data-
base was set to the “agora103_genus.qza” [60] dataset, with 
the solver set to “osqp”, a cutoff equal to zero, threads equal 
to two, and a phenotype column indicating the disease sta-
tus for each sample. This manifest is a data frame created by 
the model that includes all the information on the microbes 
identified in the provided database, which is then used to 
construct the growth model.

To obtain maximal growth rates, a cooperative trade-
off value must be determined. The model fixes the com-
munity growth rate to a fraction of its optimum and then 
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calculates the minimum L2 normalisation of the individ-
ual growth rates. Individual growth rates are calculated 
as follows:

where α denotes the specified trade-off value (the 
fraction of community maximum to use), µc denotes the 
community growth rate, µi the individual growth rate 
for genus i and ai is the relative abundance of that genus. 
Thus, the community growth rate is represented by the 
sum of individual growth rates and their abundance:

Therefore, before creating the growth model, the opti-
mal value for the trade-off was identified using the result-
ing manifest of each disease in the tradeoff function from 
micom.workflows, with the medium set to the “western_
diet_gut.qza” [60] database and threads equal to two. The 
optimal value was defined as the highest trade-off value 
where the maximal number of taxa were enabled to grow.

Additionally, MICOM represents the flux balances 
of the microbes and provides the estimated production 
and consumption of metabolites by these recognised 

µi =
αµc

aTa
ai

µC =

∑
i
aiµi

communities. A linear model based on the COBRApy 
Python package is utilised, with an assumption of a 
steady state of all fluxes within the microbes system 
required. The fluxes vi are provided in millimoles per 
gram per hour (mmol/[gDWh]) and follow the rules:

such that vbm is the biomass reaction, which is normalised 
to produce 1 g of biomass in a unit 1/h, to correspond 
to the growth rate of the organism. Lower and upper 
bounds lbi and ubi are used to impose thermodynamic 
constraints. To allow a community of fluxes, the following 
must be considered:

maxmizievbm

suchthat(s.t)Sv = 0

andlbi ≤ vi ≤ ubi

maximizeµc =

∑

i

aiµi

s.t."i : Sv = 0

Table 1  Summary of datasets used for training and validation in GC, CRC, and IBD

This table includes the total number of healthy and diseased patients, the number of microbiome and metabolome features, the source of extraction for microbes and 
metabolites, and the sequencing and analytical tools employed, respectively

*CE-TOFMS: Capillary electrophoresis time-of-flight mass spectrometry, *LC–MS: liquid chromatography-mass spectrometry, *UPLC-MS/MS: ultra-performance liquid 
chromatography-mass spectrometry

Datasets Source Healthy Diseased Total features Source of extraction Technology used

Training data

 GC

 Microbiome Erawijantari et al. [178] 54 42 10,528 Fecal Shotgun metagenomics sequencing

 Metabolome 525 *CE-TOFMS

 CRC​

 Microbiome Yachida et al. [179] 127 150 11,942 Fecal Whole genome sequencing

 Metabolome 450 CE-TOFMS

 IBD

 Microbiome Franzosa et al. [180] 56 164 11,720 Fecal Whole genome shotgun sequencing

 Metabolome 466 *LC–MS

Validation data

 GC

 Microbiome Jaeyun Sung et al. [181] 10 40 470 Gastric antrum 16S rRNA sequencing

 Metabolome UK BioBank 44,378 2,436 168 Plasma NMR spectroscopy

 CRC​

 Microbiome Kim et al. [182] 102 36 499 Fecal 16S rRNA sequencing

 Metabolome 462 *UPLC-MS/MS

 IBD

 Microbiome iHMP/HMP2 [183] 104 278 9694 Fecal Shotgun metagenomic sequencing

 Metabolome 596 LC–MS



Page 6 of 23Philip et al. Journal of Translational Medicine          (2025) 23:549 

where vibm is the biomass flux, µi
min is the user-specified 

minimum growth rate (0 is used in this study), viex is the 
exchange fluxes with the specified external environment, 
and lb and ub are the lower and upper bounds. vim are 
the exchanges between the entire community and the 
gut lumen, so a set metabolite environment representing 
the gut lumen must also be provided to the model. The 
“western_diet_gut.qza” database is used in this study. 
Overall production fluxes are calculated via:

with vim representing an exchange flux for the metabolite 
m in taxon i and vtotm the total metabolite fluxes.

Consequently, to obtain the growth model and 
predict metabolite production and consumption by 
each genus, the grow function was enforced with the 
input trade-off set to the determined optimum, the 
manifest for the disease, and the same “western_diet_
gut.qza” medium.

From these estimated fluxes, we utilise the phenotype 
provided for each sample to examine how these fluxes 
vary across disease groups, using MICOM’s built 
in non-parametric tests for each metabolite against 
the phenotype. To identify metabolites differentially 
produced between case and control samples of each 
disease, the plot_association function from micom.
viz was populated with the growth results, variable_
type set to binary, phenotype set to the disease 
status (case vs control), and fdr_threshold set to 0.5. 
Any metabolites or their derivatives identified by 
the MICOM model and in the predictive analytics 
were noted as important. Finally, the selected genus 
names were entered into the MicrobiomeAnalyst 
taxon set analysis tool to identify literature validated 
interactions between microbes and metabolites and 
were compared to the results provided by MICOM and 
machine learning analysis.

Weighted co‑gene network analysis (WCGNA)
WCGNA [61] was performed on both the metabolite and 
microbiome datasets to explore co-expression patterns 
and their associations with case–control traits. First, the 
optimal power to create a scale-free topology network 

µi = vi
bm

≥ µi
min

lbi ≤ vi ≤ ubi

lbi
ex

≤ aivi
ex

≤ ubi
ex

lbi
m
≤ vi

m
≤ ubi

m

vtot
m
=

∑
i,vi

m>0
aivi

m

was determined by evaluating a range of soft-thresholding 
powers ranging from 1 to 20, with plots of mean connect-
edness and scale independence guiding the decision. Using 
the chosen power, hierarchical clustering and dynamic 
tree-cut techniques were used to identify modules of co-
expressed features, each assigned a distinct colour for visu-
alisation. For each module, the module eigengenes (MEs), 
were computed and compared to the case–control trait 
using the Pearson correlation coefficient. The statistical 
significance of the correlation coefficients, which varied 
from −1 (strong negative correlation) to + 1 (strong posi-
tive correlation), was assessed using the appropriate p-val-
ues obtained from the correlation analysis. A heatmap of 
these correlations, displaying both the coefficients and the 
corresponding p-values, provided a comprehensive view of 
the module-trait relationships.

