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Abstract 

Pseudopodia and invadopodia are dynamic, actin-rich membrane structures extending from the cell surface. While 
pseudopodia are found in various cell types, invadopodia are exclusive to tumor cells and play a key role in can-
cer progression. These specialized structures enable tumor cells to degrade the extracellular matrix, breach tissue 
barriers, and invade surrounding tissues and blood vessels, thus facilitating metastasis. Extensive research has elu-
cidated the distinct structure of invadopodia, the signaling pathways driving their formation, and their interaction 
with the tumor microenvironment. Integrin- and Src kinase-mediated signaling pathways regulate invadopodia 
dynamics. This review explores the mechanisms underlying invadopodia stabilization and highlights recent insights 
into their regulation by the tumor microenvironment. Particular emphasis is placed on the role of cell surface signal-
ing in modulating invadopodia activity and the intracellular targeting of matrix metalloproteinases (MMPs) in enhanc-
ing invasive potential. A deeper understanding of invadopodia-driven cancer cell migration and metastasis provides 
valuable implications for therapeutic development. These findings support the potential for receptor-mediated 
and molecularly targeted therapies to inhibit tumor metastasis, improve clinical outcomes, and enhance the efficacy 
of existing cancer treatments.
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Introduction
The invasion-metastasis cascade refers to the process 
by which cancer cells migrate from the primary tumor 
to distant sites of metastasis. This sequence includes 
local invasion, intravasation into the circulatory system, 
survival in circulation, extravasation into peripheral 
tissues, and colonization of the metastatic site [1–3] 

(Fig. 1). Basement membrane disruption precedes met-
astatic events, while its complete loss marks the onset 
of primary tumor dissemination. Once this occurs, the 
tumor mass is classified as malignant [4]. Malignant 
tumors increase their invasive capacity by forming inv-
adopodia, which degrade barrier tissues and facilitate 
invasion into the surrounding environment. Invadopo-
dia are actin-rich membrane protrusions localized on 
the surface of tumor cells. During tumorigenesis and 
progression, cancer cells use invadopodia to degrade 
the extracellular matrix (ECM) in a spatially regulated 
manner, particularly at the invasive front [5]. The most 
significant effector molecules enabling ECM degrada-
tion by invadopodia are the matrix metalloproteinases 
(MMPs), with membrane type-1 MMP (MT1-MMP) 
playing a predominant role in basement membrane 
disintegration. MT1-MMP is directly anchored to the 
membrane surface of invadopodia in cancer cells, cleav-
ing and degrading ECM components. Together, these 
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mechanisms facilitate both local invasion and distant 
metastasis of cancer cells [6]. Investigating the molecu-
lar mechanisms underlying invadopodia formation and 
the intracellular trafficking of MMPs may provide effec-
tive strategies for inhibiting metastasis. Potential ther-
apeutic approaches include inhibiting MMP activity, 
interfering with cell surface signal transduction path-
ways, and targeting actin cytoskeletal reorganization 
[7]. These approaches aim to reduce the invasiveness 
of cancer cells, limiting their spread and metastatic 
potential. By precisely modulating these pathways, it 
may be possible to reduce cancer cell invasiveness while 
minimizing effects on normal cells [8, 9]. This article 
explores the regulatory mechanisms governing invado-
podia formation and function to advance strategies for 
limiting cancer metastasis.

Characteristics of invadopodia in cancer
Tarone and Marchisio, in 1985, identified ventral mem-
brane protrusions enriched in actin and phosphotyros-
ine as key structures mediating cell attachment to the 
ECM. These structures became known as podosomes 
[5, 10]. In the same year, Chen, Parsons, and their col-
leagues demonstrated that Src kinase localized to 
sites of cell-ECM interaction and proposed that ECM 
degradation occurred specifically at these sites [11]. 
Building on this, Chen, in 1989, established that Src-
enriched ECM degradation sites corresponded to actin-
rich protrusions, initially referred to as podosomes 
but subsequently renamed invadopodia [12]. By 1994, 
invadopodia-associated proteolytic activity in human 
cancer cells was characterized for the first time, linking 
these structures directly to tumor invasion and ECM 
remodeling [13]. This section examines the key fea-
tures of podosomes and invadopodia, focusing on their 

Fig. 1 The cascade of tumor metastasis. (1) Epithelial-mesenchymal transition (EMT): Tumor cells undergo phenotypic changes, allowing 
detachment from the primary tumor and acquiring migratory and invasive properties. (2) Intravasation: Tumor cells infiltrate surrounding tissues 
and enter the bloodstream or lymphatic vessels, facilitated by extracellular matrix (ECM) degradation and interactions with endothelial cells. (3) 
Circulation: Tumor cells, referred to as circulating tumor cells (CTCs), traverse the vascular system to reach distant sites. (4) Extravasation: CTCs exit 
the bloodstream and invade distant tissues by adhering to and penetrating the endothelial barrier. (5) Colonization: Tumor cells adapt to the new 
microenvironment, interact with stromal components, and establish secondary metastatic lesions
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similarities and differences in morphology, composi-
tion, structure, turnover, and function. Table 1 summa-
rizes the distinct characteristics of these structures.

Podosomes and invadopodia are specialized cytoskel-
etal structures on the cell surface that regulate cell 
migration, adhesion, and invasion. Podosomes are pri-
marily found in normal, metabolically active cells, 
including dendritic cells, macrophages, monocytes, and 
osteoclasts. They also form in endothelial cells, smooth 
muscle cells, and transformed fibroblasts [14]. These 
structures are small, measuring 0.5–1 μm in diam-
eter and 0.5–0.8 μm in height [15], and are short-lived, 
typically persisting for only a few minutes. Structurally, 
podosomes contain a branched actin core enriched with 
proteins essential for actin polymerization, surrounded 
by a peripheral zone containing β2 and β3 integrin recep-
tors along with associated proteins such as vinculin, talin, 
and paxillin [16]. Functionally, podosomes primarily con-
tribute to processes including cell migration and leuko-
cyte extravasation.

Invadopodia are primarily found in cancer cells, includ-
ing those derived from head and neck cancer, melanoma, 
bladder cancer, breast cancer, and prostate cancer [17]. 
Compared to podosomes, invadopodia are larger, with 
diameters reaching 3  μm and heights up to 5  μm [18]. 
Although fewer in number, invadopodia persist signifi-
cantly longer, often exceeding an hour [19].

Structurally, invadopodia are outward projections 
of the cell membrane enriched with filamentous actin 
(F-actin), actin-associated proteins such as cortactin and 
N-WASP, adhesion molecules, signaling proteins, mem-
brane remodeling factors, and matrix-degrading enzymes 
[5]. The primary function of invadopodia is to facili-
tate tumor cell invasion by degrading the ECM, allow-
ing entry into blood vessels, and promoting metastasis. 
These structures typically form on the side of the cell 
adjacent to the basement membrane, where they localize 
and secrete MMPs, including MT1-MMP, MMP2, and 
MMP9, at the tips of the protrusions to promote ECM 
degradation [20].

A key distinction between podosomes and invadopodia 
is their ability to degrade ECM components. Podosomes, 
which exhibit a high turnover rate and are present in large 
numbers per cell, typically mediate widespread but shal-
low ECM degradation. Invadopodia are fewer in num-
ber, longer-lived, and facilitate localized, deeper ECM 
degradation [5]. Cortactin, an actin-binding protein, is 
closely associated with invadopodia formation, primar-
ily through its interactions with other proteins. Overex-
pression of cortactin is frequently observed in various 
invasive cancers, making it a widely used marker for inva-
dopodia [21]. Moreover, vinculin has been suggested as 
a marker for podosomes [22], while Nck adaptor protein 

1 (NCK1) has been identified as specific to invadopodia 
[23].

