
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​
v​e​c​​o​m​m​​o​n​s​.​​o​r​​g​/​l​​i​c​e​​n​s​e​s​​/​b​​y​-​n​c​-​n​d​/​4​.​0​/.

Wang et al. Journal of Translational Medicine          (2025) 23:505 
https://doi.org/10.1186/s12967-025-06503-5

Journal of Translational 
Medicine

*Correspondence:
Fengchun Wu
2018760372@gzhmu.edu.cn
Kai Wu
kaiwu@scut.edu.cn

Full list of author information is available at the end of the article

Abstract
Introduction  The brain imaging subtypes of schizophrenia have been widely investigated using data-driven 
approaches. However, the heterogeneity of SZ in multiple biological data is largely unknown.

Methods  A data-driven model was used to classify brain imaging, gut microbiota, and brain-gut fusion data 
obtained through a dot product fusion method, identifying significant subtypes and calculating their correlations 
with clinical symptoms and cognitive performance.

Results  These subtypes remain relatively independent and demonstrate typical features and biomarkers, which 
are significantly associated with clinical symptoms and cognitive performance. Two brain subtypes with opposite 
structural and functional changes are identified: (1) a structural variant-dominant brain subtype with negative 
symptoms and cognitive deficits and (2) a functional alteration-dominant brain subtype with positive symptoms. The 
three gut subtypes include the following: (1) Collinsella-dominant; (2) Prevotella-dominant with positive symptoms; 
and (3) Streptococcus-dominant. Two brain-gut subtypes show different abnormalities in brain‒genus linkages: (1) 
strong connectivity of “brain function in the temporal and parietal lobes–Prevotella” with reduced attention scores and 
(2) strong connectivity of “brain structure and function in the frontal and parietal lobes–multiple genera” with positive 
symptoms. Notably, brain subtypes and brain-gut subtypes are most relevant to clinical symptoms, whereas gut 
subtypes reveal more cognitive biomarkers.

Conclusion  These findings show the potential to identify multiple biological subtypes with distinct biomarkers, 
thereby suggesting the possibility of personalized and precise treatment for SZ patients.
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Introduction
Schizophrenia (SZ) is a severe psychiatric disorder 
characterized by various complex symptoms, including 
delusions, hallucinations, emotional apathy and social 
withdrawal [1–3]. While the current evidence has estab-
lished schizophrenia as a multifactorial disorder involv-
ing aberrant neurodevelopmental, neurochemical, and 
neuroimmune pathways, the exact pathogenic mecha-
nisms remain elusive [4, 5]. The traditional diagnostic 
assessment of SZ is mainly based on clinical interviews 
and scales measuring clinical symptoms [6]. However, 
previous research on SZ has revealed substantial het-
erogeneity in terms of clinical symptoms, treatment and 
biological markers [7–10]. Due to heterogeneity, the 
treatment response in patients with SZ varies, suggesting 
the existence of different subtypes caused by their inter-
nal biological mechanisms [9, 10]. Identifying various 
subtypes using biological data could help to overcome 
the challenges stemming from heterogeneity [11].

Over the past two decades, rapid advancements in 
brain imaging methods, including structural magnetic 
resonance imaging (sMRI) and resting-state functional 
magnetic resonance imaging (rs-fMRI), have provided 
clinicians with an unparalleled opportunity to noninva-
sively explore brain structure and function in SZ patients 
[12, 13], and have offered valuable insights into its neu-
robiological mechanisms and molecular biomarkers [14, 
15]. Importantly, a number of data-driven neuroimag-
ing studies have considerably expanded methodologi-
cal theories and applied research in brain subtypes of 
SZ, leading to novel achievements and breakthroughs in 
understanding the heterogeneity of SZ in patients. The 
alterations in brain structure in patients with different 
SZ subtypes vary, affecting both cortical and subcorti-
cal regions, with widespread alterations in white matter 
volume (WMV) also observed across different subtypes 
[16, 17]. Functional connectivity (FC) exhibit variability 
across multiple brain regions between patients with dif-
ferent SZ subtypes, particularly in the lateral frontal cor-
tex, temporoparietal junction, precuneus, and anterior 
temporal lobe network [18, 19]. Additionally, clinical 
symptoms and cognitive performance are significantly 
different between patients with different SZ subtypes. 
Recent studies revealed that salience network-centered 
hypoconnectivity is correlated with severe clinical symp-
toms and attention deficits, whereas the other subtypes 
are characterized by hyperconnectivity with greater cog-
nitive flexibility impairments, and patients with the differ-
ent subtypes demonstrate different symptom progression 
trajectories over time [11, 20]. These findings are critical 
for understanding the heterogeneity of SZ patients; how-
ever, most of them are inconsistent and cannot be vali-
dated across studies. These differences might be due to 
several factors, including early neurodevelopment during 

childhood and adolescence and the duration and treat-
ment of the disease [21–23].

