
Tuersong et al. 
Journal of Translational Medicine          (2025) 23:535  
https://doi.org/10.1186/s12967-025-06541-z

RESEARCH

Integrating plasma circulating 
protein‑centered multi‑omics to identify 
potential therapeutic targets for Parkinsonian 
cognitive disorders
Tayier Tuersong1, Yu Xuan Yong2, Yan Chen1, Pei Shan Li2, Samire Shataer2, Munire Shataer3, Liang Ying Ma1 and 
Xin Ling Yang2* 

Abstract 

Background  Parkinson’s disease (PD), the second most common neurodegenerative disease with notable clinical 
heterogeneity, has Parkinson disease dementia (PDD) that severely impacts patients’ quality of life. As no effective 
treatment exists, this study aimed to find potential drug targets for PD cognitive disorders.

Methods  Two-sample Mendelian randomization (MR) and transcriptome analysis were used to identify PD biomark-
ers. Protein-protein interaction (PPI), gene ontology (GO), and KEGG pathway analyses explored biological effects. 
A nomogram model was developed.

Results  76 Mendelian randomization genes (MRGs) from MR and 1771 differentially expressed genes (DEGs) 
from the transcriptome were obtained. Three significant shared DEGs (S-DEGs) were identified, with USP8 and STXBP6 
having strong diagnostic value for PDD. The nomogram model with these two genes showed enhanced predictive 
ability. These genes had physical interactions, co-localization, and correlated with ODC and NEU immune cells. USP8 
was linked to five diseases, and STXBP6 to one.

Conclusion  USP8, STXBP6, and immune cells (ODC and NEU) associated with PDD were identified, offering new 
insights into PD progression.

Keywords  Plasma circulating protein, Parkinson’s disease, Mendelian randomization, Transcriptome analysis, Immune 
cells, Parkinson’s disease dementia

Introduction
Parkinson’s disease (PD) is a neurodegenerative disorder 
characterized by motor symptoms such as tremors, 
rigidity, and bradykinesia [1]. However, the detrimental 
impact of non-motor symptoms, particularly cognitive 
impairment, on patients’quality of life has garnered 
increasing attention [2]. Epidemiological studies indicate 
that approximately 20–50% of PD patients exhibit 
mild cognitive impairment (MCI) in the early stages of 
the disease, and as it progresses, 20–40% will develop 
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parkinson’s disease dementia (PDD) [3–5]. PDD is marked 
by deficits in executive function, memory, and attention, 
significantly exacerbating functional dependence and 
caregiving burden. Currently, there are no effective 
therapies to reverse or delay its progression [6]. The 
classic pathological hallmark of PD is the degenerative 
loss of dopaminergic neurons in the midbrain substantia 
nigra, leading to reduced dopamine levels in the striatum 
and motor dysfunction [7]. However, the mechanism 
underlying cognitive impairment extends beyond a single 
neurotransmitter system disorder. Post-mortem studies 
have revealed widespread distribution of Lewy bodies 
(α-synuclein aggregates) in the brains of PDD patients, 
along with deterioration of the cholinergic system, 
activation of neuroinflammation, and impaired synaptic 
plasticity [8]. These multi-dimensional pathological 
changes suggest that cognitive impairment may result 
from multiple factors, including genetic susceptibility, 
protein homeostasis imbalance, immune disorders, and 
metabolic disturbances [9].

Despite rapid advancements in multi-omics 
techniques, existing studies have predominantly focused 
on single molecules or pathways, such as α-synuclein 
or mitochondrial dysfunction, failing to systematically 
integrate interactions at the multi-omics level [10]. 
Traditional studies often adopt"single omics"or"single 
marker"strategies, such as identifying risk genes through 
genome-wide association studies (GWAS) or screening 
differentially expressed proteins via proteomics [11, 
12]. The high heterogeneity of PD makes it difficult for 
a single data level to fully capture the disease’s nature. 
For instance, while GWAS-identified genetic risk loci 
are associated with PD onset, systematic evidence 
on their transcriptional regulation effects on protein 
function and subsequent cognitive decline is lacking [13]. 
Similarly, although proteomic studies have identified 
abnormal proteins in PD patient plasma or cerebrospinal 
fluid, the relationship between these proteins’dynamic 
changes and genetic background and immune status 
remains unclear [14]. Plasma proteins are considered 
ideal biomarker sources due to their non-invasive 
collection and dynamic reflection of physiological 
and pathological states. Studies show significant 
correlations between specific plasma protein levels and 
cognitive function scores in PD patients [15]. However, 
previous research has been limited to simple"protein-
phenotype"associations, neglecting deeper exploration 
of how plasma proteins interact with genetic variation 
and transcriptional regulatory networks to influence PD 
cognitive phenotype. Are these proteins directly involved 
in key pathological processes like neuroinflammation 
and synaptic remodeling, or are they merely secondary 

phenomena? How can we distinguish"driving"targets 
from"accompanying"markers through multi-omics 
integration?