The temporal stages of the formation 
of the invadopodia
High-resolution live-cell microscopy studies have catego-
rized invadopodia formation into three distinct phases: 
precursor core assembly, stabilization, and maturation 
[24]. The initiation phase primarily depends on the actin-
cortactin complex, which rapidly recruits neural Wiskott-
Aldrich syndrome protein (N-WASP), actin-related 
protein 2/3 (Arp2/3) complex, and cofilin within sec-
onds [16]. At this stage, the invadopodia precursor core 
remains highly unstable. Approximately 20 s later, the 
adapter protein tyrosine kinase substrate with five SH3 
domains (TKS5) is recruited, anchoring the precursor 
core to phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) 
via its Phox homology (PX) domain [25]. This step is crit-
ical for stabilization. PI(3,4)P2 formation at the plasma 
membrane occurs progressively and requires activation 
of phosphatidylinositol 3-kinase (PI3 K), which catalyzes 
the conversion of phosphatidylinositol 4,5-bisphosphate 
(PI(4,5)P2) into phosphatidylinositol 3,4,5-trisphosphate 
(PI(3,4,5)P3). The 5′-phosphatase SH2-containing inosi-
tol 5′-phosphatase 2 (SHIP2) then converts PI(3,4,5)P3 
into PI(3,4)P2 [26]. Approximately 2–3 min after precur-
sor assembly begins, TKS5 binds PI(3,4)P2, securing the 
structure to the membrane [27]. Invadopodia stabiliza-
tion occurs through ECM adhesion mediated by β1 inte-
grin. During this process, the actin regulatory proteins 
Mena and Arg kinase are recruited via integrin α5 and 
integrin β1, respectively [28]. Activation of Arg kinase 
by β1 integrin signals the transition of invadopodia into 
the maturation stage. At this stage, Arg kinase phospho-
rylates cortactin at the Y421 site, recruits NCK1, and 
activates the N-WASp-Arp2/3 complex through NCK1 
and CDC42 [28, 29]. This complex drives further polym-
erization and nucleation of F-actin, facilitated by cofilin 
proteins [24, 30]. This process continues for several min-
utes, leading to the protrusion and full maturation of the 
invadopodia. Following maturation, the polymerization 
of actin in the core region supports the gradual extension 
of the pseudopod to form a protrusion. Simultaneously, 
MMPs are recruited to the invadopodia, enabling ECM 
degradation [31].

The stability of invadopodia is critical
The process of stabilizing invadopodia can be compared 
to docking a cargo ship. It involves securing the cargo 
ship, represented by the actin-cortactin complex, firmly 
to the shore, symbolized by the plasma membrane PI(3,4)
P2, using a prepared anchor, TKS5. The key components 
involved in stabilizing invadopodia are depicted in Fig. 2.
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Phosphoinositides support invadopodia formation
Phosphoinositides are lipid components of cell mem-
branes, mainly localized to the inner leaflet of the plasma 
membrane and intracellular organelles. They play essen-
tial roles in actin cytoskeleton remodeling [32] and 
function as key regulators of intracellular signaling and 
membrane trafficking [33]. Phosphoinositides are dynam-
ically regulated by kinases and phosphatases, generating 
seven distinct species that localize to specific subcellular 
regions. Among these, phosphatidylinositol derivatives, 
particularly PI(3,4)P2, PI(4,5)P2, and PI(3,4,5)P3, are cru-
cial for invadopodia formation [26].

During the early stages of invadopodia formation, 
localized conversion of PI(3,4,5)P3 to PI(3,4)P2 gener-
ates binding sites for TKS5 scaffolding proteins [27]. This 
interaction facilitates actin filament nucleation, which 
is essential for maintaining membrane protrusions and 
directing the delivery of metalloprotease MT1-MMP to 
invadopodia [34]. Moreover, the localized production 
of PI(4,5)P2, mediated by phosphatidylinositol-4-phos-
phate 5-kinase type I alpha (PIP5 K1α) upon activation 
by ADP-ribosylation factor 6 (ARF6) recruits key inva-
dopodia components, including N-WASP, cofilin, and 
dynamin-2. ARF6, localized at the plasma membrane, 

further regulates endosomal positioning and tubulation 
through activation of the βPIX-Rac3-GIT1 signaling axis, 
ensuring the efficient delivery of MT1-MMP to invado-
podia [35]. A more detailed discussion of MT1-MMP 
trafficking is provided in the following sections. PI(4,5)
P2 serves as a substrate for the generation of PIP3 via 
PI 3-kinase, which then activates AKT and promotes 
invadopodia formation [36]. Invadopodia are often 
positioned near multivesicular late endosomes, and the 
secretion of exosomes further supports their formation, 
facilitating invasive cellular behaviors [37]. At invadopo-
dia, PI(4,5)P2 functions as a platform for exosome secre-
tion and the assembly of key components essential for 
invadopodia formation [38].

SHIP2 assists in the formation of berthing sites
SH2-containing inositol 5-phosphatase 2 (SHIP2) plays 
a significant role in stabilizing invadopodia by regulat-
ing phosphoinositide conversion. SHIP2 removes the 
5′ phosphate group from PI(3,4,5)P3, converting it to 
PI(3,4)P2 [39], supporting invadopodia formation and 
stability. Moreover, SHIP2 interacts with various mol-
ecules to regulate invadopodia stability, among which 
Mena is particularly significant [40]. Mena, an Ena/VASP 

Fig. 2 Schematic representation of the structural stability of invadopodia. (Top) Cancer cells extend invadopodia to penetrate the basement 
membrane and degrade the extracellular matrix (ECM), facilitating local matrix remodeling and promoting invasion into surrounding tissues. 
(Bottom) Invadopodia formation is triggered by actin polymerization, driven by key regulators such as the Arp2/3 complex, N-WASP, and CDC42. 
Structural stability is primarily maintained by cortactin and TKS5, which reinforce the actin network and promote invadopodia maturation. Lipid 
signaling, particularly the conversion of phosphatidylinositol (PI(3,4)P2) to PI(3,4,5)P3 via SHIP2, further stabilizes invadopodia by regulating proteins 
such as Arg and Mena. These stabilized structures facilitate the targeted delivery of proteases and ECM degradation, supporting the continuous 
invasion of cancer cells into the surrounding matrix
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protein family member, is essential for invadopodia for-
mation and maturation. It promotes actin polymerization 
to stabilize invadopodia and co-localizes with cortactin 
and F-actin at invadopodial sites [41].

It has been shown that Mena is upregulated in sev-
eral cancers, including breast, pancreatic, colon, gastric, 
and cervical cancers, and melanoma. In breast cancer, a 
specific splicing isoform of Mena, known as MenaINV, 
is strongly associated with cancer cell invasiveness [42]. 
MenaINV enhances invadopodia activity by inhibiting 
protein tyrosine phosphatase 1B (PTP1B), a phosphatase 
that regulates key receptors such as c-Met and EGFR and 
promotes cell invasion and migration [42, 43]. Moreover, 
MenaINV expression is regulated by the NOTCH sign-
aling pathway [44], further contributing to tumor cell 
invasion. By increasing tyrosine phosphorylation of cort-
actin, particularly at Y421, MenaINV promotes invado-
podia assembly, which represents a key regulatory step in 
tumor cell invasion [42].

SHIP2 plays a dual role in cancer, acting as a tumor 
suppressor or an oncogene, depending on the cancer 
type and cellular context. As a tumor suppressor, SHIP2 
expression is downregulated in gastric cancer and inva-
sive squamous cell carcinoma, leading to PI3 K/AKT 
pathway activation and subsequent tumor growth and 
proliferation [45, 46]. In glioblastoma cells, SHIP2 regu-
lates focal adhesion dynamics through PI(4,5)P2, inhib-
iting cell migration [47, 48]. SHIP2 can also act as an 
oncogene, being activated by AKT in several cancers, 
including ER-negative breast cancer, hepatocellular carci-
noma (HCC), colorectal cancer, and laryngeal squamous 
cell carcinoma, where its expression is upregulated [49, 
50]. This duality in SHIP2 function may be attributed 
to its enzymatic activity, which differentially affects PI3 
K/Akt signaling across cancer types. The ‘‘phosphati-
dylinositol phosphate (PIP) hypothesis’’ provides a pos-
sible explanation, proposing that PI(3,4,5)P3 and PI(3,4)
P2 distinctly regulate Akt phosphorylation at Thr308 and 
Ser473, leading to diverse cancer cell responses and bio-
logical behaviors [51]. In cancers with elevated SHIP2 
expression, its role in promoting invadopodia formation 
enhances ECM degradation, increases cell migration, 
and drives tumor metastasis. This highlights the context-
dependent function of SHIP2 in cancer progression, par-
ticularly in facilitating tumor cell invasion and metastasis 
through invadopodia [26].

TKS5 as the anchor hook for invadopodia
The stabilization of invadopodia precursors is essen-
tial for their formation and function, with TKS proteins 
playing a central role in this process. These proteins, 

characterized by their SH3 and PX domains, medi-
ate key protein–protein and protein-lipid interactions, 
facilitating the recruitment of molecules necessary for 
assembling and anchoring invadopodia precursors to the 
plasma membrane [52]. 靶向TKS5蛋白可能成为有效抑
制.