Recently, a large amount of evidence has indicated that 
the gut microbiota may play a crucial role in the patho-
physiology of SZ in patients [24]. Although the abun-
dance of the gut microbiota, such as Veillonella and 
Bilophila, in SZ patients has shown consistent trends 
across several studies [25–28], significant heterogeneity 
in the abundance of the gut microbiota has been observed 
in many other studies [29]. Specifically, some studies have 
reported conflicting findings on Blautia abundance, 
with one reporting a reduction in SZ patients compared 
with healthy controls (HCs) and the other reporting an 
increase [28, 30]. These discrepancies may be attributable 
to variations in the sample size or the influence of anti-
psychotic medication. Similarly, findings on Enterococcus 
also vary. A study involving 40 first-episode SZ patients, 
85 chronically antipsychotic-treated SZ patients, and 
69 HCs reported that Enterococcus levels were elevated 
in chronically treated SZ patients compared with HCs 
[25]. This finding is associated with antipsychotic treat-
ment-related alterations in the gut microbiota, suggest-
ing that prolonged antipsychotic use may significantly 
impact the gut microbial composition. However, another 
study revealed that Enterococcus levels were reduced 
in SZ patients [24]. Additionally, mixed results have 
been reported for Lactobacillus, as it was enriched in 
SZ patients in one study but significantly decreased in 
another; it is also noted for its potential probiotic ben-
efits, particularly in weight management and metabolic 
conditions such as obesity and diabetes [30, 31]. Fur-
thermore, recent studies reported that SZ patients with 
deficits had high levels of Mycobacterium avium and cog-
nitive impairments, whereas SZ patients without deficits 
had even higher M. avium levels but were less prone to 
cardiovascular disease [32, 33]. Although numerous stud-
ies have revealed alterations in the gut microbiota of SZ 
patients, the lack of definitive conclusions may stem from 
an oversight of the intrinsic subtypes of the disorder. The 
absence of individualized analyses has also hindered the 
identification of consistent gut microbial markers, which 
likely contributes to the seemingly contradictory findings 
across these studies [34].

The brain‒gut axis is a bidirectional communication 
pathway between the central and enteric neural systems 
that has long been recognized for maintaining homeo-
stasis [35, 36]. Recent advances have demonstrated that 
the gut microbiota influences the brain through diverse 
metabolic and immunological pathways, with studies 
on the brain‒gut axis in SZ patients further revealing its 
significant role in modulating the pathophysiology and 
clinical symptoms of this disorder [37–39]. Specific stool 
bacteria can trigger SZ-like behavioral changes by reduc-
ing glutamate levels and increasing glutamate, glutamine, 
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and gamma-aminobutyric acid concentrations in the hip-
pocampus [37]. Specifically, Sellimonas and Roseburia 
play crucial roles in the brain‒gut axis, with Sellimonas 
being positively correlated with negative symptoms in SZ 
patients and potentially influencing brain network prop-
erties, whereas Roseburia is associated with gut health 
and immune regulation, making these microbes promis-
ing biomarkers for the severity of SZ symptoms [40, 41]. 
In addition, probiotics such as Lactobacillus and Bifido-
bacterium have been shown to increase the antioxidant 
capacity in vivo and reduce pathogenic inflammation via 
their effects on metabolic pathways [38]. Furthermore, 
particular bacteria influence brain development and 
neuroplasticity by altering neurotrophic factors, includ-
ing brain-derived neurotrophic factor, and N-methyl-D-
aspartate receptors [39]. These studies have shown the 
great potential of the brain‒gut axis for exploring the 
pathology of SZ. Despite these advances, few systematic 
studies have further addressed the heterogeneity of the 
brain‒gut axis in SZ patients [42].

In this study [43], we applied a data-driven approach 
to systematically investigate three subtypes of SZ using 
brain imaging data (SZ = 250, HCs = 300), gut microbi-
ota data (SZ = 193, HCs = 123), and a fusion of brain‒gut 
data (SZ = 43, HCs = 55). We analyzed distinct features 
between subtypes and explored correlations between 
these features and the scales of clinical symptoms and 
cognitive performance of patients with each subtype. 
Moreover, we aimed to determine the overlap between 
the multiple biological SZ subtypes.

Materials and methods
Participants
Participants in this study were recruited from 768 indi-
viduals (SZ = 400, HCs = 368) at the Affiliated Brain Hos-
pital of Guangzhou Medical University and the Center 
for Biomedical Studies Excellence (COBRE) dataset, 
matched for sex, age, education, and lower body mass 
index (BMI). We recruited 633 Chinese Han participants 
(SZ = 333, HCs = 300) aged 18–60. The local brain data-
set included sMRI and rs-fMRI data from 183 SZ patients 
and 232 HCs, while stool samples were collected from 
193 SZ patients and 123 HCs. The two datasets over-
lapped in 98 participants (SZ = 43, HCs = 55). The brain 
subtypes (BSs) were studied using the local brain dataset 
as the training dataset and COBRE as the validation data-
set. For the gut subtypes (GSs) and brain–gut subtypes 
(B-GSs), 80% of the dataset was randomly screened to be 
used as the training dataset, and the rest was used as the 
validation dataset. The scores for the first five dimensions 
of the Positive and Negative Symptom Scale (PANSS) and 
the MATRICS Consensus Cognitive Battery (MCCB) 
scales were collected for all participants. Table 1 provides 

a summary of the participants’ demographic information, 
with averages used for missing data.

The diagnosis of SZ was based on DSM-IV-TR criteria, 
with patients diagnosed by clinical psychiatrists and hav-
ing a disease duration of > 2 years. The specific exclusion 
criteria are described in Supplemental Method S1. The 
study followed the Declaration of Helsinki [44], and was 
approved by the Ethics Committee of the Affiliated Brain 
Hospital, Guangzhou Medical University (approval No. 
(2019)016). Informed consent was obtained from all par-
ticipants or their legal guardians.