Moreover, the role of immune dysregulation in PD 
cognitive impairment has been underestimated. Recent 
evidence indicates that peripheral immune cells can 
infiltrate the central nervous system via the blood-brain 
barrier, releasing pro-inflammatory factors that exacer-
bate neurodegeneration [16, 17]. Multi-omics analysis of 
plasma proteins as mediators of immune-neural inter-
action could reveal the molecular basis of this process, 
but relevant research is still nascent [18]. To address 
these scientific challenges, this study integrates multiple 
omics data centered on plasma circulating proteins to 
systematically analyze the molecular network of cogni-
tive impairment in PD. It aims to identify key interfaces 
between immune disorders and neurodegeneration and 
discover actionable therapeutic targets. Through Men-
delian Randomization (MR), a causal association net-
work of gene-transcript-protein was constructed, and cell 
type-specific regulation mechanisms were analyzed using 
single-cell transcriptome sequencing. The study explores 
how plasma protein-mediated peripheral immune disor-
ders drive PD cognitive decline via neuroinflammation 
and synaptic dysfunction, filling a critical gap in the field. 
RNA sequencing verified candidate target expression and 
distribution in PDD patient brain tissues, providing a 
foundation for developing blood biomarkers and immu-
nomodulatory therapies. In summary, this study places 
plasma circulating proteins at the center of the multi-
omics network of PD cognitive impairment, revealing 
their role as a"molecular bridge"connecting genetic risk, 
immune disorders, and neurodegeneration. By address-
ing the two major scientific challenges of"multi-omics 
fault"and"immune mechanism deficiency,"this study aims 
to pave a new path for precision medicine in PD cogni-
tive impairment.

Methods
Data sources
The single-cell dataset (E-MTAB-13437) included six 
adult bunched macaques, three of which exhibited sta-
ble PD-like symptoms, such as retardation, tetanus, and 
tremor, while the remaining three served as matched 
controls. Two datasets, GSE150696 and GSE20141, were 
downloaded from the GEO database (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/). GSE150696 was used as a validation 
set and consisted of whole blood samples from 12 PDD 
patients and 9 healthy controls. GSE20141, used as the 
training set, contained anterior cingulate cortex samples 
from 18 individuals, including 8 healthy controls and 10 
PDD samples.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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MR analysis utilized data from the GWAS database 
(https://​gwas.​mrcieu.​ac.​uk/), searching for outcome 
events and exposures using GWAS data. The 
IEUOpenGWAS database (https://​gwas.​mrcieu.​ac.​uk/) 
was accessed for whole blood or cerebrospinal fluid 
pQTL and genetic variation data related to PDD. The 
sample size consisted of 267 cases and 216,628 controls, 
with 1,6380,459 single nucleotide polymorphisms (SNPs), 
and the ethnic information was European.

Mendelian randomization (MR) analysis
The harmonise_data function of the R 
package’TwoSampleMR’was used to align effect alleles 
and effect sizes. The MR function combined five algo-
rithms (MR egger [19], weighted median [20], inverse 
variance weighted (IVW) [21], simple mode [22], and 
weighted mode [23]) to perform MR analysis.  In this 
study, we primarily employed the inverse variance 
weighting (IVW) method to assess the causal relationship 
between exposure factors and outcomes. A p-value < 0.05 
from the IVW method indicates a significant causal rela-
tionship between the two. The odds ratio (OR) was calcu-
lated, with values > 1 indicating a risk factor and values < 
1 indicating a protective factor. Furthermore, sensitivity 
analyses were conducted to ensure the reliability of the 
results. These mainly included heterogeneity test, hori-
zontal pleiotropy test, and leave-one-out analysis. The 
heterogeneity test was used to evaluate the degree of 
variation among different instrumental variables. If p > 
0.05, it indicated that there was no significant heteroge-
neity among the instrumental variables. The horizontal 
pleiotropy test was utilized to detect whether the instru-
mental variables had other effects besides influencing the 
exposure factors and the outcomes. If p > 0.05, it sug-
gested that there was no horizontal pleiotropy, meaning 
that the research results were not affected by confound-
ing factors. The leave-one-out analysis involved removing 
each instrumental variable one by one and observing the 
impact on the results. If the results did not change sig-
nificantly, it demonstrated that the analysis results were 
stable and reliable. Finally, we performed the MR-Steiger 
directionality test to determine whether the directional-
ity of each exposure factor was correct, that is, whether 
they were consistent with the expected direction of the 
causal relationship.

Functional enrichment analysis
To explore the biological functions and signaling 
pathways involved in differential genes, we used the 
R package’clusterProfiler’[24] for gene ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analysis. GO analysis, based on 

the GO database, includes three categories: BP, cellular 
components (CC), and molecular functions (MF). KEGG 
pathway analysis annotates the pathways of identified 
proteins or differentially expressed proteins and analyzes 
key metabolic and signal transduction pathways involved 
in these proteins or genes.

Analysis of differentially expressed genes (DEGs)
Differential expression analysis of PDD patients and 
healthy controls in the GSE20141 dataset was per-
formed using the R package’limma’[25] and visual-
ized with a volcano plot from the’ggplot2’[26] package. 
The threshold was set at |log2 FC| > 0.5, p < 0.05. 
The’VennDiagram’package in R was used to plot the 
intersection of transcriptome differential genes and 
Mendelian randomizetion differential genes, resulting in 
shared significant shared DEGs (S-DEGs).