TKS proteins are key regulators of cancer cell invasion, 
particularly during the transition of invadopodia precur-
sors into fully functional structures [53]. Their activity is 
regulated through tyrosine phosphorylation by Src tyros-
ine kinase, a modification required for their function 
[54]. As a scaffolding protein, TKS5 stabilizes the invado-
podia core complex, anchors it to the plasma membrane, 
and promotes its maturation [27]. Among the TKS fam-
ily members, TKS5 plays a particularly significant role 
in invadopodia dynamics by recruiting adaptor proteins 
NCK1 and NCK2, which activate the N-WASP–Arp2/3 
complex, thereby enhancing invadopodia stability and 
expansion [55]. Moreover, TKS5 contributes to matrix 
degradation by facilitating the localization and activa-
tion of proteases. Through its interaction with Rab40b, 
TKS5 anchors vesicles containing MMPs to invadopodia, 
increasing protease activity and promoting cellular inva-
sion [56, 57]. In addition to structural and proteolytic 
functions, TKS proteins regulate reactive oxygen spe-
cies (ROS) at the invadopodial membrane. They localize 
NADPH oxidase (NOX) to invadopodia, where ROS are 
compartmentalized to prevent damage from free radicals 
while acting as second messengers to regulate signaling 
pathways important for invadopodia activity and cancer 
cell invasion [58, 59].

Another member of the same protein family, TKS4, is 
also localized to invadopodia in Src-transformed cells, 
which plays an important role in their assembly. Stud-
ies on TKS4-deficient cells indicate that despite elevated 
TKS5 levels, these cells fail to degrade ECM compo-
nents, suggesting that TKS4 is required for recruiting 
MT1-MMP to invadopodia [25]. Recent findings sug-
gest another role of TKS4 in epithelial-mesenchymal 
transition (EMT)-like processes. In HCT116, colon 
cancer cells lacking TKS4, mesenchymal morphology, 
increased motility, and reduced cell–cell adhesion have 
been observed. Furthermore, these cells exhibit a loss 
of E-cadherin, disruption of apical-basal polarity, and 
upregulation of fibronectin and the transcription factor 
Snail2. However, the precise mechanism by which TKS4 
deficiency induces EMT in these cells remains unclear 
[60].
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Rho GTPases are core molecules
Rho GTPases are key regulators of cell migration, inva-
sion, and invadopodia formation. Specifically, CDC42 
is involved in the assembly of invadopodia precursors, 
while RhoA supports their maturation. Similarly, RhoC 
contributes to invadopodia development, RhoG plays a 
role in their degradation, and Rac1 promotes their for-
mation [61]. Together, these GTPases coordinate inva-
dopodia turnover.

A key Rho GTPase, CDC42, plays a central role in 
both invadopodia formation and ECM degradation, 
remaining active throughout the invadopodia lifecycle 
[62]. During assembly, CDC42 activity peaks, driving 
actin core formation, which serves as the structural 
foundation of invadopodia. However, reduced CDC42 
activity is observed during disassembly, contribut-
ing to invadopodia breakdown. This dynamic regula-
tion is mediated by the effector protein CIP4, which 
links active Rho GTPases to the signaling terminator 
ARHGAP17 in a phosphorylation-dependent man-
ner. ARHGAP17 localizes to the invadopodium ring 
in the early stages, restricting CDC42 activity to the 
actin core. As invadopodia transitions to ECM deg-
radation, ARHGAP17 shifts to the core, inactivating 
CDC42 and initiating disassembly [63]. Cooperation 
between CDC42 and RhoA enhances ECM degrada-
tion. This interaction is facilitated by the effector 
IQGAP1, which directs the delivery of MMPs to the 
invadopodial membrane. Through its association with 
the exocyst complex, IQGAP1 ensures efficient ECM 
degradation, promoting tumor cell invasion [64].

RhoC is crucial for invadopodia development. The 
spatiotemporal activation of RhoC is confined to the 
region surrounding the invadopodium actin core, 
where it regulates cofilin phosphorylation through the 
ROCK/LIMK pathway [65]. This localized activation 
directs cofilin’s severing activity to the invadopodium 
core, promoting the formation of free barbed ends 
necessary for actin polymerization and cofilin turno-
ver. These processes generate the protrusive force 
required for invadopodia extension [66]. Meanwhile, 
RhoG mainly plays a degradative role in the dynamic 
regulation of tumor cell invasion. While Rac1 supports 
invadopodia assembly, RhoG promotes disassem-
bly. This process involves the activation of RhoG by 
the guanine nucleotide exchange factor SGEF (ARH-
GEF26). Active RhoG enhances paxillin phosphoryla-
tion, stimulating invadopodia disassembly. Silencing 
RhoG or SGEF increases invadopodia stability [67]. 
During tumor invasion, RhoG promotes the degrada-
tion of invasive pseudopodia, not to suppress invasion 
but to facilitate invadopodia turnover, thereby acceler-
ating tissue invasion.

Regulation of invadopodia 
by membrane‑mediated signaling and dynamics
The plasma membrane of tumor cells functions as a 
critical interface between the cell and its surrounding 
microenvironment, playing a central role in regulating 
invasion and metastasis. Membrane receptors on the 
cell surface mediate signal transduction, coordinating 
the complex processes involved in tumor cell migration 
and invadopodia formation.

The cell surface signal transduction mechanism regulates 
invadopodia
The cancer cell surface contains receptors that activate 
signal transduction mechanisms upon ligand bind-
ing, facilitating communication between tumor cells 
and their microenvironment [68]. Tumor cells regu-
late invadopodia formation by sensing and processing 
these signals. Various mechanisms governing invado-
podia formation and function are illustrated in Fig.  3. 
Receptor-ligand binding transmits signals through 
autocrine or paracrine mechanisms, triggering intracel-
lular cascades that converge on key pathways involved 
in invadopodia formation, including Src, PI3 K, and 
Rho family GTPases. Tumor cells must integrate recep-
tor-mediated signaling for environmental sensing and 
migration while coordinating actin remodeling in a 
temporally and spatially controlled manner to facili-
tate invadopodia formation. This section examines the 
major receptor families and signaling pathways impli-
cated in this process across different tumor types.

Integrins
Integrins serve as the primary cellular receptors 
for ECM components, including collagen, laminin, 
fibronectin, and vitronectin [69, 70]. These receptors 
play a central role in mediating cell-ECM interactions, 
which are essential for various cellular processes. The 
integrin family consists of alpha and beta subunits that 
form 24 distinct heterodimers [71], each characterized 
by specific ligand-binding properties and biological 
functions.

Integrins perform several fundamental roles in cel-
lular biology. They function as principal adhesion 
receptors, anchoring cells to ECM components. Upon 
engagement with the ECM, integrins recruit specific 
signaling, scaffolding, and cytoskeletal proteins to 
adhesion sites. This recruitment activates intracellu-
lar signaling pathways, facilitating cancer cell invasion 
and metastasis [72]. Further, integrins act as mecha-
nosensors, detecting and responding to changes in the 
tumor microenvironment (TME), thus regulating signal 
transduction and cellular adaptation. Among integrins, 
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β1-integrin is the most extensively studied in the con-
text of invadopodia.

The functions of β1-integrin subtypes vary across can-
cer types. In glioblastoma, α2β1, α3β1, α5β1, and α6β1 
integrins promote tumor cell invasiveness [73]. In mela-
noma, α3β1, α5β1, and α6β1 integrins regulate inva-
dopodia function through interactions with fibroblast 
activation protein (FAP), fibronectin, and laminin [17]. 
In breast cancer, β1-integrin interacts with either α2 or 
α5 integrins, depending on the microenvironmental con-
text [74]. Moreover, the hypoxia-induced carbonic anhy-
drase IX (CAIX)-β1 integrin axis has been implicated in 
invadopodia formation and ECM degradation, reinforc-
ing the role of β1-integrin in tumor invasion and metas-
tasis [75]. Integrins are involved throughout the different 
stages of invadopodia formation. During the initiation 
phase, β1-integrin interacts with the tyrosine kinase Arg, 
leading to cortactin phosphorylation, which promotes 

invadopodia formation and maturation [28, 76]. In the 
stabilization phase, α5β1-integrin enhances cell adhesion 
to the ECM and supports actin polymerization, main-
taining invadopodia structural stability [77]. In the func-
tional execution phase, β1-integrin activation enhances 
ECM degradation [78, 79]. Specifically, β1-integrin 
regulates Na⁺/H⁺ exchanger 1 (NHE1), which acidifies 
the extracellular environment surrounding invadopo-
dia, therefore facilitating ECM protein degradation [80]. 
Moreover, β1-integrin mediates the targeted transport 
of MMPs, including MMP2, MMP9, and MT1-MMP, to 
invadopodia, enhancing their degradative activity [81]. 
The resulting extracellular acidification strongly corre-
lates with tumor progression, highlighting the central 
role of β1-integrin in tumor invasion [82].