MRI data preprocessing and brain feature extraction
All MR images for the local brain dataset were acquired 
using a 3.0-T Philips MR scanner (Philips, Achieva, the 
Netherlands) at the Affiliated Brain Hospital, Guangzhou 
Medical University. Participants were instructed to rest 
quietly, breathe steadily, close their eyes, and minimize 
movement during the scan. T1-weighted sMRI images 
were obtained using the MPRAGE sequence and rs-fMRI 
images were collected using the EPI sequence. The MRI 
acquisition parameters are described in Supplemen-
tal Method S2. MRI images from different sites were 
calibrated in multiple centers. Images of all enrolled 
participants had no excessive head movements (head 
translation < 3 mm or rotational movement less than 3°).

The preprocessing steps for both sMRI and rs-fMRI 
were conducted using SPM8 and DPABI [45]. This part is 
the same as our previous multi-experiment [46–48, 49], 
as described in Supplemental Method S3. In brief, we 
use the gray matter volume (GMV), white matter volume 
(WMV), amplitude of low-frequency fluctuation (ALFF) 
and regional homogeneity (ReHo), FC matrix and the 
network features (clustering coefficient and global effi-
ciency). Additionally, this study employed the AAL tem-
plate and eight brain networks: the default mode network 
(DMN), the somatomotor network (SMN), the visual 
network (VSN), the dorsal attentional network (DAN), 
the ventral attentional network (VAN), the frontoparietal 
network (FPN), the subcortical network (SCN), and the 
limbic network (LN) [50–54].

Stool sample collection and gut feature extraction
Stool sample collection and gut feature extraction meth-
ods were similar to those described in our previous stud-
ies [40, 41, 55, 56], and the specific methodology as in the 
Supplemental Methods S4. In this study, we removed 176 
genera that were missing in more than 10% of the partici-
pants. Finally, we selected Collinsella, Faecalibacterium, 
Clostridium, Blautia, Gemmiger, Bacteroides, Prevotella, 
Lachnospira, Roseburia, Bifidobacterium, Bilophila, 
Dorea, Oscillospira, Streptococcus, Anaerostipes, Para-
bacteroides, Phascolarctobacterium, Coprococcus, Rumi-
nococcus, and Veillonella as the core genera for human 
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health before subsequent analysis [57]. The co-abundance 
network of the 20 selected genera was constructed using 
the SparCC technique, which calculates logarithmic scale 
variances to infer interrelationships among the genera 
[58]. Additionally, alpha diversity and relative abundance 
(RA) of these genera were extracted for further analysis.

Brain‒gut feature fusion
To construct a brain–gut network and extract fusion 
features, we evaluated various fusion methods, with 
comparative results detailed in Supplemental Table S3. 
Building on these insights, we have developed a novel 
approach fusion method which called dot product fusion 
[59], wherein the brain feature matrix is transposed and 
element-wise multiplied with the gut feature matrix to 
capture interactions between corresponding brain and 

gut components. The mathematical formula for dot prod-
uct fusion is as follows:

	 Z = X ◦ Y T � (1)

where ∘ denotes the Hadamard product (element-wise 
multiplication), Z is the fusion brain-gut feature matrix, 
X is the gut feature matrix, YT is the transpose of the 
brain feature matrix. Further methodological details and 
code are provided in Supplemental Method S5 and Sup-
plemental Code S1.

Data-driven approach
A general linear model was used to remove the effects 
of covariates (sex, age, education, and BMI) before data 
input into the data-driven approach.

Table 1  Demographic information of SZ patients and HCs from each site. a)
a)
Institution Brain local dataset (n = 415) Brain COBRE (n = 135)
Group SZ 

(n = 183)
HCs 
(n = 232)

pBonferroni SZ 
(n = 67)

HCs 
(n = 68)

pBonferroni

Sex (female/male) 65/118 91/141 1 13/54 23/45 0.531
Age (years) 34.22 ± 0.66 33.25 ± 0.60 1 37.82 ± 1.69 35.98 ± 1.43 1
Education (years) 11.43 ± 0.22 11.14 ± 0.18 1 12.90 ± 0.24 11.71 ± 0.40 0.189
BMI (kg/m²) 23.51 ± 0.23 23.04 ± 0.21 1 —— —— ——
PANSS PScore 20.29 ± 0.54 —— —— 14.75 ± 0.58 —— ——
PANSS NScore 21.59 ± 0.56 —— —— 14.45 ± 0.59 —— ——
PANSS GScore 38.18 ± 0.74 —— —— 29.06 ± 1.04 —— ——
PANSS TScore 80.06 ± 1.54 —— —— 58.25 ± 1.71 —— ——
Processing Speed 33.35 ± 1.51 47.85 ± 0.61 < 0.001 36.03 ± 1.49 53.51 ± 1.10 < 0.001
Attention/Vigilance 37.08 ± 1.06 49.17 ± 0.60 < 0.001 37.11 ± 1.76 49.13 ± 1.08 < 0.001
Working Memory 36.89 ± 1.35 43.65 ± 0.68 < 0.001 39.90 ± 1.59 50.30 ± 1.35 < 0.001
Verbal Learning 35.69 ± 1.55 47.22 ± 0.63 < 0.001 38.47 ± 1.04 46.57 ± 1.14 < 0.001
Visual Learning 39.11 ± 1.37 47.88 ± 0.62 < 0.001 36.84 ± 1.50 46.10 ± 1.29 < 0.001
First 5 d MCCB Score 182.40 ± 5.26 235.79 ± 2.09 < 0.001 188.35 ± 5.59 245.61 ± 3.95 < 0.001
b)
Institution Gut local dataset (n = 316) Brain–gut local dataset (n = 98)
Group SZ 