Identification of key genes
To evaluate the performance of key genes in disease diag-
nosis, receiver-operating characteristic (ROC) curves 
were plotted for several genes in both the training data-
set (GSE20141) and the validation dataset (GSE150696). 
The classification ability of these genes was measured by 
the area under curve (AUC). Wilcoxon tests were used 
to analyze the expression levels of key genes with AUC > 
0.6 in both datasets. Key genes with significant differen-
tial expression and consistent trends across both datasets 
were selected as biomarkers (*p < 0.05, **p < 0.01, ***p < 
0.001).

The least absolute shrinkage and selection operator 
(LASSO) regression was performed using the’glmnet’[27] 
R package and 10-fold cross-validation was used to select 
candidate genes based on the optimal Log (Lambda) 
value. Next, an SVM-RFE model was constructed using 
the’e1071’R package to evaluate the importance of can-
didate genes and select the gene combination with the 
best performance based on error rate and accuracy. 
Venn diagram software was used to determine the final 
set of genes by intersecting the results from LASSO and 
SVM-RF.

Key gene correlation analysis
In the training set (GSE20141), Spearman correlation 
analysis was performed between the key genes and all 
genes using the’psych’R package. Genes were ranked by 
their correlation values. Gene Set Enrichment Analy-
sis (GSEA) pathway enrichment analysis was conducted 
using the’clusterProfiler’[24] R package, with the back-
ground gene set, to infer the signaling pathways poten-
tially involving the key genes.

To explore immune cell differences between PDD 
samples and control samples, the CIBERSORT tool 

https://gwas.mrcieu.ac.uk/
https://gwas.mrcieu.ac.uk/
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was used to estimate the proportion of immune cell 
types. Principal component analysis (PCA) clustering of 
immune cells was performed using the’ggplot2’package, 
and stacked histograms were plotted. Spearman 
correlation analysis was conducted to investigate 
immune cell interactions, and a correlation heatmap 
was generated with the’corrplot’package. Wilcoxon tests 
were used to analyze immune cell differences between 
the patient and control groups (p < 0.05), and violin plots 
were generated using the’ggplot2’package [26].

Nomogram prediction model and GeneMANIA network 
construction
To evaluate the predictive efficacy of biomarkers for PDD, 
a nomogram was constructed based on biomarkers in the 
training set by utilizing the’RMS’package. The receiver 
operating characteristic (ROC) curve of the nomogram 
was plotted using the’pROC’package, and the AUC was 
calculated to assess the performance of the nomogram in 
predicting PDD. An AUC greater than 0.7 indicated that 
the prediction was accurate. The calibration curve was 
calculated using the’regplot’R package to verify the accu-
racy of the model. The decision curve analysis (DCA) was 
calculated using the’ggDCA’R package. The GeneMANIA 
network was built using the website https://​genem​ania.​
org/ to explore relationships among key genes.

Quality control (QC) of scRNA‑seq data and cellular 
annotation
Before analyzing single-cell data, QC was performed. 
Gene expression in PDD patient tissue samples was 
explored at the single-cell level, and Seurat objects were 
created using the’Seurat’R package. QC criteria included 
300–10,000 gene counts per cell and <10% mitochondrial 
gene expression. The FindMarkers function in Seurat 
was used to identify significant DEGs between cell types, 
with thresholds set to |log2 FC| ≥ 0.5 and p < 0.05. The 
VennDiagram package in R was used to visualize the 
intersection of these DEGs.

Global scaling normalisation (LogNormalize) was 
used to normalise the gene expression of each cell 
by the total expression, scalling by a factor of 10000. 
The’FindVariableFeatures’[28] function was used to filter 
the data, identifying the top 2000 highly variable genes 
after QC. UMAP was integrated with the RunMap func-
tion to classify the cellular taxa based on a dimensional-
ity value of 40, with PCA plots generated for disease and 
control groups.The’FindAllMarkers’function was used to 
identify important marker genes in different clusters. The 
CellMarker website and the SingleR package were used to 
assist with cluster annotation.

Identification of key cells
Single-cell data analysis was performed to study the 
expression level and distribution of key genes across dif-
ferent cell types in PDD and control groups.

Cell–cell communication analysis and pseudo temporal 
analysis
Cell-cell communication analysis was performed using 
CellPhoneDB, which provides a database of ligands, 
receptors, and their interactions. Using CellChatDB.
human as a reference, cell–cell interactions were explored 
for annotated cells. The R package Monocle 2 was used 
for pseudotemporal analysis of different subtypes within 
key cell clusters.

Disease prediction
Key target genes were uploaded to the Metascape plat-
form (https://​metas​cape.​org/​gp/​index.​html#/​main/​
step1) to explore diseases associated with key genes. 
The DisGeNET database was used to analyze signifi-
cant disease association (p < 0.05), and the key gene-
disease co-expression networks were visualized using 
NetworkAnalyst.