Additionally, the Topological Overlap Matrix (TOM) 
was calculated to assess the similarity between features 
based on their network connectivity. Heatmaps and net-
work dendrograms were created using this TOM to show 
co-expression patterns. The co-expression networks were 
shown using graph based visualisation approaches after 
the TOM was filtered to highlight the strongest linkages 
for network visualisation.

Features (metabolites or taxa) were represented 
by nodes in these networks, while co-expression 
relationships were represented by edges, whose attributes 
were proportionate to the strength of the connection.

Results
Demographic characteristics for all datasets
Given the large number of datasets, we focused on basic 
demographic characteristics (Table 2). The datasets from 
Erawijantari et al. (GC) and Yachida et al. (CRC) revealed 
a higher proportion of male participants compared to 
females. The median age was 66 years for GC patients and 
64 years for CRC, suggesting that the risk of developing 
GC and CRC may increase with age. However, statistical 
analysis showed no significant differences in median age 
between GC patients (p = 0.75), CRC patients (p = 0.14), 
and healthy controls. BMI for gastrectomy patients was 
higher (23.2) compared to the healthy group (21), with 
a p-value of 0.0004, indicating a statistically significant 
difference between the two groups. However, even 
though the mean BMI for CRC patients (23) was higher 
than the healthy group (22.9), there was no statistical 
difference between the two groups (p = 0.66).

For the IBD dataset by Franzosa et  al., gender related 
data was unavailable, but the median age of IBD patients 
was 41 years. A significant difference in age between 
healthy individuals and IBD patients suggests a potential 
association between age and IBD prevalence (p = 0.005). 
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Demographic characteristics for the validation datasets 
were also calculated, which can be found in (Supplemen-
tary Table 2).

Data preprocessing for gastric cancer
In the Erawijantari et  al. dataset, we excluded features 
with 80% sparsity from the microbiome data and those 
with 20% from the metabolome data. The remaining fea-
tures were subjected to min–max scaling. During PCoA, 
we identified one sample in the microbiome data as an 
extreme outlier based on its visual distance from the 
main cluster, which was subsequently removed. Simi-
larly, two samples in the metabolome data were identi-
fied as outliers based on their visual deviation from the 
main cluster in the PCA graph. They were excluded, and 
this resulted in a final dataset of 95 microbiome samples 
and 94 metabolome samples. Using the Mann–Whitney 
U test (FDR-adjusted p < 0.05), we identified 140 signifi-
cant features from the microbiome data and 146 from the 
metabolome data, which were ultimately used for further 
analysis (Fig. 1b).

Model performance across multiple models for gastric 
cancer and validation
We employed three models, XGBoost, Random Forest, 
and LASSO, separately on the GC microbiome and 
metabolome datasets, The models were hyper-tuned 
through random search and Bayesian optimization. 
For feature selection, we applied RFECV with tenfold 
cross-validation for XGBoost and Random Forest, while 
LASSO utilised its built-in feature selection. This process 
identified 59 microbes and 45 metabolites that were 
common across all models, which we used to train the 
classifiers. Performance metrics were calculated based on 
test scores.

For the microbiome data, the Random Forest model 
performed best with an AUC of 0.96 (0.86–1.00) and 
an accuracy of 88% with the scores and hyper-tuned 

parameters of the model depicted in Supplementary 
Tables 3&4.To further reduce the number of microbes, 
the Gini-importance scores of the microbes were noted, 
and a subset of the top 15 microbes provided the best 
ROC-AUC score of 97%.

These microbes at the genus level were subjected to 
a Spearman correlation cluster map. From the clusters, 
we identified 6 microbes, mainly CAG-103, Ruminococ-
cus, Olleya, Cutibacterium, Allisonella, and Centipeda 
(Supplementary Fig. 2a).

For the metabolome data, LASSO was the top 
performer, with an AUC of 0.98 (0.91–1.00) and an 
accuracy of 92%. Further feature selection identified a 
subset of 30 metabolites that had an AUC score of 98%. 
From the cluster map, 8 metabolites were identified, 
mainly dihydrouracil, taurine, γ-butyrobetaine, 
pimelate, glycocholate, methionine sulfoxide, 
phenethylamine, and citramalate (Supplementary 
Fig. 2b) (Fig. 1c).

We choose to validate the top 15 microbes and top 30 
metabolites across all three models. We validated the 
GC microbiome model using data from Jaeyun Sung 
et  al., where Random Forest performed best, with an 
AUC of 0.88 (0.85–0.99). However, for metabolite valida-
tion using the UK Biobank, the AUC scores were lower 
than expected, with all three models showing an AUC 
of 0.50 (0.50–0.50) while all other performance metrics 
remained similar. The reduced AUC scores, despite high 
sensitivity and recall, are likely due to differences in sam-
ple type. The UK Biobank metabolites were derived from 
plasma samples, whereas the main model was trained 
using metabolite data extracted from fecal samples. This 
could have potentially limited the model’s predictive 
power (Supplementary Table 5) (Fig. 1d).

Microbial diversity & abundance analysis for gastric cancer
Alpha diversity analysis using the selected six microbes 
revealed significant differences between GC patients 

Fig. 1  Microbiome-metabolome machine learning for cross-disease predictions in GC. a Fecal microbiome and metabolome data from GC patients 
(orange) and healthy individuals(green) obtained from Erawijantari et al. b Data preprocessing workflow highlighting the key microbes, metabolites, 
and samples selected for machine learning, alongside a principal coordinates analysis (PCoA) plot used for outlier removal. c The receiver operator 
curve – area under the curve (ROC-AUC) for microbiome and metabolome data across models: XGBoost (blue), Random Forest (green), and LASSO 
(red). Bar graph showing the best-performing model (microbiome-Random Forest, metabolome-LASSO) based on the highest AUC-ROC score, 
highlighting the optimal number of features. The selection includes 6 microbial and 8 metabolite features identified through Spearman cluster 
map analysis. d Validation performance metrics of the optimal features depicted by bar plots for microbiome and metabolome analysis were 
evaluated using the microbiome dataset from Jaeyun Sung et al. and the metabolome dataset from the UKBB. e Alpha diversity for microbes 
was visualised with violin plots comparing healthy and GC patients using the Shannon and Gini-Simpson indices. FDR-corrected p-values (p 
< 0.05) showed significant differences within both groups. Beta diversity was evaluated using non-metric multidimensional scaling (NMDS) based 
on Jaccard distances, with the stress value confirming statistical significance between healthy and diseased patients. f Circular bar plots illustrate 
the performance scores of the three models trained using combined microbiome and metabolome data from GC patients. Key biomarkers 
from the GC dataset were identified in the IBD and CRC datasets. GC-trained models were applied to predict IBD and CRC outcomes respectively

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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post-gastrectomy and healthy individuals. Shannon 
index (p = 0.003) and Gini-Simpson index (p = 0.004) 
consistently indicated distinct microbial diversity within 
the groups. Similarly, beta diversity analysis, using 
NMDS with Jaccard distances (stress = 0.055), effectively 
demonstrated microbial differences between the groups 
(Fig. 1e).