(n = 193)
HCs 
(n = 123)

pBonferroni SZ 
(n = 43)

HCs 
(n = 55)

pBonferroni

Sex (female/male) 82/111 59/64 1 20/23 24/31 1
Age (years) 42.98 ± 0.96 42.63 ± 1.17 1 34.26 ± 1.68 33.98 ± 1.37 1
Education (years) 11.18 ± 0.13 10.88 ± 0.11 1 12.30 ± 0.55 15.69 ± 0.40 0.010
BMI (kg/m²) 23.51 ± 0.19 23.27 ± 0.26 1 23.76 ± 0.65 22.18 ± 0.39 0.300
PANSS PScore 11.24 ± 0.32 —— —— 11.00 ± 0.72 —— ——
PANSS NScore 16.89 ± 0.47 —— —— 18.53 ± 1.12 —— ——
PANSS GScore 27.99 ± 0.46 —— —— 32.65 ± 1.42 —— ——
PANSS TScore 56.12 ± 0.98 —— —— 62.19 ± 2.67 —— ——
Processing Speed 33.25 ± 1.08 50.93 ± 0.82 < 0.001 36.58 ± 2.23 47.95 ± 1.14 < 0.001
Attention/Vigilance 36.49 ± 0.92 50.72 ± 0.82 < 0.001 38.84 ± 1.49 47.69 ± 1.20 < 0.001
Working Memory 36.72 ± 0.97 49.14 ± 0.78 < 0.001 39.47 ± 2.13 46.64 ± 1.10 0.050
Verbal Learning 33.74 ± 0.95 45.56 ± 0.88 < 0.001 34.58 ± 2.09 41.56 ± 1.18 0.040
Visual Learning 35.42 ± 1.04 48.22 ± 0.91 < 0.001 39.42 ± 2.09 46.69 ± 1.07 0.011
First 5 d MCCB Score 175.62 ± 3.92 244.57 ± 2.91 < 0.001 188.88 ± 7.98 230.53 ± 3.79 < 0.001
The data are reported as the means ± standard errors of the means. The PANSS PScore, PANSS NScore, PANSS GScore, and PANSS TScore represent the positive scores, 
negative scores, general cognitive scores, and total scores of the PANSS, respectively. Multiple comparisons are corrected by the Bonferroni correction
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To address limitations of small-sample data and 
enhance classification accuracy, a denoising autoencoder 
(DAE) was employed for data enhancement. The DAE, 
comprising a noisy input, encoder, and decoder, was 
trained using the Adam optimizer, a batch size of 64, and 
50 epochs, with the mean squared error as the loss func-
tion. Outputs from 10 cycles were averaged for robust 
results.

High-dimensional data from the DAE were reduced 
using independent component analysis (ICA) to extract 
key features. A hybrid clustering method combining 
k-means, Gaussian mixture model (GMM), and spectral 
clustering was applied, leveraging data similarity, prob-
ability density, and graph theory. This approach was 
chosen to integrate the strengths of different cluster-
ing techniques, ensuring robustness and adaptability for 
complex data structures compared to standard methods 
such as hierarchical clustering. Specific robustness com-
parisons are provided in Supplemental Table S1. The 
optimal number of clusters (2 to 15) was determined 
using the silhouette coefficient (SC) and Bayesian infor-
mation criterion (BIC), while the adjusted rand index 
(ARI) was used to assess clustering reproducibility, with 
value closer to 1 indicating high reliability. Furthermore, 
as shown in Supplemental Table S2, sensitivity analy-
ses were conducted using a controlled variable method 
on the brain imaging dataset to evaluate the impact of 
hyperparameter variations on clustering outcomes and 
subtype formation. These analyses informed our final 
selection of optimal hyperparameter settings for subtype 
formation.

Python (Ver.3.8) was used for all steps, including 
covariate removal, data enhancement, dimensionality 
reduction, clustering, and evaluation. The detailed work-
flow of methods is illustrated in Fig. 1. Detailed method-
ology can be found in Supplemental Methods S6.

Validation analysis and statistical analysis
The validation datasets underwent the same processes as 
the training datasets. A Kruskal‒Wallis (KW) test with 
Bonferroni correction was used to compare subtype 
features between datasets. An adjusted pBonferroni> 0.05 
indicated no significant differences, confirming subtype 
consistency.

Differences in BS, GS, and B-GS features were analyzed 
via KW tests with Bonferroni correction. Effect sizes 
were quantified by eta squared (η2), and 95% confidence 
intervals (CI) were calculated for median difference. 
Adjusted pBonferroni < 0.05 indicating significant differ-
ences. Brain features, network connectivity, and genus 
relationships were compared between subtypes and HCs. 
Demographics, clinical symptoms, and cognitive perfor-
mance were analyzed across subtypes. Pearson’s correla-
tion coefficients identified biomarkers (adjusted pBonferroni 

< 0.05) linked to PANSS and MCCB scores. Subtypes 
with sample sizes < 50 were resampled using the boot-
strap method, averaging 1000 iterations [60].

We also performed mediation effect analyses to 
assess whether gut microbiota mediates the relation-
ship between brain connectivity and cognitive function 
(brain-gut-scale) or whether brain connectivity medi-
ates the relationship between gut microbiota and cogni-
tive function (gut-brain-scale), using bootstrapped CI to 
evaluate indirect effects.