Results
MR analysis
To evaluate the effect of plasma circulating proteins on 
PDD, MR was performed, yielding 76 genes with sig-
nificant causal associations with PD. A total of 56 were 
identified as safety factors and 20 as risk factors (Fig. 1A). 
Exposure factor-outcome correlation analysis identi-
fied ADAMTS5, ADH1 C, AGT, AKT2, ANXA6, ARF4, 
ARL1, C1QC, C5orf46, CACNA2D3, CADM2, CCL22, 
CHCHD10, COTL1, CRELD1, CSAG1, CTRC, CXCL12, 
DCUN1D5, DDAH1, etc. were safe factors (OR < 1), and 
AGT, CHL1, DDAH1, DHX8, were risk factors (OR > 1) 
(Fig. 1B). The estimated effects of the instrumental vari-
able on the outcome corroborated the results of these 
analyses (Fig.  1C). Additionally, the randomness test 
confirmed that MR conformed to the random grouping 
of Mendel’s second law (Fig. 1D). To further validate the 
MR analysis results, we performed sensitivity analyses, 
which included a heterogeneity test (Table  S1), hori-
zontal pleiotropy test (Table  S2), leave-one-out analysis 
(Fig.  1E) and steiger directionality analysis (Table  S3). 
These analyses confirmed that all 76 genes identified by 
MR were candidates with a significant causal relationship 
with PDD.

Functional enrichment analysis
To explore the biological functions and signaling path-
ways with the differential genes, we performed GO and 

https://genemania.org/
https://genemania.org/
https://metascape.org/gp/index.html#/main/step1
https://metascape.org/gp/index.html#/main/step1
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KEGG enrichment analyses. We identified 457 enriched 
GO biological functions, including 383 BP, 33 CC, and 
41 MF. Additionally, 27 KEGG signaling pathways were 
significantly enriched. For BP, the significantly enriched 
functions were related to tumor necrosis factor-related 
responses, the negative regulation of cell adhesion, and 
the positive regulation of glucose uptake, highlight-
ing the genes’roles in regulating metabolic responses 
and immune defense. In terms of CC, we observed sig-
nificant enrichment in structures such as extracellu-
lar matrix, blood particles, and cytosolic membranes, 
suggesting these genes’involvement in cellular struc-
ture and functional component organization. The MF 
enrichment analysis revealed that these genes contrib-
uted to MF such as G protein-coupled receptor binding 
and fibronectin binding, emphasizing their importance 
in signaling and metabolic regulation (Fig.  2A). GO 
classifications with darker colors and larger positions 
in the outer ring (e.g., endopeptidase activity, fibronec-
tin binding, etc.) indicated these functional terms were 
not only significantly enriched but may also represent 
key biological functions or molecular activities deserv-
ing further attention (Fig.  2B, S1 A). KEGG enrich-
ment analysis revealed significant pathways related 

to immune regulation and inflammatory responses, 
including cytokine-cytokine receptor interaction, 
MAPK signaling, TNF signaling, and chemokine sign-
aling. These findings suggest that the candidate genes 
may play pivotal roles in diseases such as PD, inflam-
mation, atherosclerosis, and diabetic complications.

Screening DEGs
Differential analysis revealed a total of 849 up-regulated 
and 852 down-regulated genes (Fig. 3A), with DEGs visu-
alized in a heatmap (Fig. S1B). To identify genes that were 
differentially expressed in both the transcriptome dataset 
and MR analysis, we performed an intersection of tran-
scriptome differential genes and MR differential genes, 
which identified three shared genes: USP8, STXBP6, and 
CTRC (Fig. 3B).

Identification of key gene
After identifying candidate genes, we evaluated the AUC 
values to measure their diagnostic capability in both 
training and validation datasets. In the GSE20141 train-
ing dataset, the AUC values for USP8 and STXBP6 were 
0.92 and 0.79, respectively. In the GSE150696 validation 
dataset, the AUC values were 0.81 for USP8 and 0.62 for 

Fig. 1.  Statistical analysis of exposure effects using Mendelian randomization methods. A MR analysis results for different exposure variables, 
including gene loci, analysis methods, P-values, and odds ratios (only the first 20 were shown). B Shows the effect estimates of SNPs on outcome 
variables under various MR test methods. C Presents MR results of the associations between multiple SNP loci and diseases (such as Parkinsonism). 
D Compares the effect estimates of different MR methods. E The result of MR leave-one- out sensitivity analysis for the association between genes 
and outcome variables. Overall, through various graphical forms, it presents the results and method evaluations of MR analysis in gene–disease 
association research from different perspectives
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STXBP6. These results indicated that both USP8 and 
STXBP6 have good diagnostic potential in both datasets 

(Fig.  4A–C). Subsequently, we performed expression 
validation (Fig. S2), LASSO regression analysis and 

Fig. 2.  Functional enrichment analysis. A Gene Ontology (GO) enrichment analysis results. The bar length and color represent the count 
of enriched genes and the p-value, respectively. Shorter bars and more intense red colors indicate higher significance of enrichment for terms 
like"cellular response to tumor necrosis factor"and"collagen-containing extracellular matrix". B Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis results. Each dot represents a pathway, with the x-axis showing the GeneRatio, the y-axis listing pathway names 
such as"Cytokine - cytokine receptor interaction"and"MAPK signaling pathway". The dot color indicates the p-value and the size reflects the count 
of enriched genes

Fig. 3.  Screening of differentially expressed genes. A Volcano plot depicting gene expression changes. The x-axis represents the log2 fold-change 
(log2 FC), indicating the magnitude of gene expression alteration, and the y-axis shows the-log10 of the p-value, reflecting the statistical 
significance. Blue dots denote down-regulated genes, gray dots represent unchanged genes, and red dots indicate up- regulated genes. Some 
genes are labeled for identification. B Venn diagram illustrating the overlap between differentially expressed genes (DEG) and genes related 
to Mendelian randomization (MR)
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SVM-RFE (Fig. 4D, E, S3). The results showed that USP8 
and STXBP6 genes exhibited consistent expression pat-
terns across both datasets and displayed high stability 
and importance in both algorithms, supporting their 
potential as biomarkers.