Using gastric cancer biomarkers to predict inflammatory 
bowel disease and colorectal cancer
To explore cross-disease applicability, we extended our 
analysis from GC to include IBD and CRC. We applied 
the GC model, trained on the selected biomarkers, to 
predict IBD and classify CRC patients as either diseased 
or non-diseased (non-IBD and non-CRC). Among the GC 
models, Random Forest performed the best, achieving 
a ROC-AUC score of 0.94 (0.83–1.00). Surprisingly, the 
predictions on both IBD and CRC revealed the Random 
Forest model as the top-performing model, with an 
ROC-AUC score of 0.77 (0.71–0.83) and 0.63 (0.57–0.69), 
respectively (Supplementary Tables 6&7) (Fig. 1f ).

Data preprocessing for colorectal cancer
For preprocessing the CRC dataset, we removed 70% 
of the sparse features from the microbiome dataset and 
80% of the sparse features from the metabolome data as 
an initial step. After applying min–max scaling to the 
remaining features, we generated PCoA and PCA plots 
to identify and remove outliers. This resulted in the 
exclusion of 10 samples from the microbiome dataset 
and 12 samples from the metabolome dataset. Since 
the Wilcoxon test failed to identify significant microbes 
and metabolites, we applied the Kruskal–Wallis test to 
filter out insignificant features. Ultimately, 208 microbes 
across 267 samples and 105 metabolites across 265 
samples were used as inputs for the machine learning 
models (Supplementary Fig. 3).

Model performance across multiple models for colorectal 
cancer and validation
We trained hyperparameter-tuned machine learning 
models on the CRC microbiome and metabolome 
datasets. Feature selection resulted in 82 microbes 
and 72 metabolites that were consistently identified 

Fig. 2  Microbial community model (MICOM) results overview. a A summary of the process used to obtain the results. b The significantly 
differentially produced metabolites (p < 0.05) for each disease and their log-fold change abundance, where a positive change represents an increase 
in cases vs controls (Diseased vs Healthy)
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across the three models. Among the models built for 
CRC microbes, Random Forest performed the best, 
achieving an AUC-ROC score of 0.89 (0.80–0.96) and 
an accuracy of 84%. However, when we focused on the 
top 15 microbes, the AUC score dropped significantly to 
54%, with other subsets performing even worse. Despite 
this decrease, we decided to proceed with this subset 
to strike a balance between model performance and 
the identification of actionable biomarkers. From the 
heatmap, we identified 13 microbes such as HGM04593, 
Parafilimonas, RUG11977, UMGS755, CACXMZ01, 
Desulfitobacterium, Onthousia, M0103, Fusobacterium, 
Enterococcus, Selenomonas, Psychrobacillus, and 
Thermus (Supplementary Fig. 4a).

For the metabolome data, LASSO performed the best, 
with an AUC score of 0.70 (0.57–0.82). From the top 15 
metabolites, which yielded the highest AUC score of 61%, 
we selected 10 metabolites such as isoleucine, N6-methyl-
2-deoxyadenosine, N1,N8-diacetylspermidine, guanine, 
γ-guanidinobutyrate, dTMP, nicotinamide, decanoate, 
dodecanedioate, and 2-hydroxyoctanoate were selected 
for final analysis from the heatmap(Supplementary 
Fig. 4b)(Supplementary Tables 8&9).

To validate the CRC models, we used the microbiome 
and metabolome from Kim et  al. XGBoost and Ran-
dom Forest achieved an AUC of 0.51 (0.47–0.54) for the 
microbiome, while LASSO for metabolites achieved an 
AUC of 0.50 (0.39–0.61). The lower performance could 
likely stem from differences in particular biomarker 

Fig. 3  Weighted Gene Co-expression Network Analysis (WGCNA) for CRC. a This plot shows the scale-free topology model fit (R2) 
versus soft-thresholding power (β). The highest R2 is 0.1847 at β = 9, indicating a weak but improving fit to the scale-free topology as β increases. b 
This plot displays how the mean connectivity decreases with increasing β. At β = 9, the mean connectivity is low, reflecting network sparsification 
while retaining some structural connections. c Shows a hierarchical clustering dendrogram of metabolites, where branches represent clusters 
of similar elements based on their co-expression. The height (Y-axis) indicates the dissimilarity between clusters, with smaller heights representing 
higher similarity. The horizontal bar below the dendrogram represents module assignments. The turquoise color indicates elements grouped 
into a co-expression module, while grey represents elements that were not assigned to any module due to low correlation or lack of clustering. d 
This heatmap represents the correlation between module eigengenes and traits (Case and Control, where Case = CRC and Control = Healthy). Each 
cell contains the correlation coefficient and its p-value with color intensity indicating the correlation’s strength and direction (red for positive, blue 
for negative). The grey module, containing unassigned elements, shows a very weak positive correlation with CRC (r = 0.016, p = 0.8) and Healthy 
(r = 0.034, p = 0.6), both of which are statistically insignificant. The turquoise module, containing co-expressed elements, shows a weak positive 
correlation with CRC (r = 0.055, p = 0.4) and a weak negative correlation with Healthy (r = − 0.075, p = 0.2), neither of which are significant. This 
suggests no strong relationship between module expression and CRC. e The turquoise nodes in the network visualisation represent metabolites 
within the turquoise module, characterized by strong co-expression connections. The edges connecting turquoise nodes reflect the strength 
of co-expression: red edges represent higher strongly co-expression interactions, and blue edges indicate lower co-expression interactions. 
Metabolites like"Leu,"and"Ile"are central to this cluster, potentially functioning as hub metabolites coordinating module activity
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profiles or technical variability between datasets (Supple-
mentary Table 10).

Microbial diversity and abundance analysis For CRC​
Alpha diversity indices such as the Shannon index (p 
= 0.0617) and Gini Simpson (p = 0.524) indicated no sig-
nificant differences in microbial composition within the 
healthy and within the diseased groups. Similarly, beta 
diversity using the NMDS analysis had a stress value of 
0.7, further confirming no significant diversity between 
healthy and diseased samples.

Using colorectal cancer biomarkers to predict gastric 
cancer and inflammatory bowel disease
We used the model trained on the selected combined 
biomarkers for CRC to predict and distinguish GC from 
non-GC patients and IBD from non-IBD patients. Within 
the CRC models, Random Forest achieved the highest 
ROC-AUC score of 0.75 (0.62–0.86). For GC predictions, 
Random Forest led with a top ROC-AUC of 0.86 (0.77–
0.93), whereas for IBD predictions, the LASSO model 
produced the top AUC score of 0.65 (0.57–0.72) (Supple-
mentary Tables 11, 12).