This section were conducted in Python (ver. 3.8). See 
more details in Supplemental Methods S7.

Results
Two brain subtypes with their corresponding biomarkers
Based on SC and BIC co-screening, two clusters were 
identified as the optimal number for BSs, with an ARI 
of 0.711, indicating high reproducibility. KW tests with 
Bonferroni correction confirmed that BS1 (pBonferroni = 
0.221) and BS2 (pBonferroni = 0.335) from training and vali-
dation datasets could be considered the same subtypes. 
Detailed results and demographics are in Supplemental 
Figure S2 and Supplemental Table S4.

Compared to HCs, BS1 showed increased WMV in 
the frontal and temporal lobes, while BS2 had decreased 
WMV in the frontal lobe. Functionally, BS1 had increased 
ALFF and ReHo in the prefrontal and temporal lobes but 
decreased values in the occipital lobe, while BS2 showed 
the opposite pattern. Network features differed, with BS1 
showing lower clustering coefficients (η2 = 0.253, pBonferroni 
< 0.001, 95% CI = (0.001, 0.002)) and BS2 showing higher 
clustering coefficients (η2 = 0.210, pBonferroni = 0.022, 95% 
CI = (0.002, 0.006)) and global efficiency (η2 = 0.351, 
pBonferroni = 0.004, 95% CI = (-0.002, 0.000)).

Abnormal FC patterns also differed. BS1 had weak 
connectivity in SMN, VSN, LN, and DMN–SMN but 
stronger DMN and DMN-FPN connectivity. BS2 showed 
stronger occipital connectivity and weaker SMN, VAN, 
and DMN-LN connectivity. Clinical differences included 
higher PANSS positive (η2 = 0.219, pBonferroni = 0.004, 
95% CI = (13.579, 15.913)) and total scores (η2 = 0.166, 
pBonferroni = 0.048, 95% CI = (54.833, 61.674)) for BS1, 
while MCCB scores differed significantly between BSs 
and HCs (η2 = 0.441, pBonferroni < 0.001, 95% CI = (266.471, 
302.863)).

Pearson’s correlations revealed significant links 
between brain features and PANSS and MCCB scores, 
with WMV (BS1) and ALFF/ReHo (BS2) showing strong 
relationships. Notably, WMV in BS1 patients (r = -0.47, 
pBonferroni = 7.78e-06), front area ALFF in BS2 patients 
(r = -0.60, pBonferroni = 8.84e-12) and back area ReHo in 
BS2 patients (r = 0.60, pBonferroni = 8.80e-12) were relevant 
to the PANSS scores. Additionally, the front area’s ALFF 
for BS1 patients (r = 0.40, pBonferroni = 8.32e-04) was highly 
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correlated with the MCCB scores. Key data are detailed 
in Fig. 2 and Supplemental Materials.

Three gut subtypes with their corresponding biomarkers
Based on SC and BIC analysis, three clusters were iden-
tified as the optimal GSs, with an ARI of 0.732, indi-
cating high reproducibility. KW tests with Bonferroni 

correction confirmed consistency between training 
and validation datasets for GS1 (pBonferroni = 0.965), GS2 
(pBonferroni = 0.131), and GS3 (pBonferroni = 0.629). Detailed 
results and demographics are in Supplemental Figure S2 
and Supplemental Table S6.

Alpha diversity differed significantly among GSs and 
HCs, with GS1 and GS3 showing higher diversity than 

Fig. 1  The experimental methodology. (a) Method used to extract brain features. (b) Method used to extract gut features. (c) Method used for the fusion 
and extraction of brain–gut features. (d) Data-driven approach integrating the DAE for data enhancement, ICA for dimensionality reduction, k-means, 
GMM, and spectral methods for clustering
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Fig. 2 (See legend on next page.)
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HCs (GS1: η2 = 0.291, pBonferroni < 0.001, 95% CI = (5.739, 
5.740); GS3: η2 = 0.347, pBonferroni < 0.001, 95% CI = (5.736, 
5.738)), while GS2 showed no significant difference. 
RA analysis revealed distinct genus profiles: GS1 had 
increased Collinsella (η2 = 0.222, pBonferroni = 0.003, 95% 
CI = (-0.009, -0.004)), GS2 showed decreased Gemmiger 
(η2 = 0.553, pBonferroni = 0.037, 95% CI = (-0.146, -0.010)) 
and increased Prevotella (η2 = 0.628, pBonferroni < 0.001, 
95% CI = (-0.020, -0.008)), and GS3 displayed a similar 
pattern to GS2 but with additional increases in Strep-
tococcus (η2 = 0.305, pBonferroni = 0.033, 95% CI = (0.000, 
0.020)). These findings are in Fig. 3a-b and Supplemental 
Table S7.

Inter-genus relationships also varied. GS1 showed 
weaker connections than HCs, GS2 had stronger connec-
tions, and GS3 was similar to HCs except for Prevotella. 
Specific anomalous relationships, such as Prevotella–
Streptococcus (strengthened in GS1, weakened in GS2), 
were identified. Further details are in Fig. 3c and Supple-
mental Figures S8–S9.

Clinical and cognitive differences were assessed 
(Fig.  3d). GSs differed significantly from HCs in MCCB 
scores (η2 = 0.614, pBonferroni < 0.001, 95% CI = (197.012, 
210.852)) but showed no significant differences in over-
all PANSS or MCCB scores. However, pairwise compari-
sons revealed differences in PANSS PScore (η2 = 0.344, 
pBonferroni = 0.040, 95% CI = (10.484, 11.842)). Radargram 
areas for PANSS and MCCB scores also highlighted dif-
ferences between GSs and HCs, detailed in Supplemental 
Table S10.