Key gene correlation analysis
GSEA revealed that STXBP6 was enriched into the 
KEGG Medicus reference pathway related to electron 
transport complex I (Fig. S4). This pathway was influ-
enced by mutations in SNCA, TDP43, and PINK1, which 
have all been implicated in PD.The immune profile of 
PDD patients exhibited unique patterns of immune cell 
composition, with notable changes in the proportion of 
specific cell types, such as NK cells, monocytes and mac-
rophages M1, which may have critical pathological sig-
nificance in PDD (Fig. 5, S5).

Nomogram prediction model and GENEMANIA network 
construction
The nomogram model based on USP8 and STXBP6 bio-
markers demonstrated good predictive ability and clinical 
relevance for PDD risk prediction (Fig. 6A–D). The ROC 
model indicated that when the AUC of the nomogram is 
0.925, the model has good accuracy (Fig. 6E). Addition-
ally, the GENEMANIA network map showed that USP8 
and STXBP6 genes have strong physical interactions 
and colocalization, suggesting they may be involved in a 
shared molecular complex or cellular process (Fig. 6F).

QC of scRNA‑seq data and Cell annotation
In the single-cell transcriptomic analysis of PDD-asso-
ciated data, we first performed rigorous data QC. This 
resulted in 31,784 genes and 18,340 cells being retained 
for further analysis (Fig. S6 A, B). After QC, the top 
2000 highly variable genes were identified (Fig.  7A), 
including PDE1 C, TRPC3, CPNE4, etc. Linear dimen-
sionality reduction was applied, identifying an optimal 

Fig. 4.  Gene-based diagnostic ROC curves and machine learning. A–C Receiver Operating Characteristic (ROC) curves for genes USP8, STXBP6, 
and CTRC respectively. Each plot compares two datasets (GSE20141 in red and GSE15096 in blue). The x-axis represents specificity, the y-axis 
represents sensitivity, and the area under the curve (AUC) values are indicated in the legend, showing the diagnostic performance of the genes 
in differentiating conditions. D Plot of mean - squared error vs. Log(λ) for selecting optimal λ in Lasso regression - based model; error bars show 
variability. E Plot of model coefficients vs. Log(λ) in Lasso regression analysis to visualize coefficient changes with regularization; two curves may 
represent different scenarios/variables
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dimensionality value of 40 for cell clustering, with UMAP 
and PCA maps generated to classify cell clusters, pro-
viding insights into disease and control group cell types 

(Fig.  7B–E). We annotated six distinct cell types: ODC, 
MIG, UN, OPC, NEU, and AST (Fig. 7F, G).

Fig. 5.  Immune infiltration analysis. Stacked bar chart vividly illustrates the relative percentage distribution of diverse immune cell types 
in the"Control"and"PDD"groups. Immune cell categories span from B cells (naive and memory) and T cells (including CD8, CD4 subsets, etc.) to NK 
cells, monocytes, macrophages (M0–M2), dendritic cells, mast cells, eosinophils, and neutrophils. It enables straightforward visual assessment 
of immune cell composition differences between the two groups, hinting at potential immunological shifts related to PDD

Fig. 6.  Analysis of key gene correlation. A Presents a visual tool for estimating AM risk by assigning points to biomarkers like USP8 and STXBP6. B 
Compares predicted and actual probabilities of AM occurrence. The dotted line is the ideal, while solid lines show apparent and bias - corrected 
predictions from 1000 repetitions. C Evaluates net benefit of different clinical strategies. Compares models (genes and nomogram) against treating 
all or none, helping set optimal risk thresholds. D Shows how cost-benefit ratios affect the number of high-risk cases out of 1000, highlighting 
practical clinical implications. E Assesses the nomogram’s diagnostic performance for AM. With an AUC of 0.925 (95% CI 0.774–1), it plots sensitivity 
vs. specificity. F Displays interactions between key genes and related ones, revealing biological pathways and gene relationships linked to AM
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Identification of key cells
By analyzing single-cell data from the PDD and control 
group (Fig.  8A, B), we investigated the expression level 
and distribution of USP8 and STXBP6 across different 
cell types. Notably, both genes showed high expression in 
specific cell types, particularly AST cells, with significant 
expression also observed in NEU cells. This suggests that 
AST and NEU cells may play a crucial role in the patho-
genesis of PDD.

Cell‑cell communication analysis
To investigate cell–cell interactions in the annotated sin-
gle-cell dataset, we performed cell communication analy-
sis (Fig. 8C, D, S7). The results indicated that ODC cells 
were central in the network, exhibiting the highest num-
ber and intensity of interactions, particularly with NEU 
and AST cells. This suggests that ODC cells play a key 
role in maintaining homeostasis, myelination, and neural 
network function. NEU cells, as the primary functional 
cells, had strong interactions with AST and ODC, further 
supporting their role in signaling and functional regula-
tion of the nervous system.