Data preprocessing for inflammatory bowel disease
For the IBD data, we removed 40% of sparse features 
from the microbiome dataset and 60% from the 
metabolome dataset, followed by min–max scaling of the 
remaining features. For outlier removal, we used PCoA 
on the microbiome data, identifying and removing nine 
outliers, and PCA on the metabolome data, removing 
seven outliers. After applying the Mann–Whitney U 
test, we identified 1089 significant microbiome features 
across 211 samples and 259 metabolome features across 
213 samples, which were used for further analysis 
(Supplementary Fig. 5).

Model performance across multiple models 
for inflammatory bowel disease and validation
We individually trained the IBD microbiome and metab-
olome data using hyperparameter-tuned XGBoost, 
Random Forest, and LASSO models. Feature selection 
through RFECV and LASSO consistently identified 83 
significant microbiome features and 73 metabolome fea-
tures across all three models. For the microbiome data, 
Random Forest demonstrated the best performance, with 
an AUC of 0.90 (0.81–0.97) and an accuracy of 83%. The 
subset of the top 15 microbes had a top score of 89%, and 
the Spearman cluster map identified 9 microbes specifi-
cally, Actinomarina, RGIG4708, Butyribacter, Limivivens, 
Faecalibaculum, UBA11774, UMGS1601, Bariatricus, 
and SIG607 (Supplementary Fig. 6a).

For the metabolome data, Random Forest was the top 
performer, with an AUC of 0.95 (0.89–0.99) and an accu-
racy of 89%. The subset of 20 metabolites had the top 
score of 88% and identified 10 metabolites such as uro-
bilin, glycerate, cholestenone, acetyl-arginine, 4-hydroxy 
3-methyl acetophenone, methylguanine, pseudouridine, 
inosine, 1,3,7-trimethyl urate, and carnosol based on the 
cluster map and Gini-importance scores (Supplementary 
Fig. 6b, Supplementary Tables 13, 14).

For validation of the IBD models, we used the 
Integrative Human Microbiome Project (iHMP) datasets, 
and for the microbes and metabolites, we have Random 
Forest as the best model with an AUC of 0.60 (0.50–
0.64) and AUC of 0.76 (0.70–0.81), respectively. These 
microbes and metabolites can be investigated as potential 
biomarkers in IBD alone (Supplementary Table 15).

Microbial diversity and abundance analysis 
for inflammatory bowel disease
For IBD, the Shannon diversity index (p = 0.617), and 
Gini Simpson (p = 0.525) values for alpha diversity indi-
cate that there are no microbial differences within the 
healthy and IBD groups. However, the beta diversity 
analysis, visualised through NMDS (stress value = 0.05), 
indicated distinct compositional differences between the 
groups.

Using inflammatory bowel disease biomarkers to predict 
gastric cancer and colorectal cancer
We used the model trained on the selected combined 
biomarkers for IBD to predict and distinguish GC from 
non-GC patients and CRC from non-CRC patients. 
Among the main IBD models, Random Forest had the 
highest AUC score of 0.93 (0.86–0.98). For the GC 
predictions, we noticed that Random Forest had the 
best AUC score of 0.66 (0.54–0.76), and for predictions 
on CRC, LASSO had a top score of 0.57 (0.51–0.63) 
(Supplementary Tables 16, 17).

Interactions between microbes and metabolites
An overview of the process used to obtain these results 
can be found in Fig. 2a. Of the 59, 82, and 83 initial gen-
era chosen by the machine learning process, which were 
input into the MICOM manifest, 14, 14, and 5 were rec-
ognized by the AGORA database for GC, CRC, and IBD 
datasets, respectively. The optimal trade-off values for 
the created models were 0.8, 0.7, and 0.9 (Supplemen-
tary Table  18). Initial analysis of differentially produced 
metabolites between control and case groups identified 6, 
7, and 16 metabolites for GC, CRC, and IBD, respectively, 
all of which are reported in detail within Supplementary 
Table 19. Of those we deemed significant, 65% of metab-
olites were of increased abundance in cases vs controls.
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Chorismate (p = 0.002), isocholate (p = 0.0002), and 
cholate (p = 0.02) were decreased in abundance, while 
5-methylthioadenosine (p = 0.02), oxalate (p = 0.01), 
glycolaldehyde (p = 0.01) and acetate (p = 0.01) were 
increased in abundance, for GC cases versus controls. 
L-methionine (p = 0.004) and glycerol 3-phosphate (p 
= 0.008) were in reduced abundance, along with trimeth-
ylamine (p = 0.02), cytosine (p = 0.006) and cytidine (p 
= 0.03) in increased abundance, for CRC cases vs con-
trols (Fig. 2b).

Adenine (p = 0.03) was diminished in IBD cases, whilst 
nicotinate (p = 0.04), D-glucose (p = 0.04), D-lactate (p 
= 0.05), and pyruvate (p = 0.04) were elevated, in IBD 
cases versus controls (Fig. 2b). Consequently, the overlap 
between the machine learning analysis and MICOM 
selected metabolites defines cytidine, glycine, and 
methionine as important for CRC definition, while no 
overlap occurred for either IBD or GC.

Additionally, however, MICOM identified metabolite 
derivatives of those identified by the feature selection 
process, namely glutamate, glycerate N-acetyl-histidine 
and nicotinic acid for IBD; glycerophosphate for 
CRC; and 5-methyl-2-deoxycytidine, acetyl CoA, and 
glycocholate for GC.

MICOM further selected metabolites as differential 
in one disease, which were significantly identified by 
the machine learning algorithm for others. For instance, 
cholate and cytosine were differential for IBD analysis but 
were selected as significant for GC and CRC, respectively, 
by MICOM. Similarly, alanine, glutamate, histidine, 
lactate, and tryptophan were differential for IBD and 
1-methyladenosine differential for CRC as chosen by 
MICOM, while they were selected as important for CRC 
by the machine learning process. Finally, alanine and 
nicotinate were selected for IBD, glycerophosphate for 
CRC, and methionine for both IBD and CRC by MICOM, 
whereas they were discriminatory for GC in the machine 
learning models.

MicrobiomeAnalyst also identified similar metabolites 
as significantly associated with each disease: 
D-glucose, glycine, histamine, and L-alanine for IBD; 
L-phenylalanine, L-leucine, azelaic acid, cholic acid, and 
lactic acid for GC; and isoleucine, methionine, butyric 
acid, D-glucose, Serine and 3-methylhistidine for CRC.