Integrins also contribute to key signaling path-
ways regulating cell invasion. It has been shown that 
when RAD23B is knocked down, CRC cells’ migration, 

Fig. 3 Mechanisms regulating invadopodia formation and function. This diagram illustrates the complex mechanisms regulating invadopodia, 
specialized cellular structures implicated in extracellular matrix (ECM) degradation. Key factors include (1) Tyrosine kinase receptors, such as EGFR, 
which activate downstream signaling pathways to promote invadopodia formation; (2) TGF-β family receptors, which regulate cellular invasion 
and motility; (3) Integrins, which mediate adhesion to ECM components and regulate cytoskeletal dynamics; (4) G-protein-coupled receptors 
(GPCRs), which contribute to cytoskeletal remodeling; (5) Stromal interactions, where cancer-associated fibroblasts (CAFs) and tumor-associated 
macrophages (TAMs) provide supportive signals; (6) Metabolic conditions, including hypoxia and low pH, which increase invadopodia activity; (7) 
Extracellular vesicles (EVs), which facilitate intercellular communication; (8) Ion channels, which maintain intracellular ionic homeostasis; and (9) ECM 
components, which serve as both structural substrates and regulators of invadopodia dynamics. These interconnected mechanisms collectively 
drive invadopodia-mediated ECM degradation and tumor invasion
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invasion, and metastasis are impaired. This occurs due 
to suppressing the integrin signaling pathway, inhibit-
ing Rac1 and CORO1 C localization at the cell edge, and 
suppressing invasive protrusions and invadopodia [83]. 
Integrins are highly sensitive to ECM stiffness. A rigid 
ECM promotes integrin activation and the recruitment 
of focal adhesion proteins, which aid in forming adhesion 
plaques [84, 85]. These focal adhesions contain integrin-
associated proteins, such as vinculin, paxillin, and Rho 
GTPases, which play critical roles in cytoskeletal organi-
zation and the assembly of invadosomes and lamella [86, 
87]. Integrins also collaborate with growth factors and 
G protein-coupled receptors to promote cell invasion 
and migration. Recent studies highlight the mechano-
sensitive role of CAV1/caveolae in collagen fiber recruit-
ment, highlighting their contribution to invadopodia 
formation. The topology and composition of these spe-
cialized plasma membrane domains are precisely regu-
lated to support their function. CAV1/caveolae mediate 
the inward deformation of the plasma membrane and 
integrin binding, both of which are essential for inva-
dopodia assembly. The proteolytic cleavage of collagen 
fibers further regulates invadopodia formation through 
the invadopodia-MT1-MMP axis, which controls the 
endocytosis of caveolae-dependent β1-integrin [88]. As 
tumor cells migrate through dense ECM and encounter 
newly formed collagen fibers, invadopodia and caveolae 
undergo dynamic recycling. MT1-MMP is recycled back 
to the plasma membrane, reinforcing invadopodia forma-
tion and improving invasive activity [6, 89, 90].

These findings suggest that invasive cancer cells exploit 
key membrane subdomains, such as caveolae, invadopo-
dia, and clathrin-coated pits, to support matrix remod-
eling and tumor invasion. The coordinated activity of 
these subdomains highlights the caveolae-invadopodia 
axis as a critical regulator of cellular invasion. Impor-
tantly, this axis represents a promising therapeutic target 
for interventions to control tumor cell invasion.

G protein‑coupled receptors
G protein-coupled receptors (GPCRs) are heptaheli-
cal membrane proteins that regulate cell morphology, 
adhesion, and migration by activating heterotrimeric G 
proteins [91]. Lysophosphatidic acid (LPA) receptors, 
a subset of GPCRs, are critical for invadopodia forma-
tion. Autotaxin, an enzyme involved in LPA production, 
promotes invadopodia formation and enhances fibrosar-
coma cell invasion and metastasis by activating the LPA4 
receptor and the Rap1/Rac1 signaling pathway, regulating 
the downstream effector WASP [92]. In ovarian cancer, 
LPA signaling facilitates invadopodia assembly by pro-
moting Gαi2 translocation, where it interacts with β-pix 
and Src [93]. This pathway modulates CDC42 and RhoA 

activity in melanoma, further supporting invadopodia 
formation [94].

Endothelin-1 (ET-1) signals through its receptors, 
ETA and ETB, to regulate invadopodia assembly and 
facilitate matrix degradation during cancer cell invasion 
and metastasis [95]. This process requires precise coor-
dination of Rho GTPases [96]. ET-1 induces invadopo-
dia assembly in melanoma cells by activating CDC42 
through Gi signaling while inhibiting RhoA activity [94]. 
In ovarian cancer, ET-1-mediated invadopodia formation 
involves a molecular complex coordinated by β-arrestin 
1 (β-arr1) [97], whereas in breast cancer, the activation 
of the GPCR Kisspeptin receptor (KISS1R) promotes 
invadopodia assembly through β-arrestin 2 (β-arr2) and 
the ERK1/2 signaling pathway, with signaling crosstalk 
between KISS1R and EGFR [98].

Chemokine receptors, including CXCR4 and CCR3, 
also regulate invadopodia formation [99]. CXCR4 acti-
vation by SDF1α in breast cancer stimulates Abl kinase, 
facilitating MT1-MMP transport to invadopodia and 
enhancing ECM degradation [100]. The CXCL12/CXCR4 
axis also regulates cortactin phosphorylation via Arg 
in glioma cells, controlling invadopodia formation and 
invasion [101]. In lung cancer, CCL7 increases MMP-9 
transport to invadopodia via CCR3, promoting collagen 
degradation and ECM invasion, contributing to metasta-
sis [102]. These GPCR-mediated pathways play a key role 
in tumor metastasis.

Tyrosine kinase receptors
Receptor tyrosine kinases (RTKs) constitute a large 
family of proteins that regulate cancer cell growth, pro-
liferation, survival, invasion, and metastasis [103]. Acti-
vation of specific RTKs triggers downstream signaling 
cascades that integrate with signals from the TME, col-
lectively promoting invadopodia formation. Among 
these receptors, the EGFR is a key regulator of invado-
podia formation in various cancer cell lines, exerting its 
effects primarily through ligand-dependent signaling. 
EGF-induced activation of EGFR increases actin polym-
erization via the N-WASP-Arp2/3-cofilin axis, facilitat-
ing invadopodia assembly [104, 105]. EGFR signaling 
promotes invadopodia maturation through Src activation 
and cortical actin phosphorylation [106, 107]. Amplified 
EGFR signaling may involve crosstalk with other cell sur-
face receptors, including CD44, CD147, CDC42, MET, 
and the KISS1R, forming a network that collectively reg-
ulates invadopodia formation [108].

Platelet-derived growth factor (PDGF) and its recep-
tors are also critical regulators of invadopodia formation, 
particularly in breast and pancreatic cancers [109, 110]. 
In breast cancer, the EMT-related transcription factor 
Twist1 promotes invadopodia formation by upregulating 



Page 10 of 22Hao et al. Journal of Translational Medicine          (2025) 23:548 

PDGFRα expression, which activates Src signaling, 
facilitating ECM degradation and enhancing tumor cell 
migration and metastasis in vivo [111]. In pancreatic can-
cer, PDGF signaling, combined with genetic mutations 
such as β-catenin activation, KRAS mutations, and p53 
loss, significantly enhances the invasive capacity of tumor 
cells. These aberrations trigger autocrine PDGF signal-
ing, significantly improving invadopodia formation and 
ECM degradation, thereby increasing tumor cell inva-
siveness [110].

TGF‑β family receptors
TGF-β family members regulate various cellular func-
tions by binding to type I and type II receptor transmem-
brane kinases, initiating downstream signaling cascades 
through both Smad2/3-dependent and non-Smad2/3-
dependent pathways [112]. TGF-β plays an important 
role in tumor progression by activating transcription fac-
tors involved in EMT, including Snail, Slug, ZEB1, ZEB2, 
and Twist, therefore enhancing cancer cell invasiveness 
and migration [113, 114]. In bladder cancer, TGF-β has 
been implicated in regulating the interplay between EMT 
and invadopodia formation. This occurs through the 
induction of Transgelin expression, a myosin-binding 
protein that modulates the actin cytoskeleton. Transgelin 
regulates actin dynamics and promotes tumor cell inva-
sion and metastasis [115].