Key biomarkers were identified in association with 
clinical characteristics. Specifically, in GS1, MCCB 
scores correlated with Prevotella–Streptococcus (r = 0.24, 
pBonferroni = 2.44e-02) and Bilophila–Gemmiger (r = 0.24, 
pBonferroni = 2.01e-02). In GS2, PANSS scores correlated 
with Ruminococcus–Anaerostipes (r = 0.52, pBonferroni 
= 3.64e-02), while MCCB scores correlated with Pre-
votella–Streptococcus (r = -0.66, pBonferroni = 4.20e-03). In 
GS3, Bifidobacterium–Veillonella was negatively corre-
lated with PANSS TScore (r = -0.35, pBonferroni = 4.99e-02), 
and Prevotella–Oscillospira positively correlated with 
MCCB visual learning (r = 0.52, pBonferroni = 1.41e-03). See 
Fig. 3e-g and Supplemental Figure S10 for details.

Two brain–gut subtypes with their corresponding 
biomarkers
The SC and BIC analysis identified 2 clusters as the opti-
mal number for B-GSs, with an ARI of 0.695. KW tests 
with Bonferroni correction confirmed no significant dif-
ferences between training and validation datasets for 
B-GS1 (pBonferroni = 0.161) and B-GS2 (pBonferroni = 0.522). 
Detailed results are shown in Supplemental Figure S2 
and Supplemental Table S8.

Abnormal fusion features differed significantly between 
the two B-GSs and HCs. In B-GS1, increased features 
included “ALFF of HES.R–Oscillospira” (η2 = 0.279, 
pBonferroni < 0.001, 95% CI = (0.123, 0.487)) and “ReHo of 
CAU.R–Prevotella,” (η2 = 0.412, pBonferroni < 0.001, 95% CI 
= (0.102, 0.358)) while decreased features involved “ReHo 
of SMG.R–Oscillospira” (η2 = 0.589, pBonferroni < 0.001, 
95% CI = (-0.215, -0.104)) and “ReHo of IPL.L–Oscil-
lospira.” (η2 = 0.325, pBonferroni < 0.001, 95% CI = (-0.189, 
-0.105)) For B-GS2, increased features included “ALFF 
of ORBmid.L–Oscillospira” (η2 = 0.478, pBonferroni < 0.001, 
95% CI = (0.547, 0.773)) and “ALFFof FFG.R–Bacteroi-
des,” (η2 = 0.529, pBonferroni < 0.001, 95% CI = (0.295, 0.801)) 
while decreased features involved “WMV of SPG.R–Veil-
lonella” (η2 = 0.298, pBonferroni < 0.001, 95% CI = (-0.654, 
-0.342)) and “ALFF of PUT.L–Oscillospira.” (η2 = 0.364, 
pBonferroni < 0.001, 95% CI = (-0.614, -0.348)). Fusion fea-
tures for FC–RA revealed increased SMN–FPN con-
nectivity for B-GS1, while B-GS2 showed strengthened 
SMN–Prevotella connectivity.

Clinical differences between B-GSs and HCs included 
PANSS PScore (η2 = 0.430, pBonferroni = 0.032, 95% CI 
= (9.546, 12.454)) and significant MCCB differences 
across dimension (η2 = 0.458, pBonferroni < 0.001, 95% CI = 
(203.167, 221.344)). Radargrams highlighted differences 
in PANSS domains and MCCB scores (Fig. 4b).

Pearson correlations revealed distinct associations. For 
B-GS1, “ALFF of HES.R–Oscillospira” negatively corre-
lated with PANSS PScore (r = -0.40, pBonferroni = 2.21e-02), 
and “ReHo of CAU.R–Prevotella” correlated with MCCB 
visual learning (r = -0.40, pBonferroni = 2.41e-02). For 
B-GS2, “WMV of SPG.R–Veillonella” had a strong nega-
tive correlation with PANSS PScore (r = -0.75, pBonferroni 
= 9.78e-03), and “GMV of PCG.R–Oscillospira” positively 
correlated with MCCB verbal learning (r = 0.66, pBonferroni 