Pseudotime analysis of the key cells
Pseudotime trajectory analysis of the key cell clusters 
ODC (Fig. S8) and NEU (Fig. S9) revealed distinct 
developmental trajectories between the PDD and 
control groups. Although there was a similarity in 
the pseudotemporal distribution between the two, 
the density or aggregation of the cell clusters differed 
in different states. The PDD group showed more 
aggregation of cells along a certain branch, which may 
imply that in the disease state, the cells were more 
inclined to move towards a particular developmental 
or differentiation direction, suggesting that the disease 
state may have affected the normal developmental 
path of the cells. Pseudotime analysis allowed us to see 
the differentiation trajectory of NEU cells in different 
states. Cells under control and PDD conditions showed 
certain differences in development, especially in specific 
states and branches, there may be more cell aggregation, 
suggesting that the disease state may affect the normal 
differentiation process of cells. The expression of 
STXBP6 and USP8 genes fluctuated significantly during 
the pseudotime course, so it played an important role in 
the development of cells.

Fig. 7.  Multifaceted gene expression profiling: scatter, PCA, UMAP, and dot plot insights. A Scatter plot of average gene expression vs. standardized 
variance. Red dots: 2000 variable genes; black dots: 29,784 non-variable genes. Labeled genes like PDE1 C show notable variance - expression links. 
B, C In label (B), PCA plots (PC_1-PC_4) show gene-level data on principal axes, visualizing gene variance in reduced space. Label (C)’s line plot 
of standard deviation along PCs determines variance each PC captures, with the curve decreasing as variance explained decreases. D, E Label (D)’s 
UMAP plot has colored, clustered points, likely different cell types/samples with numbered group identities. Label (E)’s UMAP plot compares"Contro
l"and"PDD"groups, using color to clearly show differences in gene expression patterns between them. E Dot plot shows gene “Identity” by average 
expression (color) and expression percentage (dot size). G UMAP plot colors points by cell types (e.g., ODC, MG), visualizing cell type distribution 
by gene expression
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Disease prediction
Visualization of the key target gene-disease co-expression 
network on the NetworkAnalyst platform revealed six 
diseases associated with the key genes (Fig. S10). USP8 
may be closely associated with a variety of diseases, 
including pituitary adrenocorticotropic hormone-
secreting adenomas, pituitary-dependent Cushing’s 
disease, esophageal squamous cell carcinoma, hereditary 
spastic paraplegia, and autosomal recessive spastic 
paraplegia type 59. In addition, USP8 was involved in 
the ubiquitin-proteasome degradation pathway, which 
was important for the degradation of key proteins 
in neurodegenerative disorders such as PD. STXBP6 
(associated with childhood autism) may modulate 
synaptic function, and synaptic dysfunction plays an 
important role in neurodegenerative processes in PD.

Discussion
This multi-omics study integrates MR, transcriptomics, 
immune infiltration analysis, and single-cell profiling to 
elucidate the molecular mechanisms underlying PDD. 
Our results pinpoint key causal genes, reveal immune-
metabolic interactions, and delineate cellular dysfunction 
at single-cell resolution, thereby providing new insights 
into PDD pathogenesis and potential therapeutic 
avenues. In the following section, we situate these 
findings within the broader context of neurodegenerative 
disease research, emphasizing consistencies, 
discrepancies, and conceptual progress.The MR analysis 
identified 76 plasma proteins with causal links to PDD, 
including protective (ADAMTS5, ADH1 C) and risk 
(AGT, CHL1) factors. These genes converge on pathways 
critical to neurodegeneration, such as extracellular matrix 

Fig. 8.  Gene Expression Profiles of USP8 & STXBP6 and Cellular Communication Dynamics Depicted in Interaction Maps. A UMAP plots for USP8 
and STXBP6 genes. They display gene expression across cell identities, with colored clusters for different cell types, pinpointing where these genes 
are expressed. B Violin plots of USP8 and STXBP6 expression across cell identities like ODC and MIG. Width shows data density at different levels, 
comparing expression distributions. C, D Cellular communication interactions maps. Label (C) shows the number of interactions among cell 
identities, with nodes as cell identities and connecting lines indicating interactions, where line-related features suggest frequency or strength. Label 
(D) focuses on the interaction weight/strength among these cell identities, providing a detailed look at connection strengths to aid understanding 
of cell–cell communication relationships
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remodeling, retinoid signaling, and synaptic plasticity. 
For instance, ADAMTS5, a metalloprotease previously 
linked to osteoarthritis, emerged as a neuroprotective 
factor. Its role in cleaving versican, a pro-inflammatory 
proteoglycan, may mitigate neuroinflammation by 
reducing inflammatory substrate accumulation in the 
brain parenchyma [29]. This aligns with recent proteomic 
studies implicating matrix metalloproteases in PD 
progression but expands their relevance to cognitive 
decline [30]. Similarly, ADH1 C’s involvement in retinol 
metabolism underscores the underappreciated role of 
retinoid signaling in dopaminergic neuron survival—a 
pathway corroborated by preclinical models showing 
retinoic acid deficiency exacerbates hippocampal atrophy 
[31].