In breast cancer, TGF-β regulates the activity of the 
FAK-Src signaling pathway by interacting with focal 
adhesion components, such as Hic-5. This interaction 
promotes matrix degradation by activating Rac1 and 
RhoC-ROCK signaling pathways [116]. Moreover, both 
the lipoma-preferred partner (LPP) and SHC adaptor 
protein (SHCA) have been identified as critical mediators 
in TGF-β-induced invadopodia formation. These proteins 
play a vital role in tumor cell migration and metastasis 
[117, 118]. In triple-negative breast cancer (TNBC), the 
natural compound Isotoosendanin, which targets TGF-β 
signaling, significantly inhibits EMT and invadopodia 
formation, effectively reducing TNBC cell invasiveness 
and metastasis [119]. These findings highlight the central 
role of TGF-β in breast cancer invasion and metastasis, 
highlighting its potential as a therapeutic target.

Ion channels
Calcium and sodium ion channels play critical roles in 
regulating intracellular  Ca2+ and  Na+ concentrations, 
which are essential for invadopodia formation, ECM 
degradation, and tumor cell migration [120, 121]. These 

ion channels and their associated signaling pathways 
regulate Src kinase activity, invadopodia assembly, and 
the secretion of ECM-degrading enzymes [122].

The TRPM7 channel, located in invadopodia, regu-
lates actin dynamics by establishing a  Ca2+ gradient 
across the cell membrane. TRPM7 functions as an ion 
channel and a kinase, possessing a serine/threonine 
kinase domain. This kinase domain regulates actin 
polymerization and dynamics through the phospho-
rylation of G-protein signaling 1 and regulatory fac-
tors involved in regulating MHC-II subtypes A–C [123, 
124]. Furthermore, calmodulin (CaM) is pivotal in reg-
ulating Src tyrosine kinase activity during tumor cell 
invasion. In response to EGF, CaM translocates from 
the nucleus to the cytoplasm, binding to Src and NHE1. 
This interaction promotes invadopodia formation and 
enhances chemotaxis [125, 126].

The voltage-dependent calcium channel CaV2.2 plays 
a crucial role in stabilizing cortactin through deubiqui-
tinase USP43 [121], supporting invadopodia formation 
and increasing tumor invasiveness. Furthermore, stro-
mal interaction molecule 1 (STIM1) and Orai1 facilitate 
invadopodia activity in melanoma cells by stimulating 
ECM degradation and calcium influx through store-
operated calcium entry (SOCE). Activation of SOCE by 
STIM1 serves as a key regulator of calcium sensitivity 
and is essential for invadopodia formation [127].

In prostate cancer cells, Na⁺ influx through the Na⁺/
Li⁺-coupled channel NALCN regulates intracellular 
calcium oscillations, which are co-regulated by SOCE, 
NCX, NCLX, SERCA, and ROS. This interplay leads to 
Src kinase activation, supports invadopodia formation, 
and facilitates the secretion of  Ca2+-dependent ECM-
degrading enzymes. NALCN-mediated Na⁺ influx 
interacts with intracellular  Ca2+ oscillations through 
the same co-regulatory network, further sustaining 
Src kinase activation and invadopodia formation while 
promoting the release of  Ca2+-dependent proteolytic 
enzymes [120].

Research on cell surface signal transduction mecha-
nisms provides a solid foundation for developing 
clinical strategies that target invadopodia. A deeper 
understanding of these signaling pathways allows 
the identification of novel therapeutic targets and the 
development of specific drugs. These targeted therapies 
can be combined with conventional treatments such as 
radiotherapy or chemotherapy, offering the potential to 
improve tumor metastasis control and advance overall 
cancer treatment outcomes and patient prognosis.
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Regulation of invadopodia by dynamic changes in the cell 
membrane
Invadopodia are protrusive extensions of the tumor cell 
membrane, and their formation is closely associated with 
membrane integrity and fluidity. Cholesterol is essential 
for maintaining the structural stability and fluidity of 
animal cell membranes, both of which are essential for 
invadopodia function [128]. Disruptions in cholesterol 
metabolism can alter membrane properties, affecting the 
formation of lipid rafts and invadopodia. These changes 
significantly affect the invasive and metastatic potential 
of tumor cells [129].

Estrogen-related receptor α (ERRα) has been shown to 
regulate endothelial cell migration and invasion by repro-
gramming intracellular cholesterol metabolism. This 
occurs through the activation of hydroxy-3-methylglu-
taryl-CoA synthase 1 (HMGCS1), which increases mem-
brane fluidity, promoting invadopodia formation and 
contributing to EMT [130]. Hydroxyacyl-CoA dehydro-
genase subunit alpha (HADHA) catalyzes the final steps 
of long-chain fatty acid β-oxidation in the mitochondria 
[131]. Recent studies have demonstrated that HADHA is 
regulated by miR-612, where miR-612 suppression leads 
to HADHA upregulation and subsequent activation of 
fatty acid β-oxidation. Through the SREBP2/HMGCR 
cascade, this process produces sufficient acetyl-CoA and 
ATP to support cholesterol biosynthesis, facilitating inva-
dopodia formation. Moreover, miR-612 and HADHA 
interact dynamically with cortactin and caveolin-1 to 
remodel the F-actin cytoskeleton in HCC, thus increas-
ing invadopodia formation [132].

A deeper understanding of how tumor cells detect and 
respond to changes in the microenvironment through 
the plasma membrane and membrane receptors is essen-
tial. These processes regulate invadopodia formation 
and invasive tumor cell migration. Various factors in 
the TME, including mechanical forces, cell–cell interac-
tions, and metabolic changes, affect membrane composi-
tion and receptor activity, collectively shaping tumor cell 
invasiveness. Investigating these regulatory mechanisms 
provides important insights into tumor biology and ena-
bles the identification of invadopodia-specific regulatory 
pathways across different cancer types. Moreover, these 
findings offer potential therapeutic targets, which will be 
further discussed in subsequent articles was written here.

MMPs facilitate invadopodia‑mediated matrix 
degradation
Zinc-dependent endopeptidases, such as MMPs, are 
involved in the formation of pre-metastatic niches. 
Tumor metastasis not only depends on the charac-
teristics of cancer cells that spread from the primary 
tumor but also requires the establishment of a favorable 

microenvironment in distant organs for tumor cell 
growth, known as the metastatic niches [133]. Mean-
while, The core function of MMPs is the degradation and 
remodeling of the ECM, which paves the way for invasion 
and metastasis through peripheral tissues. They primarily 
mediate the function of invadopodia. The maturation of 
invadopodia requires the targeted delivery and exocyto-
sis of MMP2, MMP9, and MT1-MMP [134]. The appear-
ance of these MMPs is often regarded as a marker of 
functionally mature invadopodia. It has been shown that 
MT1-MMP specifically targets invadopodia and plays a 
central role in matrix degradation [6]. Extracellular vesi-
cles (EVs) are widely recognized for their role in intercel-
lular communication and the regulation of physiological 
processes through molecular transport. Based on previ-
ous research on vesicles and exosomes [135–138], this 
paper will explore the loading, transport, and release of 
MMPs from this perspective. The transport pathway of 
MMPs is depicted in Fig. 4.

Targeted transport to invadopodia
Invadopodia serve as specialized sites for the accumu-
lation and release of proteases, including MMPs [139]. 
Studies have demonstrated that MT1-MMP plays a key 
role in invadopodia formation and undergoes intracellu-
lar transport through vesicular trafficking mechanisms. 
One well-characterized pathway involved in this process 
is the SNARE complex, a family of membrane-associated 
proteins that facilitate membrane fusion by bridging 
adjacent membranes [140]. The formation of invadopodia 
and subsequent tumor cell invasion depends on SNARE-
mediated protein transport. This process not only allows 
ECM degradation but also contributes to increased cell 
migration [141–145]. The SNARE complex consists of 
v-SNARE proteins, such as VAMP, which are located on 
vesicular membranes, and t-SNARE proteins, includ-
ing syntaxin and SNAP-25, which are present on target 
membranes [146]. These SNARE proteins are essential 
for facilitating membrane fusion during the release of 
EVs and are also involved in regulating the intracellular 
trafficking of MT1-MMP. VAMP3, for instance, has been 
identified as a key regulator of vesicular cargo transport, 
specifically mediating the transfer of MT1-MMP from 
the cell surface to newly forming vesicles [147]. VAMP7 
is essential for directing MT1-MMP to invadopodia, 
highlighting its role in the spatial organization of these 
MMPs during invasive processes [141]. Recent studies 
have identified TOM1L1 as a key regulator of MT1-MMP 
translocation to invadopodia in ERBB2-driven breast 
cancer cells [148]. TOM1L1 functions as an important 
downstream target of the MAPK signaling pathway and 
has been shown to regulate its serine phosphorylation in 
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melanoma, controlling the precise localization of MT1-
MMP at invadopodia [149].