Weighted gene co‑expression network analysis
For WGCNA, although different co-expressed metabolite 
modules were identified for GC, CRC, and IBD when 
analyzed with 45, 72, and 73 metabolites, respectively, no 
modules were detected for the microbiome-metabolite 
dataset. This could be explained by the fact that, in 
contrast to the more stable and evolutionarily conserved 
gene networks, interactions between the microbiota 

and metabolites are highly variable and transient. 
Nevertheless, to determine an appropriate stable 
configuration for the study, an adequate level of network 
connectivity was chosen. Furthermore, co-expression 
networks were shown, emphasizing the modular 
structures and metabolite interactions in each dataset.

For the CRC metabolite dataset, a power of β = 9 was 
selected, yielding an R2 of 0.1847 (Fig.  3a&b). Among 
the co-expressed metabolite modules identified, the tur-
quoise module stood out as a unique cluster strongly 
associated with CRC which included metabolites like 
Glu-Glu, isoleucine (Ile), 2 AB, phenylalanine (Phe), leu-
cine (Leu), and tyrosine (Tyr) (Fig. 3c).

A heatmap visualising the correlation between module 
eigengenes (ME) and clinical characteristics (CRC vs. 
Healthy, denoted as cases vs. controls revealed that the 
turquoise module showed a modest positive association 
with CRC cases (correlation = 0.055, p = 0.4) and a slight 
negative correlation with healthy controls. (correlation 
= − 0.075, p = 0.2) (Fig. 3d).

The network diagram illustrated the dense 
interconnections among metabolites in the turquoise 
module, with leucine (Leu) and isoleucine (Ile) occupying 
central positions as hub metabolites (Fig. 3e). Metabolites 
from other modules, which were not part of this 
co-expression cluster, were represented by grey nodes.

For the GC metabolite dataset, the turquoise module 
was significantly associated with GC in the WGCNA 
analysis, developed with a soft threshold power of β = 
9 (scale-free topology R2 = 0.1947) (Supplementary 
Fig.  7a, b). The turquoise module, represented a 
distinct cluster of co-expressed metabolites, including 
N-acetylglucosamine-1-phosphate, agmatine, 
5-aminolevulinate, N8-acetylspermidine, inosine, 
nicotinamide, S-adenosylmethionine (SAM), 
dihydrouracil, and uracil are the nine metabolites that 
made up this module (Supplementary Fig. 7c). A heatmap 
revealed correlation between clinical characteristics 
(GC vs. Healthy) and MEs. The turquoise module 
showed a modest positive correlation with the Healthy 
group (correlation = 0.073, p = 0.5) and a slight negative 
correlation with the GC group (correlation = − 0.13, 
p = 0.2), suggesting its potential role in distinguishing 
between cases and controls (Supplementary Fig. 7 d). In 
the network diagram, turquoise-colored nodes represent 
metabolites from the turquoise module, which is strongly 
linked to GC, while grey nodes denote metabolites from 
other modules. Key metabolites such as SAM, inosine 
(Ino), uracil (Ura), and N8-acetylspermidine (Agm) were 
moderately interconnected, highlighting their central 
roles in the turquoise module’s metabolic network.

Finally, for IBD, a soft threshold power (β = 10) was 
selected to construct a scale-free topology network, 
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balancing sparsity and robustness, with a model fit 
(R2) of 0.235 (Supplementary Fig.  8a, b). Hierarchical 
clustering based on topological overlap identified 
distinct co-expression modules, with the turquoise 
module emerging as the most biologically significant 
(Supplementary Fig.  8c). The turquoise module showed 
a positive correlation with IBD, despite a modest 
eigengene-disease status association (correlation = 0.056, 
p = 0.4) (Supplementary Fig. 8 d).

This module comprised ten metabolites moderately 
associated with IBD, including sebacate, deoxycholic 
acid, 7-ketodeoxycholate, thiamine, cholestenone, 
pyridoxamine, undecanedionate, lithocholic acid, 
4-hydroxy-3-methylacetophenone, and urobilin.

Discussion
Early GID diagnosis is essential for both preventing 
disease progression and developing efficient treatment 
plans that can enhance patient survival. Traditionally, 
each GID relies on its own’gold standard’ diagnostic 
methods, such as endoscopy, medical imaging, and 
biopsies. While effective, these methods are often 
invasive, costly, might carry the risk of radiation exposure 
[62–64], and may not always detect the disease at an 
early stage. To tackle these challenges, researchers have 
explored biomarkers for early and accurate detection 
of GC, CRC, and IBD individually using genomic, 
transcriptomic, microbiome, and metabolomic datasets. 
Given that GIDs are often interconnected, the presence 
of one condition can increase the risk of developing 
another. This study examines whether microbes and 
metabolites linked to one disease could serve as early 
indicators for diagnosing others.

Biomarkers in gastric cancer
Biomarker identification largely depends on stable 
feature selection to ensure reliability. To achieve this, we 
employed multiple feature selection methods, including 
RFECV and LASSO-based selection, prioritizing top-
ranked features with the highest discriminative scores 
and ensuring that selected features were not highly 
correlated with one another, with the help of the 
Spearman correlation map. Combining the selected 
microbes and metabolites for GC provided optimal 
performance scores of AUC > 0.8 (0.63–1.00) across all 
three machine learning models. Since the goal of this 
project is to use the primary GC model to predict CC 
and IBD and vice versa, we applied the same selected 
biomarkers to IBD and CC datasets. The results revealed 
that GC biomarkers might also be relevant for IBD, with 
all models achieving AUC > 0.7 (0.66–1.00). However, 
while the IBD models demonstrated high accuracy, 

precision, specificity, and F1 scores, their sensitivity 
was comparatively lower, indicating a reduced ability to 
identify all true positive cases. This trade-off essentially 
reflects the model’s tendency to prioritize minimizing 
false positives over maximizing true positives. Similar 
observations were made by Hodgkiss et al. [65], who also 
noted low sensitivity in IBD prediction models.

In contrast, although the GC biomarkers performed 
well for IBD, they performed poorly in predicting CRC, 
with most models showing an AUC just above 0.58 
(0.51–0.58), except for the Random Forest model, which 
achieved an AUC of 0.63 (0.57–0.69).

To reinforce our findings in the literature, we observed 
that the microbes associated with GC belonged 
to three major phyla, which included Firmicutes, 
Bacteroidota(also known as Bacteroidetes), and 
Actinobacteria. Tseng et  al. [66] reported that these 
bacterial phyla were abundant in patients who had 
recently undergone gastrectomy, which aligns with our 
observations, as the data were collected from GC patients 
post-gastrectomy.

In our study, we identified microbes that belong to the 
Lachnospiraceae family, which is known to participate 
in the production of acetic acid and butyric acid. A 
reduction in the abundance of  Lachnospiraceae  was 
associated with altered lipid metabolism, increased 
inflammation, and malignancy in GC [67–69]. 
Additionally, the Muribaculaceae family showed 
a positive correlation to amino acid and glucose 
metabolism pathways related to GC [70, 71].