The risk gene AGT, a key component of the renin-
angiotensin system (RAS), highlights the intersection of 
systemic hypertension and neurodegeneration. Elevated 
AGT may exacerbate blood-brain barrier (BBB) dysfunc-
tion, facilitating neurovascular injury via angiotensin II-
driven microglial activation [32]. This mirrors findings 
in Alzheimer’s disease, where RAS hyperactivity ampli-
fies amyloid-β toxicity, suggesting shared mechanisms 
across dementias [33]. However, our reliance on Euro-
pean GWAS data limits generalizability, as PD-associated 
loci like GBA exhibit ancestry-specific frequencies [29]. 
Future studies must prioritize diverse cohorts to dis-
entangle genetic and environmental interactions, par-
ticularly for ADH1 C, where alcohol consumption may 
modulate its activity in PDD progression.In a compara-
ble study, a multi-omics investigation utilizing metabo-
lomics and metagenomics techniques in a cynomolgus 
monkey model revealed an association between gut 
microbial metabolites, such as PDPC, and a Parkinson’s 
disease-associated gene (SLC5 A3). However, this study 
did not conduct an in-depth analysis of immune cell 
phenotypes, thereby limiting the exploration of underly-
ing immune mechanisms [34, 35]. Although the meta-
analysis of genetic variation integrated multi-lineage 
GWAS data and identified 78 risk loci, the absence of 
functional omics validation, such as proteomics, limits 
the in-depth analysis of the specific functions and mech-
anisms of these genetic variants in disease pathogenesis 
[29]. A comprehensive comparison reveals that this study 
employs a more systematic and innovative methodo-
logical approach, particularly in examining the linkage 
between peripheral immunity and central nervous sys-
tem pathology.

The intersection of MR-derived genes and 
transcriptomic differentially expressed genes (DEGs) 
pinpointed USP8 and STXBP6 as central to PDD 
pathogenesis. Both genes demonstrated robust 
diagnostic utility, outperforming existing biomarkers 

[36]. USP8, a deubiquitinase regulating endosomal 
sorting (ESCRT), is critical for α-synuclein clearance. 
Its downregulation in PDD likely destabilizes lysosomal 
membranes, impairing proteostasis and exacerbating 
Lewy body pathology—a mechanism supported by 
studies linking USP8 mutations to pituitary adenomas 
via secretory vesicle dysregulation [37]. Conversely, 
STXBP6, a syntaxin-binding protein, governs synaptic 
vesicle docking and mitochondrial electron transport. 
STXBP6 knockdown in iPSC-derived dopaminergic 
neurons recapitulates PD-associated metabolic stress, 
reducing mitochondrial membrane potential and 
elevating ROS [38]. This dual role in neurotransmission 
and bioenergetics positions STXBP6 at the nexus of 
synaptic and mitochondrial dysfunction, a hallmark of 
PD progression.These findings extend prior work on 
ubiquitin-proteasome and SNARE complex dysfunction 
in neurodegeneration. For example, USP8’s interaction 
with ESCRT-III parallels Parkin-mediated mitophagy in 
PD, while STXBP6’s homology to Munc18-1, a protein 
mutated in early-onset PD, suggests evolutionary 
conservation of synaptic maintenance mechanisms 
[39]. The diagnostic superiority of combining USP8 and 
STXBP6 further underscores the value of multi-omics 
integration in resolving heterogeneous pathologies 
like PDD.In this study, both USP8 and STXBP6 have 
strong diagnostic potential for distinguishing PDD 
patients from healthy controls, making them promising 
biomarkers for early diagnosis or disease assessment.

Functional enrichment analyses revealed immune-
inflammatory (TNF/NF-κB, cytokine-cytokine recep-
tor) and metabolic (oxidative phosphorylation) pathways 
as central to PDD. Elevated TNF-α and IL-6 levels cor-
relate with microglial activation and BBB breakdown, 
facilitating monocyte infiltration and perpetuating neu-
roinflammation [40]. Monocyte-derived macrophages 
adopting an M1 phenotype release IL-1β, which activates 
astrocytes to produce complement proteins (e.g., C3), 
driving excessive synaptic pruning [41]. This aligns with 
proteomic studies identifying plasma proteins like AGT 
as molecular bridges between peripheral immunity and 
central neurodegeneration [18]. Mitochondrial dysfunc-
tion emerged as another pillar of PDD pathogenesis. 
STXBP6’s association with Complex I deficiency mirrors 
PINK1-linked mitophagy defects, suggesting convergent 
pathways in sporadic and familial PD [42]. Dysfunctional 
mitochondria accumulate in PD neurons, generating 
ROS that oxidize dopamine to toxic quinones—a process 
amplified by STXBP6 downregulation. These results rein-
force the “multiple-hit” hypothesis of PD, where genetic, 
environmental, and metabolic insults synergize to trigger 
neurodegeneration.Immunoinfiltration analysis revealed 
significant differences in immune cell populations 
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between PDD patients and control samples. PCA demon-
strated distinct distributions and correlations of immune 
cells within these groups. For instance, macrophage and 
dendritic cell activity may be altered in PDD patients, 
with aberrant macrophage activation exacerbating neu-
roinflammation [43]. Similarly, dysfunctional dendritic 
cells may impair immune regulation and destabilize the 
neuronal microenvironment, contributing to PDD pro-
gression [44]. These findings highlight the importance of 
immunological abnormalities in PDD pathogenesis and 
provide a foundation for developing immunomodulatory 
treatments [45].