(See figure on previous page.)
Fig. 2  Differences between the two brain subtypes and their corresponding biomarkers. (a) Comparison of differences in GMV, WMV, ALFF, and ReHo 
(dGMV, dGMV, dALFF, and dReHo) between BS1 patients and HCs. (b) Comparison of dGMV, dGMV, dALFF, and dReHo between BS2 patients and HCs. (c) 
Differences in the network features of the clustering coefficient and global efficiency between BSs and HCs. *pBonferroni< 0.05, **pBonferroni< 0.01, ***pBonferroni< 
0.001. (d) Abnormal brain FC in BSs compared with HCs. (e) Brain FC abnormalities in BSs and the networks in which they reside are shown and compared 
with HCs. (f) Differences in clinical symptoms and cognitive performance between BSs and HCs (data are normalized), where P, N, G, and T represent 
PANSS PScore, NScore, GScore, TScore, respectively. M1-M5 and M represent processing speed, attention/vigilance, working memory, verbal learning, 
visual learning, and total scores of the first five dimensions of the MCCB, respectively. ●pall< 0.05 and ○pBSs< 0.05 (with Bonferroni correction); all values are 
displayed in Supplemental Table S4. (g) Biomarkers of the PANSS and MCCB scores of BS1 patients. (h) Biomarkers of the PANSS scores of BS2 patients. The 
error bands in figures (g-h) represent 95% confidence interval
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Fig. 3  Differences between the three gut subtypes and their corresponding biomarkers. (a) Comparison of alpha diversity between GSs. ***pBonferroni< 
0.001. (b) Differences in RA between GSs. (c) Abnormal relationships between genera in GSs compared with HCs. (d) Differences in clinical symptoms and 
cognitive performance vary among GSs and HCs, which are shown as normalized values, where P, N, G, and T represent PANSS PScore, NScore, GScore, and 
TScore, respectively. M1-M5 and M represent processing speed, attention/vigilance, working memory, verbal learning, visual learning, and total scores of 
the first five dimensions of the MCCB, respectively. ■pall< 0.05, ◆pGSs< 0.05, □pGS1 vs. GS2< 0.05, and □pGS2 vs. GS3< 0.05 (with Bonferroni correction); all values 
are displayed in Supplemental Table S6. (e) Biomarkers of the MCCB score in GS1. (f) Biomarkers of the PANSS and MCCB scores in GS2 after bootstrap-
ping. (g) Biomarkers of the PANSS and MCCB scores in GS3 after bootstrapping. For the sake of the aesthetics of the graph, the scatter plot was plotted by 
selecting only the 150 data points obtained after bootstrapping. The error bands in figures (f-g) represent 95% confidence interval
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= 2.82e-02). Detailed findings are shown in Fig. 4c-d and 
Supplemental Figure S14.

Additionally, the mediation analysis results are pre-
sented in Supplemental Results S1 and S2. Certain results 
demonstrate significant mediation effects.

Overlap between the multiple biological subtypes of SZ 
patients
Among 43 overlapping SZ patients, BS, GS, and B-GS 
labels were analyzed via Sankey diagrams and scat-
ter plots (Fig.  5, Supplemental Figure S15). B-GS1 and 
B-GS2 overlapped significantly with BS2. GS1 showed 
wider distribution across BSs and B-GSs, while GS3 was 
prevalent in BS2 and B-GS1. Proportions differed notably 
across subtypes.

Discussion
To the best of our knowledge, this systematic study is the 
first to analyze the subtypes of SZ by integrating brain 
imaging, the gut microbiota, and data obtained from 
their fusion. We applied a data-driven approach and 
revealed multiple biological subtypes, including two BSs 
by brain imaging data, three GSs by gut microbiota data, 
and two B-GSs by brain‒gut fusion data, which differed 
in their typical features and biomarkers. More impor-
tantly, the multiple biological subtypes are relatively 
independent and are related to different clinical symp-
toms and cognitive performance.

Brain subtypes
In the BS analysis, we identified two subtypes with diver-
gent structural and functional changes. Differences in 
clinical symptoms and cognitive performance radargrams 

Fig. 4  Differences between the two brain–gut subtypes and their corresponding biomarkers. (a) Abnormal FC fusion features of B-GSs and HCs (brain 
FC from each brain network and RA fusion features for different genera). (b) Radar plots show differences in the normalized values of clinical symptoms 
and cognitive performance for B-GSs and HCs, where P, N, G, and T represent PANSS PScore, NScore, GScore, and TScore, respectively. M1-M5 and M rep-
resent processing speed, attention/vigilance, working memory, verbal learning, visual learning, and total scores of the first five dimensions of the MCCB, 
respectively. ▲pall< 0.05 and △pB−GSs< 0.05 (with Bonferroni correction), all values are displayed in Supplemental Table S8. (c) Biomarkers of the PANSS and 
MCCB scores in B-GS1 after bootstrapping. (d) Biomarkers of the PANSS and MCCB scores in B-GS2 after bootstrapping. For the sake of the aesthetics of 
the graph, the scatter plot is plotted by selecting only the 150 data points obtained after bootstrapping. The error bands in figures (c-d) represent 95% 
confidence interval
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further supported their distinction. These findings align 
closely with those of previous studies, displaying strong 
consistency with earlier results [17, 18, 61–64].

BS1 can be described as a structural variant-dominant 
type with an increased WMV but limited network effi-
ciency and is associated with negative symptoms and 
cognitive decline. In the analysis of FC and eight net-
works, we identified localized connectivity abnormalities 
in the prefrontal lobe of BS1 patients. These abnormali-
ties were predominantly observed within and between 
networks, particularly in the SMN–LN and intracon-
nectivity of the VSN. The SMN encompasses functional 
regions, including the primary motor cortex, cingulate 
cortex, premotor cortex, and supplementary motor area, 
as well as the primary somatosensory cortex of the pari-
etal lobe, whereas the VSN is located predominantly 
within the occipital lobe [53]. Notably, altered WMV in 
these regions were found to be associated with changes 
in FC and cognitive performance [65, 66]. This change 
may impair connectivity between the SMN and the LN 
and the intraconnectivity of the VSN. These disruptions 
could significantly diminish the role of BS1 in emotion 
regulation, memory consolidation, and motor functions, 
which are largely reliant on sensory and visual process-
ing [67, 68]. Furthermore, diminished SMN connectiv-
ity was linked to reduced sensitivity to external stimuli, 
which may correspond to the higher negative symptom 
scores observed in the BS1 cohort. This reduced capacity 
to engage with external stimuli may prompt a heightened 
focus on internal experiences [69], which in turn corre-
lates with negative symptoms, such as affective flattening.