In oncology, the interaction between invadopodia 
and MMPs is highly synergistic and important to tumor 
invasiveness and metastatic potential. This collaboration 
allows tumor cells to degrade the basement membrane, 
invade blood vessels and lymphatics, and eventually 
form distant metastases. A deeper understanding of the 
molecular mechanisms underlying this process is essen-
tial for identifying therapeutic targets and developing 
novel strategies for cancer treatment.

Facilitating invasion via the EVs pathway
Studies have demonstrated that EVs serve as key carriers 
of MMPs and play crucial roles in various cancer mod-
els. EVs derived from 8701-BC breast cancer cells and 
HT-1080 fibrosarcoma cells have been shown to contain 
enzymatically active MMP-9. Similarly, exosomes iso-
lated from the ascites of ovarian cancer patients contain 

MMP-2 and MMP-9, both of which contribute to ECM 
degradation [150, 151]. Moreover, mature MMPs, such as 
MT1-MMP secreted by G361 melanoma cells and MMP-
13 secreted by nasopharyngeal carcinoma cells, are highly 
enriched in EVs [152]. The quantity of EVs released, along 
with the levels of proteolytic enzymes they transport, 
correlates with the invasive potential of various cancer 
cell lines in vitro [153]. These findings highlight the key 
role of EVs in tumor progression. EV secretion is closely 
associated with invadopodia formation. Invadopodia 
serve as docking sites for multivesicular bodies (MVBs), 
and these structures are mechanistically associated with 
EV secretion. Recent studies have shown that MVBs, 
marked by CD63 and Rab27a, localize to invadopodia 
regions, reinforcing the spatial and functional relation-
ship between these cellular components. Inhibition of key 
molecules involved in invadopodia formation, including 
TKS5, N-WASP, and cortactin, significantly reduces exo-
some secretion [16, 37, 154, 155]. Constitutive activation 

Fig. 4 The Transport Pathway of matrix metalloproteinases (MMPs). The right-side blue-arrow pathway depicts the synthesis, maturation, 
and secretion of MMPs. MMPs are synthesized in the endoplasmic reticulum (ER) and transported to the Golgi apparatus for maturation. 
Mature MMPs are then trafficked along microtubules to the plasma membrane via SNARE protein-mediated vesicular transport, where they 
facilitate extracellular matrix (ECM) degradation. A subset of MMPs remains anchored as membrane-type MMPs at the invadopodial membrane, 
directly exerting proteolytic activity. Another subset is secreted into the tumor microenvironment, contributing to ECM remodeling and tumor 
invasion The left-side purple-arrow pathway represents the endocytic recycling of MMPs. MMP activity at the plasma membrane is regulated 
by β1 integrin-mediated endocytosis. Internalized MMPs initially enter early endosomes (EE) and are then sorted into late endosomes (LE) 
under the regulation of Rab5 and Rab7. Within late endosomes, MMPs are either transported to lysosomes for degradation or directed 
into the multivesicular body (MVB) pathway. Through the endosomal sorting complex required for transport (ESCRT) machinery, MMPs are 
incorporated into intraluminal vesicles (ILVs). Finally, ILVs containing MMPs are released into the tumor microenvironment as exosomes, facilitating 
distant ECM degradation and enhancing tumor cell invasiveness
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of PI3 K induces invadopodia formation and improves 
EV secretion, suggesting a feedback loop that reinforces 
both processes [156]. The transport and activity of pro-
teolytic enzymes via EVs have been well-documented, 
highlighting their clinical relevance in tumor progression. 
Comprehensive reviews by Thuault et  al. [31], Shimoda 
M, and Khokha R [157, 158] have thoroughly detailed the 
underlying mechanisms and molecular interactions that 
govern these processes, providing insight into the com-
plex interplay between invadopodia, EV secretion, and 
tumor progression, providing insight into the complex 
interplay between invadopodia, EV secretion, and tumor 
progression.

Incorporating transmembrane cargo into EVs primarily 
relies on endosomal sorting mechanisms [159]. The endo-
somal sorting complex required for transport (ESCRT) 
plays a fundamental role in the formation of intraluminal 
vesicles (ILVs) and MVBs. Initially, ESCRT-0 and ESCRT-
I complexes recruit cargo to the limiting membrane of 
the endosome. Then, ESCRT-II and ESCRT-III facilitate 
membrane budding and scission, leading to ILV forma-
tion [160, 161]. The classical ESCRT pathway is regulated 
through interaction between syntenin and the ESCRT-
associated protein ALG-2 interacting protein X (ALIX, 
also known as programmed cell death 6-interacting pro-
tein). This interaction bridges cargo to the ESCRT-III 
subunit VPS32 (CHMP4), promoting membrane remod-
eling and ensuring efficient cargo sorting [162].

Recycling of MMPs supports invasion
MT1-MMP is partially recycled and relocalized to inva-
dopodia, where it supports their invasive functions, 
while the remaining MT1-MMP is packaged into EVs to 
be secreted into the extracellular space. This secretion 
contributes to ECM remodeling and signal transduction 
[152]. Approximately 80% of internalized MT1-MMP is 
recycled, and its dynamic balance on the plasma mem-
brane is maintained primarily through the coordinated 
regulation of endocytosis and exocytosis.

Specific signals within the intracellular C-terminus of 
MT1-MMP are essential for its targeted delivery during 
molecular sorting [163]. The PDZ-binding motif facili-
tates recycling by interacting with the sorting protein 
SNX27, which recruits the retrograde complex to Rab7a-
positive endosomes, allowing the recycling of MT1-MMP 
to invadopodia [164]. Although MT2-MMP contains a 
class III PDZ-binding motif (EWV), it does not interact 
with SNX27, highlighting the specificity of this recycling 
mechanism [164, 165]. Studies have reported that cancer 
cells primarily rely on the endosome/lysosome recycling 
pathway to transport internalized MT1-MMP back to 
the plasma membrane [37, 90, 148]. β1-integrin plays an 
important role in this process by facilitating MT1-MMP 

internalization through phosphorylation of Thr resi-
dues, leading to its co-internalization with MT1-MMP 
into Rab5-positive early endosomes. MT1-MMP is then 
transported to Rab7-positive late endosomes, where 
it becomes available for invadopodia formation [166]. 
Chloride intracellular channel 3 (CLIC3) interacts with 
Rab25 to regulate the recycling of α5β1-integrin from late 
endosomes to the plasma membrane, thus promoting the 
invasiveness of pancreatic and ovarian cancer cells [167].

Blocking SOCE does not affect the endocytosis of 
MT1-MMP but significantly disrupts its post-endocytic 
recycling to the plasma membrane. This disruption leads 
to the accumulation of MT1-MMP in Rab5-positive early 
endosomes [168]. The proteolytic activity of MT1-MMP 
is often associated with its interaction with tissue inhibi-
tors of metalloproteinases 2 (TIMP2) [169]. Disruption of 
the pro-metastatic gene NEDD9 alters the distribution of 
MT1-MMP across different endosomal compartments, 
impairing its recycling pathway. As a result, this disrup-
tion interferes with the targeted delivery of the TIMP2/
MT1-MMP complex to late endosomes and increases 
the activity of ARF6, a small GTPase that regulates MT1-
MMP recycling [170]. Furthermore, apurinic/apyrimi-
dinic endonuclease 1 (APE1) interacts with ARF6 in a 
redox-dependent manner, regulating MT1-MMP traf-
ficking. APE1 prevents excessive internalization of MT1-
MMP, ensuring its proper relocalization to the plasma 
membrane [171]. These regulatory mechanisms are vital 
for tumor cell invasion, as they control the cycling, endo-
cytosis, and recycling of MT1-MMP, all of which are 
essential for tumor cell migration and metastasis.