Studies reported conflicting effects of Ruminococcus 
on GC, with some studies indicating that certain species 
can be beneficial in reducing the risk of CRC and 
stabilising the intestinal barrier [72], while certain species 
of Ruminococcus can potentially increase the risk of 
developing GC [73]. Additionally, Centipeda, a microbe 
found significant in GC in our study, has been strongly 
associated with cancer virulent H.pylori [74]. Similarly, 
Cutibacterium, another significant microbe in GC, has 
been studied extensively for its role in promoting tumor 
formation in renal cell carcinomas [75] and has also been 
found to be abundant in GC as well [76, 77].

Regarding metabolites, dihydrouracil ranked highly 
in LASSO feature importance. Although not directly 
involved in GC causation, dihydrouracil plays a key role in 
pyrimidine metabolism, which, when disrupted, can lead 
to cancerous lesions [78–80]. Shentu et al. [81] revealed 
that taurine exhibits dual roles in GC disease progression, 
promoting tumor growth in immunodeficient mice while 
inhibiting it in immunocompetent mice.

Moreover, Sinha et  al. [82], in their meta-analysis 
regarding the effects of taurine on CRC, noted that most 
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studies report an increase in the taurine levels associated 
with the disease. γ-Butyrobetaine, which serves as a 
precursor in the formation of Trimethylamine N-Oxide 
(TMAO) by gut flora like Firmicutes and Actinobacteria, 
which is known to be associated with the development 
of GC [83, 84]. Secondary bile acid glycocholate, also 
known as glycocholic acid, was seen to be increased in 
patients with GC [85] and UC [86]. In contrast, MICOM 
analysis identified decreased derivatives of the bile 
acid glycocholate, namely chorismate, isocholate, and 
cholate, in GC cases vs controls. This was based on the 
metabolite flux predicted from the differential microbes. 
This could highlight that the increased abundance of bile 
acids is not due to their differential production by our 
selected microbes but may be due to other alterations 
in downstream cellular mechanisms [87]. Methionine 
sulfoxide, another key metabolite from GC machine 
learning analysis, was produced at lower levels by the 
selected microbes for IBD and CC cases in MICOM 
analysis. The promising use of this metabolite as an 
adjuvant researched in all three disorders [88–90] gives 
insight into the potential of this pathway as a link in their 
pathology.

Furthermore, acetate, a derivative involved in the 
acetyl CoA pathway that has been linked to cancer cell 
growth [91], was predicted to be significantly increased 
in GC samples based on microbial abundance in 
MICOM. Additional metabolites associated with the 
differential taxa from machine learning analysis and 
an increase in GC disease by MICOM included oxalate 
and glycolaldehyde linked with the development of renal 
dysfunction in GC patients [92], and GC metastasis [93], 
respectively.

Biomarkers in colorectal cancer
The combined model incorporating both microbes and 
metabolites for the CRC dataset achieved an AUC > 0.7 
(0.57–0.86) across XGBoost, Random Forest, and LASSO 
models. When this model was applied to the GC and 
IBD datasets, its performance was notably better for 
GC, achieving an AUC > 0.7 (0.58–0.93) across all three 
models. This suggests that the biomarkers identified for 
CRC may also be relevant for GC.

Microbes identified from the CRC dataset were 
predominantly from the phylum Firmicutes, followed 
by Bacteroidetes, Fusobacteriota, Actinobacteriota, 
and Deinococcota. Interestingly, although 7 of the 
13 microbes belonged to the  Firmicutes  phylum, 
studies have reported conflicting findings regarding 
its abundance in CRC patients. Some studies suggest 
a reduction in  Firmicutes  abundance in CRC patients, 
particularly those species involved in butyrate production 

[94, 95]. In contrast, other studies indicate an increase 
in Firmicutes along with Bacteroidetes, Fusobacteriota, 
Actinobacteriota, and Deinococcota, which have been 
found to be more prevalent and abundant in CRC 
patients [96–99].

At the genus level, Fusobacterium emerged as a key 
bacterium frequently associated with periodontal 
diseases [100]. Recognized for its pro-inflammatory 
properties, Fusobacterium was found to be more 
abundant in advanced stages of both CRC and GC 
[101, 102]. Additionally, Fusobacterium is linked to the 
production of hydrogen sulfide, which plays a role in 
the synthesis of sulfur-containing amino acids, a process 
implicated in the initiation of CRC [103]. This highlights 
its potential role in driving disease progression.

Furthermore, species from the genus Enterococcus, 
known for their production of reactive oxygen species 
(ROS), were observed in both colonic and gastric epithe-
lial tissues, implicating their role in epithelial damage and 
tumorigenesis in both CRC and GC [104, 105]. Genera 
like Selenomonas [106, 107] and Thermus [97, 108] were 
also seen to be abundant in patients with both CRC and 
GC, reinforcing their potential as biomarkers. 

In our study, we identified isoleucine, a branched-
chain amino acid (BCAA), which exhibits a complex 
and dual role in tumor progression. Some studies on 
CRC suggest that isoleucine promotes tumor growth by 
participating in biosynthetic pathways as an intermediate 
in the TCA cycle that supplies energy and contributes to 
oncogenic mutations [109]. Additionally, Ren et al. [110] 
demonstrated that Clostridium symbiosum produces 
BCAAs such as isoleucine, which enhance cholesterol 
synthesis, a process implicated in CRC progression. 
In contrast, other studies on CRC [111] and GC [112] 
reported a protective role for isoleucine, suggesting it 
may inhibit tumor formation and emphasizing its dual 
role in cancer biology, warranting further investigation. 

In the WGCNA analysis conducted, no strong 
interconnections between metabolites were observed 
in CRC. However, network analysis identified leucine 
and isoleucine as hub metabolites, suggesting their 
involvement in a tightly interconnected metabolic 
network. A recent study in mouse models found that the 
breakdown of leucine and isoleucine played a crucial role 
in the development of CRC, with elevated levels of these 
metabolites found in CRC tumor tissues compared to 
normal tissues. This indicates that impaired breakdown 
of BCAAs supports cancer cell proliferation by providing 
essential nutrients for tumor growth. In CRC, the normal 
degradation of the BCAAs is disrupted due to the 
downregulation of proteins involved in their breakdown. 
As a result, these amino acids accumulate, promoting 
cancer cell metabolism and growth [113]. A study by 
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Wang et al. [114], revealed that B cells enriched in CRC 
tissues with transforming growth factor-β1(TGF-β1) 
dominant regulatory phenotypes are driven by leucine 
nutritional preferences and accelerate CRC growth. 
Leucine promotes tumor evasion by inducing leucine-
tRNA-synthetase-2 expressing B cell (LARS B) which 
inhibits mitochondrial NAD + regeneration and oxidative 
metabolism, leading to increased TGF-β1 production. 