Single-cell clustering implicated oligodendrocytes 
(ODCs) and neutrophils (NEUs) in PDD pathophysiology. 
ODC maturation arrest correlates with hypomyelination 
and axonal degeneration, a phenomenon observed in 
postmortem PD brains [46]. Conversely, NEUs exhibit 
accelerated maturation and oxidative burst activity, 
driven by STXBP6-mediated metabolic reprogramming. 
These cells secrete myeloperoxidase (MPO), generating 
hypochlorous acid that exacerbates neuronal loss—a 
mechanism previously unrecognized in PD.Cell-cell 
communication analysis highlighted disrupted ODC-
NEU interactions via semaphorin-plexin signaling. 
Semaphorin 3 A, released by stressed ODCs, binds 
neuronal plexin A4, inducing axonal retraction [47]. This 
pathway, critical during development, may be co-opted 
in PDD to drive circuitopathy. Notably, the expression 
patterns of astrocytic USP8 and neuronal STXBP6 
indicate cell-type-specific functions. Specifically, 
USP8 regulates NF-κB-dependent cytokine release 
in astrocytes, whereas STXBP6 precisely modulates 
synaptic vesicle recycling in neurons.Cell communication 
analyses showed that receptor-ligand interactions 
between different cell types may be altered in PDD. 
Abnormal communication between ODC cells and other 
cells may disrupt myelination processes, affecting the 
speed and accuracy of nerve signal transmission [48]. 
Pseudotemporal trajectory analysis revealed differential 
aggregation patterns of key ODC and NEU cells between 
PDD and control groups. The expression of STXBP6 
and USP8 fluctuated during the pseudotime course, 
suggesting their involvement in the developmental 
trajectories of these cells and their contribution to 
PDD pathogenesis. Finally, disease-gene co-expression 
network analysis identified six diseases significantly 
associated with USP8 and STXBP6. USP8 is linked to 
a variety of diseases, including pituitary adenomas, 
Cushing’s disease, and esophageal squamous cell 
carcinoma. STXBP6 is associated with childhood autism, 
and its role in synaptic dysfunction may contribute to 
neurodegeneration in PD. These findings suggest that 
these genes may play indirect roles in PD pathology, 

highlighting the need for further research to validate 
these associations and explore potential therapeutic 
targets.

Despite the comprehensive exploration of molecu-
lar mechanisms underlying PDD through an integrated 
multi-omics approach, and the identification of poten-
tial biomarkers and therapeutic targets, several limi-
tations persist. Firstly, the single-cell transcriptome 
analysis, conducted on a limited sample size of six adult 
macaques (three with PD-like symptoms and three con-
trols), may not fully capture the cellular heterogeneity 
observed in human PDD patients. Secondly, differences 
in neurodegenerative disease pathologies between the 
macaque model and humans could limit the direct trans-
lational value of the findings. Thirdly, MR analyses pri-
marily utilized genetic data from European populations 
(GWAS database), which may affect the generalizability 
of results due to genetic background variations across 
races. Although key genes (e.g., USP8, STXBP6) and their 
associations with PDD were identified via MR and tran-
scriptome analysis, the specific functional mechanisms 
of these proteins have not been validated through in vitro 
or in vivo experiments. Sensitivity analysis confirmed the 
robustness of the results; however, undetected confound-
ing factors may still exist. Immunoinfiltration analysis 
revealed changes in the proportions of specific immune 
cells (e.g., NK cells, monocytes) in PDD patients but did 
not further investigate the activation status or functional 
phenotypes of these cells. Diagnostic models, such as 
nomograms based on USP8 and STXBP6, were evalu-
ated only within the training set (GSE20141) and valida-
tion set (GSE150696). The limited sample size and lack of 
independent external cohorts might lead to an overesti-
mation of the clinical efficacy of these models. Addition-
ally, the study predominantly relied on transcriptome and 
genetic data without directly measuring the expression 
levels of candidate proteins (such as USP8 and STXBP6) 
in plasma or brain tissue of PDD patients, thus failing to 
confirm the consistency between transcription and pro-
tein expression. Lastly, given the high heterogeneity in 
clinical manifestations and pathological progression of 
PDD, the study did not stratify different subtypes (e.g., 
rapid vs. slow progression) based on molecular charac-
teristics.Future work will involve the utilization of human 
iPSC-derived neurons and brain tissue to validate the 
underlying mechanism. Additionally, extended single-
cell analysis will be conducted within the human PDD 
cohort. Multi-lineage GWAS integration will be per-
formed to enhance universality. The functional impact of 
the protein will be confirmed through rigorous experi-
mental validation. Furthermore, flow or spatial transcrip-
tome analysis will be employed to investigate immune 
activation. External validation of the diagnostic model 
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will also be carried out. Finally, precision therapy will be 
guided by molecular typing.

Conclusion
This study identifies USP8 and STXBP6 as multi-omics 
hubs driving PDD through proteostasis, synaptic integ-
rity, and mitochondrial dysfunction. Their diagnostic 
potential is validated by machine learning models, and 
their cross-disease links (e.g., autism, pituitary adeno-
mas) reveal shared molecular pathways. Single-cell 
analyses highlight oligodendrocytes and neurons as key 
players, with disrupted ODC–NEU interactions exacer-
bating cognitive decline. By integrating genetic, immune, 
and cellular insights, this work provides a roadmap for 
targeted therapies, advancing PDD research toward 
mechanism-based interventions and personalized treat-
ment strategies.
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