The research on developing anticancer therapies 
targeting invadopodia
Growing evidence suggests that invadopodia plays a piv-
otal role in cancer invasion and metastasis. This high-
lights the potential of targeting their regulatory factors as 
a promising strategy for treating malignant cancers. The 
formation of invadopodia is regulated by multiple fac-
tors, as discussed earlier.

Table  2 provides a systematic overview of the major 
regulatory factors involved in the formation and func-
tion of invadopodia, including actin-remodeling proteins, 
adaptor molecules, receptor tyrosine kinases, intracellu-
lar kinases, small GTPases, stromal interactions, tumor 
microenvironmental cues, and functional proteases. 
These components coordinate cytoskeletal remodeling, 
signal transduction, and matrix degradation, collectively 
driving invadopodia biogenesis and the acquisition of 
invasive capacity. Notably, several regulators—such as 
cortactin, Tks5, EGFR, SRC, and MMPs—are frequently 
dysregulated in metastatic tumors and correlate with 
enhanced invasiveness and poor prognosis, highlighting 
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their translational potential as diagnostic or therapeu-
tic targets [9]. Dissecting this regulatory landscape may 
reveal vulnerable nodes for therapeutic intervention. 
Precision targeting of invadopodia-related pathways may 
offer a strategy to suppress metastatic dissemination 
while sparing normal cellular functions, thus presenting a 
compelling opportunity for translational anti-metastatic 
therapy.

To identify proteins that could serve as therapeutic 
targets for regulating invadopodia function, the study 
by Meirson et  al. [9] provides a comprehensive list of 
protein families that may be inhibited by therapeutic 
drugs, including GPCRs, ion channels, receptors, non-
receptor tyrosine kinases, phosphatases, transport-
ers, cytokines, growth factors, and proteases. These 
findings offer valuable insights for further research on 
the regulatory mechanisms of invadopodia and their 

Table 2 Various regulatory factors of invadopodia

Type Main components Research

Actin regulatory proteins Cortactin miR-182 inhibits invadopodia formation by targeting cortactin [172]
LanCL2 activates the STAT3/Cortactin signaling pathway to promote invadopodia formation [173]

N-WASP miR-182 expression inhibits invadopodia formation by suppressing the Cdc42/N-WASP pathway 
[172]
LMP1 promotes invadopodia formation by activating the Cdc42/N-WASP signaling axis [174]

Arp2/3 Pimozide inhibits invadopodia formation by targeting subunits of the Arp2/3 complex [175]

Formin Downstream targets of the Wnt5a/Dvl2 pathway, Formin, and Fascin, synergistically promote actin 
assembly in invadopodia [176]

Actin Targeting actin inhibits cancer cell motility [177]

Fascins Fascin influences invadopodia formation through metabolic pathways [178]

Cofilin The interaction between cofilin and Rhoc leads to cofilin phosphorylation, affecting invadopodia 
formation [66]

Adaptor proteins Tks5 The MAP1B-cortactin-Tks5 axis regulates invadopodia formation [179]

Paxillin The kindlin-3-leupaxin-paxillin signaling pathway regulates invadopodia stability [180]

Receptor protein TGF-β TGF-β induces EMT and invadopodia formation [115]
Targeting TGF-β inhibits invadopodia formation [119]

EGFR The EGFR-Src-Arg-cortactin pathway mediates invadopodia maturation [106]

PDGF Increased levels of PDGF/phospho-Src promote invadopodia formation and enhance MMP activ-
ity [110]

MET Met phosphorylation of Fis1 Tyr38 promotes mitochondrial fission and affects invadopodia forma-
tion [181]

Kinases ABL The downstream Abl signaling of CXCR4 plays a role in invadopodia formation and function [100]

SRC ERβ promotes invadopodia formation through the ICAM1/p-Src/p-Cortactin signaling pathway 
[182]

PTK2B Pyk2 regulates invadopodia formation in breast cancer cells [183]

FAK EB1 restricts invadopodia formation and matrix protein degradation in breast cancer cells 
through FAK [184]

ERK ERK promotes invadopodia formation by activating cortactin [185]

PAK The PAK1/Cortactin pathway promotes invadopodia turnover and invasion [186]

GTPases CDC42 The CDC42/N-WASP/Arp2/3 signaling pathway regulates invadopodia formation [187]

Rho/Rac Rho-Rac signaling regulates invadopodia sensing and formation [188]

Dynamin Dynamin-2 enhances the rigidity of actin bundles in invadopodia [189]

ARF6 The novel ARF6-PI3 K-AKT pathway promotes invadopodia formation [190]

Interaction with stromal cell CAF CAF synergistically promotes invadopodia-mediated migration and invasion in oral squamous cell 
carcinoma [191]

TAM TAM interaction with cancer cells regulates the Notch1/Mena INV signaling pathway to promote 
invadopodia formation [44]

Tumor microenvironment PH CAIX regulates pH and affects the function of invadopodia [192]

Hypoxic The hypoxic tumor microenvironment promotes invadopodia formation through the collabora-
tion of the LPA1 receptor and EGFR [105]

Matrix environmental The extracellular matrix regulates invadopodia formation [193]

Functional protease MMPs Research on the close association between invadopodia and MMPs [6, 7, 194, 195]
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potential drug targets. Building on this, we further 
summarize the key therapeutic strategies targeting the 
genes involved in the positive regulation of invadopo-
dia, along with the relevant signaling pathways impli-
cated in these processes. As summarized in Table  3, 
multiple genes positively regulate invadopodia forma-
tion, and several therapeutic agents have been devel-
oped to target these regulatory factors. These include 
upstream signaling molecules, such as EGFR and Src 
family kinases, cytoskeletal scaffolds like Tks5 and 
Cortactin, and proteolytic enzymes, including MMP2 
and MMP9. Targeting these key regulators through 
inhibition may provide novel therapeutic strategies to 
disrupt invadopodia-driven metastasis.

The inhibition of invadopodia formation has emerged 
as a promising therapeutic avenue to suppress tumour 
invasion and metastasis. Pharmacological agents tar-
geting key signalling pathways and proteolytic enzymes 

involved in invadopodia dynamics have shown encour-
aging results in preclinical and early clinical settings 
[9]. Notably, the EGFR tyrosine kinase inhibitor erlo-
tinib and the Src family kinase inhibitor dasatinib have 
been demonstrated to effectively suppress invadopodia 
formation and tumour cell invasiveness across multiple 
cancer models [106, 210]. Dasatinib markedly inhibits 
invadopodia assembly, reduces metastatic potential, 
and sensitizes tumour cells to chemotherapy. Phase II 
clinical trials in solid tumours, including HER2-positive 
breast cancer, have reported delayed disease progres-
sion in a subset of patients, although overall efficacy 
remains variable [211]. Erlotinib has shown robust 
anti-invasive effects in both in vitro and in vivo models 
of head and neck squamous cell carcinoma and triple-
negative breast cancer, primarily through attenuation of 
matrix degradation capacity and cellular motility [212, 
213]. At the level of proteolytic regulation, Marimastat, 

Table 3 Therapeutic strategies targeting invadopodia regulatory

Molecular target Representative Drug(s) Related pathway Putative impact on invadopodia

ABL2 imatinib, nilotinib, dasatinib TGFβ1/Smad signaling pathway Inhibition of invadopodia maturation [196]

AKT2 triciribine PI3 K/AKT2 signaling pathway Inhibition of invadopodia formation [132]

BRAF sorafenib, vemurafenib, dabrafenib Ca2 +/CAM-PYK2 signaling pathway Inhibition of invadopodia formation [197]

CXCL12 NOX-A12 Jak/Vav/Rho GTPase signaling pathway Inhibition of MMP activity in invadopodia 
[198]

CXCR4 POL6326, BL-8040, burixafor SDF1α/CXCR4 signaling pathway Inhibition of MMP-mediated stimulation 
of invadopodia [100]

EGFR cetuximab, erlotinib, panitumumab, 
tesevatinib, nimotuzumab

EGFR-Src-Arg-cortactin signaling pathway Inhibition of invadopodia maturation [106]

ERBB2 trastuzumab, varlitinib, tesevatinib, 
afatinib, pertuzumab,

Tyrosine kinases signaling pathway Inhibition of MMP trafficking to invadopo-
dia [148]

ITGB3 abciximab, cilengitide Fak and Src signaling pathway Inhibition of invadopodia formation, matu-
ration, and MMP activation [199]

KRAS AZD4785 Ral effector signaling pathway Inhibition of invadopodia formation [200]