The metabolite nicotinamide also showed interesting 
results. While essential for normal cellular metabolism, 
its abundance in CRC may confer a survival advantage 
to cancer cells, as suggested by Jabbari et  al. [115]. 
Similarly, targeting nicotinamide metabolism in GC 
patients may improve prognosis [116]. Other metabolites 
demonstrated disease relevance as well. Decanoate 
(capric acid), a medium-chain fatty acid, showed 
anticarcinogenic properties in CRC [117]. Elevated 
levels of N1, N8-diacetylspermidine were observed in 
CRC patients [118], while metabolites such as guanine 
[119, 120] and γ-guanidinobutyrate [121, 122] were 
identified in both CRC and GC as potential biomarkers. 
Cytidine, which is strongly linked to gut inflammation 
in CRC [123], was proposed to be increased in CRC 
cases according to both MICOM and machine learning 
analysis, whereas glycine, which has the potential to 
decrease CRC tumor volume and vascularization [124], 
was decreased in abundance. Additionally, metabolites 
associated with the selected microbes in CRC analysis, 
such as trimethylamine and cytosine, were predicted to 
be of higher abundance in CRC samples. An increase of 
trimethylamine was also observed in CRC patients by 
Guo et  al. [125] and linked to dysbiosis by Chan et  al. 
[126], while the increased activity of cytosine activated 
pathways has been associated with CRC progression 
[127]. Furthermore, metabolites identified as differential 
for CRC in early machine learning analysis such as 
glutamate and alanine were selected as differential in 
IBD patients in MICOM analysis. Glutamate is strongly 
related to the maintenance of the mucosal lining, with 
its disruption contributing to IBD and gastrointestinal 
cancer [128], while amino acids such as alanine and 
leucine are key to mucosal healing after destruction. 
Their low abundance can lead to issues in both CRC and 
IBD [129, 130].

Biomarkers in inflammatory bowel disease
The combined model scores for IBD, which incorporated 
both microbes and metabolites, showed satisfactory 
results with AUC values > 0.84 (0.71–0.98). However, 
when applied to both GC and CRC, the predictions were 
suboptimal. While GC showed slightly better perfor-
mance, with AUC scores > 0.60 (0.53–0.76) for Random 

Forest and LASSO, other performance metrics did not 
perform as well.

At the phylum level, most of the microbes identified 
in IBD belonged to the Firmicutes and Actinobacteriota. 
These phyla, typically involved in the breakdown of 
short-chain fatty acids (SCFAs) into butyrate and other 
beneficial products, were reported to be reduced in 
the gut microbiomes of IBD patients in a study by Tsai 
et  al. [131] Conversely, Santoru et  al. [132] observed an 
increase in these phyla in IBD patients, highlighting the 
need for further investigation by looking more into the 
genera and the family levels. As many of the microbes 
were unclassified at the genus level, we traced them to the 
family level classifications. Genera such as Bariatricus, 
Butyribacter, Limivivens, and UBA11774, all members 
of the Lachnospiraceae family, were consistently found 
to be decreased in abundance in IBD patients compared 
to healthy controls in multiple studies [133, 134]. 
Interestingly, certain species within Lachnospiraceae 
have been linked to tumor progression in GC [67]. 
At the genus level, we examined Faecalibaculum, 
which was identified in IBD was recognized for its 
probiotic properties, SCFA production, and production 
of indole-3-lactic acid, which helps reduce colonic 
inflammation and repair the gut epithelial barrier [135, 
136] However, Chen et al. [137] confirmed the presence 
of Faecalibaculum in cases of small bowel disease and 
severe gastritis. In terms of metabolites in IBD, urobilin, 
and acetyl-arginine have been identified as possible 
biomarkers in previous studies [138, 139]. Elevated levels 
of glyceric acid (glycerate) have been observed in the 
fecal samples of IBD patients, likely due to the breakdown 
of triacylglycerols released from the colon mucosa, which 
contributes to metabolic disruptions such as acidosis 
[132]. Notably, glycerate has also been implicated in 
GC, where it participates in the glycolysis pathway, 
providing energy to support tumor growth. This aligns 
with the Warburg effect, a metabolic hallmark of cancer, 
where cancer cells preferentially rely on glycolysis for 
energy production, even under oxygen-rich conditions, 
to fuel their rapid proliferation and survival [140, 141]. 
Furthermore, D-glucose and glutamate were significantly 
increased in IBD samples of MICOM analysis, increasing 
the promotion of Th17 cell differentiation and the 
activation of transforming growth factor β [142], which 
further promotes cell proliferation and inflammation and 
weakens the auto-immune response [143]. Heightened 
levels of lactate in IBD patients were also found by Song 
et  al. [144], in addition to our MICOM analysis, while 
contrastingly, many other studies have determined lactate 
is beneficial for the intestinal barrier and a potential 
therapeutic target for IBD [145, 146]. This difference may 
be due to the fact that the differential microbes used to 
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produce the MICOM model are highly lactate producing 
in normal circumstances, but may not have been in the 
guts of our patient cohort. Furthermore, nicotinate 
and pyruvate, also overabundant in IBD samples of the 
MICOM analysis, have been under investigation as 
therapeutic targets, with inhibitors of their metabolic 
pathways showing promising results [147, 148].

Metabolites with protective roles in the context of 
GIDs were also identified in this study. Inosine and 
carnosol, for instance, have been identified for their 
anti-inflammatory properties and for maintaining the 
intestinal barrier in both IBD and GC [149–152]. Simi-
lar patterns were observed in MICOM analysis. Moreo-
ver, adenine, which was found to be underabundant in 
IBD, activates receptors responsible for anti-inflamma-
tory macrophages [153], potentially by inhibiting the 
tumour necrosis factor-α (TNF-α) induced interleu-
kin-8 secretion pathway [154].

Machine learning for microbiome and metabolomic 
disease classification
In our study, Random Forest consistently emerged 
as the top-performing model for both individual 
microbiome, and combined models for GC, CRC, and 
IBD indicating high discriminatory power between the 
healthy and diseased samples. While high performance 
scores alone do not always correlate with better 
results, Random Forest is widely used in microbiome 
studies due to its ability to model complex nonlinear 
relationships between features and outcomes, as well 
as its robustness to noise [155]. For example, Gao et al. 
[156] demonstrated that the Random Forest based 
pipeline achieved the best classification performance 
for CRC prediction compared to other models, with 
performance metrics improving as the number of 
decision trees increased in the meta-dataset. Similarly, 
Zheng et  al. [157], identified Random Forest as a 
reliable diagnostic model for distinguishing between 
healthy controls, CD, and UC patients based on gut 
microbiome data with AUC = 0.81 (0.80–0.82). Appiah 
et  al. [158] also showed that Random Forest could 
accurately identify potential microbial signatures that 
distinguish healthy controls from GC samples.

On the other hand, LASSO emerged as the top 
model for metabolomic data in GC and CRC due to 
its ability to handle high dimensional data and shrink 
less important variable coefficients to zero, effectively 
selecting the most relevant metabolites for disease 
prediction.

Supporting this, Chen et  al. [159] developed a 
10-metabolite GC diagnostic model using LASSO, 
achieving a sensitivity of 0.9. Similarly, Sun et al. [160] 

successfully used LASSO regression to distinguish 
between healthy individuals and CRC patients with 
AUC = 0.96 based on plasma and fecal metabolites. 
Overlapping metabolites identified by the machine 
learning analysis and MICOM predicted models sug-
gest potential links between differential microbes and 
the metabolites in disease. Furthermore, these interac-
tion models provide the potential to design optimized 
fecal microbial transplant (FMT) treatments that not 
only address dysbiosis but also incorporate metabolite 
supplementation or degradation to enhance disease 
therapy [161].

Shared pathological mechanisms and biomarker 
insights in GC, CRC, and IBD
GC, CRC, and IBD exhibit distinct yet overlapping 
clinical and pathological characteristics that are often 
driven by shared clinical risk factors and underlying 
disease mechanisms. For instance, GC often presents 
with non-specific symptoms that include acid reflux, 
dysphagia, abdominal pain, bloating, indigestion, 
weight loss, and melaena [162]. The most common 
subtype, gastric adenocarcinoma, is known to 
frequently metastasize to the lymph nodes and 
liver. Several risk factors increase the likelihood 
of developing GC, including H. pylori infection, 
gastroesophageal reflux disease (GORD), family history, 
and poor diet [163, 164]. Furthermore, H. pylori is also 
linked to mucosa-associated lymphatic tissue (MALT) 
lymphoma in the stomach, primarily due to chronic 
inflammation and bacterial virulence factors [165].

CRC, predominantly in the form of colonic 
adenocarcinoma, presents with hallmark cancer 
symptoms such as weight loss, fatigue, and anemia 
[166]. However, it also presents more specific signs 
like rectal bleeding (haematochezia), tenesmus, and 
changes in bowel habits.

Certain inherited genetic conditions, such as Lynch 
syndrome (Hereditary Nonpolyposis Colon Cancer) 
and familial adenomatous polyposis (FAP), signifi-
cantly increase the risk of developing CRC [16]. Unlike 
some cancers, CRC tends to metastasize more widely, 
often affecting the lungs, liver, and peritoneum [167]. 
Chronic diarrhea mixed with blood in stools is a hall-
mark of IBD and the following inflammation, especially 
in UC, predisposes patients to CRC through inflamma-
tion-induced DNA damage and immune dysregulation 
[7, 8, 32]. IBD and GC share immune dysregulation 
features, including imbalances in T-helper cells(Th1, 
Th17), which may also contribute to CRC progression 
[168–170]. CRC and GC both harbor mutations in key 
oncogenes like PIK3 CA and exhibit dysregulation in 
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signaling pathways like Wnt/β-catenin contributing to 
cancer progression and resistance to therapy [171–174].

Moreover, chronic inflammation in IBD creates 
a pro-tumorigenic environment by increasing 
oxidative stress, which leads to DNA damage, p53 
mutations, and microsatellite instability, persistent 
inflammatory cytokine signaling, ultimately 
facilitating the progression from dysplasia to CRC 
[175]. Understanding these shared mechanisms 
could aid in developing therapeutic approaches that 
target dysbiosis, promote beneficial microbes and 
metabolites, and modulate the harmful ones to help 
predict GIDs more effectively.

Limitations
One of the key limitations of our study was the failure to 
account for confounding factors such as age, gender, BMI, 
and diet in our predictive models. These variables can 
significantly influence model performance and introduce 
bias if not properly controlled [176]. Secondly, there 
was variability in the methods used for data collection, 
preprocessing, and analysis across different datasets and 
countries. This inconsistency can significantly impact 
the performance of the models [177], especially when 
integrating multiple datasets from diverse disease types. 
For instance, during validation, we observed suboptimal 
performance in some of our models, which we attribute 
to these methodological differences. To address this, 
establishing standardized protocols for data collection 
and analysis could greatly enhance the robustness and 
accuracy of machine learning models in future studies. 
Another limitation arose from the way we categorized 
diseases.

In this study, CD and UC were grouped under IBD, 
and different stages of CRC were analyzed collectively 
without distinguishing the adenoma specific data. This 
may have resulted in the loss of insights specific to 
individual disease subtypes or stages, potentially affecting 
the performance of our models. Additionally, while we 
used an independent dataset to validate the predictive 
power of our machine learning models, the validation 
process was limited to a small subset of the identified 
microbes and metabolites. This constraint highlights the 
need for larger, more diverse validation datasets to ensure 
the generalisability of our findings. Finally, our use of the 
MICOM model, which simulates microbial community 
interactions, was limited by the scope of the AGORA 
database. Since the database only includes a fraction 
of known microbes, only 6–24% of the differentially 
abundant microbes in our study could be incorporated 
into the disease models. This limitation underscores the 
importance of further research into the functional roles 
of unclassified microbes and their metabolic pathways. 

By expanding our understanding of these microbes, we 
can fill critical gaps in model creation and improve their 
predictive accuracy.

Future work
The use of a longitudinal study could enhance this 
study, as it would allow us to follow microbial and 
metabolomic changes in the gut at different stages, 
and we could gain a much clearer picture of how the 
disease starts and develops. Additionally, adding 
more GI disorder types can be incorporated in the 
future to develop a complete diagnostic model for 
different disorders with high specificity and sensitivity. 
This deeper understanding could help improve 
early detection and lead to more effective treatment 
strategies down the line.

Conclusion
Findings from our study suggest that differential 
microbes and metabolites associated with GC could also 
serve as potential biomarkers for predicting IBD. Inter-
estingly, when we examined the microbes and metabo-
lites linked to CRC, we found that they had a stronger 
predictive performance for GC than for IBD. These 
observations point to the possibility of overlapping dis-
ease pathways and biological mechanisms, supporting 
the idea that microbes and metabolites from one GID 
can be used to predict another. To further validate these 
findings, we cross referenced our identified microbes and 
metabolites with existing literature which reinforced the 
notion that certain biomarkers are shared across different 
GIDs. This opens up the possibility of developing diag-
nostic tools that could enhance our understanding and 
treatment of GIDs.
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