MAPK1 MAP kinase1 inhibitor, binimetinib, 
ulixertinib

K-Ras/MAPK/ERK2/MMP signaling 
pathway

Inhibition of MMP transcription, protein 
abundance, and enzymatic activity [201]

MAPK8 aplidine MAPK signaling pathway Inhibition of invadopodia formation [202]

MET crizotinib, tivantinib, cabozantinib, 
amuvatinib

c-Met/LanCL2/STAT3/Cortactin signaling 
pathway

Inhibition of invadopodia formation [203]

MTOR ridaforolimus, dactolisib, vistusertib, 
apitolisib

PI3 K/Akt/mTOR signaling pathway Inhibition of invadopodia formation 
and matrix degradation [204]

MMP14 rebimastat, marimastat, prinomastat ARL4 C-IQGAP1-MMP14 signaling 
pathway

Inhibition of invadopodia maturation 
and matrix degradation [205]

NFKB1 triflusal, thalidomide NF-kB signaling pathway Inhibition of invadopodia formation [206]

NOTCH1 OMP-52M51 Notch1/Mena INV signaling pathway Inhibition of invadopodia formation [44]

PDGFR dasatinib, sunitinib, pazopanib, axitinib, 
tivozanib

PDGFRα-La/SSB-LAMB1 signaling path-
way

Inhibition of invadopodia formation [207]

PDK1 dichloroacetic acid PDK1-AKT signaling pathway Inhibition of invadopodia formation [156]

PIK3 CA dactolisib, pictilisib, buparlisib PI3 K-AKT signaling pathway Inhibition of invadopodia formation [208]

SRC dasatinib, saracatinib, nintedanib EGFR-Src-Arg-cortactin signaling pathway Inhibition of invadopodia formation 
and maturation [106]

STAT3 OPB-31121 STAT3/Cortactin signaling pathway Inhibition of invadopodia formation [203]

TGFB1 dalantercept ERK signaling pathway Inhibition of invadopodia formation [209]
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a broad-spectrum inhibitor of matrix metalloprotein-
ases (MMPs), effectively inhibits the enzymatic activity 
of several MMPs, particularly those critically involved 
in invadopodia-driven extracellular matrix degrada-
tion. Despite initial promise in early-phase trials, mari-
mastat’s development was hampered by dose-limiting 
musculoskeletal toxicity. More than 50 MMP inhibi-
tors have failed in clinical trials, largely due to subop-
timal trial design, inappropriate clinical endpoints, 
and adverse toxicity profiles [214, 215]. These findings 
underscore the necessity for next-generation MMP 
inhibitors with improved selectivity and tumour-tar-
geting capabilities. Collectively, these pharmacological 
interventions validate the therapeutic potential of tar-
geting invadopodia-associated signalling pathways and 
enzymatic functions. With advances in molecular pre-
cision and drug delivery technologies, such strategies 
may complement existing anti-metastatic regimens and 

contribute meaningfully to the clinical management of 
solid tumours.

In principle, invadopodia inhibitors may effectively 
suppress cancer metastasis, potentially providing patients 
with an extended survival period and optimal surgical 
timing. However, according to the"grow or go"theory, 
cancer cell invasion and proliferation are negatively cor-
related, meaning these processes cannot occur simul-
taneously [216]. Thus, targeting invadopodia alone may 
not be sufficient for patients with metastatic disease to 
stop the growth of established metastatic lesions. This 
suggests that effectively treating metastatic cancer may 
require strategies that inhibit both tumor invasion and 
proliferation [217]. A combination of invadopodia inhibi-
tors with cytotoxic therapies may provide an effective 
treatment approach by simultaneously reducing metas-
tasis and controlling tumor proliferation. Inhibiting 
invadopodia formation may also increase the cytotoxic 
effects of chemotherapeutic drugs, therefore improving 

Table 4 Clinical trials evaluating the anti-metastatic inhibition of invadopodia-targeted drugs

Drug Gene Cancer type Interference Clinical trial (NCT number)

Aflibercept EGFR
ERBB2
ERBB3
ERBB4

Colorectal Cancer Aflibercept + Oxaliplatin + 
5-Fu + Folinic acid
Aflibercept + Folfiri

NCT00851084
NCT00561470

Prostatic Cancer Aflibercept + Docetaxel + 
Prednisone or Prednisolone

NCT00519285

Bevacizumab VEGFA Breast Cancer Abraxane + Bevacizumab
Carboplatin + Bevacizumab + 
Herceptin

NCT00281528
NCT01004172

Colorectal Cancer Pembrolizumab + 
Bevacizumab + Binimetinib
5-Fluorouracil + Bevacizumab + Leucovorin 
+ Oxaliplatin

NCT03475004
NCT00508872

Esophagogastric Adenocarcinomas Capecitabine + Oxaliplatin + Bevacizumab NCT00447330

Cabozantinib MET Prostate cancer Cabozantinib NCT01834651

Non small cell lung cancer Cabozantinib NCT02132598

Cetuximab EGFR Colorectal Cancer Cetuximab
Cetuximab + Oxaliplatin
Cetuximab + Oxaliplatin + 
Capecitabine

NCT00083720
NCT00125034
NCT00444678

Dasatinib ABL2
PDGFRBSRC

Breast cancer Dasatinib
Dasatinib + Zoledronic acid

NCT00371254, NCT00410813
NCT00566618

Head and neck cancer Dasatinib NCT00507767

Erlotinib EGFR
ERBB2

Non small cell lung cancer Erlotinib + Romidepsin NCT01302808

Esophageal Cancer Erlotinib + 5-Fluorouracil + Leucovorin 
+ Oxaliplatin

NCT00539617

Everolimus MTOR Breast Cancer Letrozole + Lapatinib + Everolimus Everoli-
mus + Vinorelbine + Trastuzumab

NCT01499160
NCT01305941

Sirolimus MTOR Prostate Cancer Carboplatin + Docetaxel + Sirolimus NCT02565901

Sorafenib BRAF PDGFRB Advanced or Metastatic Urothelial Cancer Sorafenib Tosylate NCT00112671

Colorectal Cancer Sorafenib + Mfolfox6 NCT00865709

Sunitinib PDGFRB Melanoma Sunitinib Malate NCT00462982

Adenocarcinoma of the Gastroesophageal 
Junction

Sunitinib Malate + Capecitabine NCT00891878
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therapeutic outcomes. Studies have shown that cancer 
cell extravasation relies on invadopodia [3, 194, 218], 
providing a strong rationale for targeting invadopodia at 
any stage of disease progression to prevent metastasis. 
To determine whether drugs that regulate invadopodia-
related proteins are being evaluated in clinical trials for 
distant metastasis, a search was conducted on Clinical-
Trials to identify ongoing studies investigating the anti-
metastatic effects of such drugs (Table 4).

Most of the drugs that are currently under investigation 
target kinases such as EGFR, VEGFR, and PDGFR. These 
kinases play important roles in regulating the elongation 
and stability of the actin core, the delivery and secretion 
of MMPs, and the turnover of protrusions [219]. Clinical 
trials provide valuable data from the human physiological 
environment, helping us understand the effects of drugs 
on specific tumor types. This understanding can guide 
the development of more targeted strategies to inhibit 
invadopodia and improve efficacy while reducing side 
effects.

Conclusion and outlook
Invadopodia, specialized protrusions in tumor cells, have 
gained significant attention due to their role in tumor 
invasion and metastasis. Early research on tumor biology 
using 2D and 3D models has provided insights into the 
multi-stage processes governing invadopodia formation. 
The TME, where invadopodia forms, is highly dynamic, 
allowing cells to detect and respond to minor fluctua-
tions that promote tumor invasion and dissemination. 
Thus, it is important to thoroughly investigate the signal-
sensing capabilities of tumor membrane surface recep-
tors and the ensuing signaling pathway activation, which 
precisely controls the development and functioning of 
invadopodia.

Future studies should focus on the mechanical changes 
of invadopodia during matrix degradation, particu-
larly by examining their dynamic characteristics from a 
mechanical perspective and integrating this analysis with 
the invadopodia turnover process. Such investigations 
would allow a more precise characterization of the struc-
tural integrity and functional properties of invadopodia. 
Moreover, integrating previous research on invadopo-
dia structure and regulatory mechanisms may provide a 
theoretical foundation for targeted therapeutic strategies 
aimed at modulating invadopodia formation and activ-
ity. These studies may identify novel therapeutic targets, 
offering potential strategies to mitigate metastatic cancer 
by inhibiting invadopodia, therefore advancing the devel-
opment of effective anti-metastatic therapies.
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