In contrast, BS2 represents a functional alteration-
dominant type with locally reduced WMV but enhanced 
network efficiency, reflecting more effective communica-
tion and information transfer across brain regions, which 
has been associated with the heightened functional 

connectivity observed in this group [70, 71]. Additionally, 
we identified extended connectivity abnormalities in the 
occipital lobe of BS2 patients, primarily involving inter-
network connectivity between the DMN and SMN, VSN, 
and other networks, as well as intranetwork connectivity 
within the VAN. Previous studies have linked the DMN 
and VSN to positive symptoms in SZ patients [72], and 
our findings corroborate these associations. These find-
ings suggest that this SZ subtype may exhibit increased 
sensitivity and heightened responses to external stimuli 
[53, 73]. This increased sensitivity has been correlated 
with the presence of positive symptoms, including hal-
lucinatory behaviors and heightened agitation, which are 
commonly observed in SZ patients [18, 62]. Similarly, our 
analysis of differences in clinical symptoms and cogni-
tive performance further suggested these distinctions, 
revealing that BS2 exceeded BS1 in working memory, 
vocabulary learning, and the PANSS PScore. We hypoth-
esized that the elevated connectivity of the DMN–SMN 
and VSN in BS2 patients may play a role in compensa-
tory effects, relatively offsetting the two cognitive perfor-
mance scores.

From a clinical perspective, BS1 patients, who exhibit 
structural abnormalities and negative symptoms, may 
benefit from neuromodulation such as transcranial mag-
netic stimulation (TMS) or transcranial direct current 
stimulation (tDCS) [74], as well as glutamatergic or dopa-
mine-modulating agents to enhance SMN connectivity 
and alleviate negative symptoms [75]. In contrast, BS2 
patients, characterized by hyperconnectivity and positive 
symptoms, may respond more effectively to dopamine 
D2 antagonists (e.g., risperidone) [76], and cognitive 
behavioral therapy for psychosis to help reduce sensory 
overload [77].

Fig. 5  Overlap between the multiple biological subtypes of SZ. (a) Sankey diagram showing the overlap between multiple biological subtypes. (b) Scat-
ter plot showing the distribution pattern of subtypes in the three multiple biological datasets
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Gut subtypes
Our study further refined previous studies by clustering 
SZ patients into three subtypes, predominantly domi-
nated by Collinsella, Prevotella, and Streptococcus [29, 
34, 78]. Research has shown that Collinsella produces the 
proinflammatory cytokine interleukin-17a and alters gut 
permeability, which has been associated with systemic 
inflammation in GS1 patients [79]. This inflammatory 
response has been linked to gut health issues, which may 
be related to clinical symptoms. GS3 is characterized by 
the dominance of Streptococcus, which has been shown 
in previous studies to have neuroactive potential associ-
ated with behavioral changes [80]. This microbe has been 
correlated with abnormal neurobehavioral manifesta-
tions in SZ patients. The elevated α diversity in GS1 and 
GS3 patients indicates a more complex gut microbiota, 
which may reflect enhanced metabolic redundancy. This 
increased complexity has been associated with the sup-
pression of inflammatory processes, thereby mitigating 
clinical symptoms to some extent [81, 82]. Moreover, 
compared with GS1, GS3 displayed distinct clinical 
symptom patterns that were likely influenced by the neu-
roactive properties of Streptococcus.

GS2 is dominated by Prevotella, which plays a cru-
cial role in the production of short-chain fatty acids 
(SCFAs) and is associated with weight loss [83]. Interest-
ingly, we observed that GS2 patients had a significantly 
BMI than did patients with the other subtypes. Previ-
ous studies have also indicated an association between 
BMI and symptom severity [84]. Our findings support 
this conclusion by suggesting that the link between low 
BMI and increased symptom severity may be related to 
the function of Prevotella. Previous studies have docu-
mented a genetic correlation between SZ and BMI [85]. 
Our findings provide a novel perspective, indicating that 
Prevotella may be involved in certain underlying bio-
logical mechanisms. Additional rigorous investigations 
are needed to substantiate this hypothesis, and addi-
tional research is essential for comprehensive validation. 
Additionally, the relative abundance of Prevotella in GS2 
patients was much greater than that reported in previous 
Western studies, likely because of the traditional diet of 
the local Han population [83]. Clinically, GS2 patients 
presented significantly higher positive symptom scores 
than GS1 and GS3 patients did, suggesting that Prevotella 
may be associated with increase gut permeability, trigger 
systemic inflammation, and subsequently exacerbate pos-
itive symptoms [86]. A recent study reported a bidirec-
tional relationship between inflammation and metabolic 
function in SZ patients [87]. Taken together, our findings 
underscore that Prevotella could be linked to this rela-
tionship. These findings further suggest that interspecies 
interactions within the gut microbiota can significantly 

impact physiological and cognitive performance in SZ 
patients.

From a therapeutic perspective, GS1 patients should 
receive probiotics (e.g., Lactobacillus and Bifidobacte-
rium) to reduce inflammation and enhance gut health 
[38]. GS2 patients may benefit from SCFAs, anti-inflam-
matory therapies, and weight management to regulate 
metabolism [38, 83]. GS3 patients should be treated with 
antipsychotic medications (e.g., olanzapine and risperi-
done) to modulate the gut microbiota and address behav-
ioral symptoms [88]. Treatment should personalized to 
microbiota characteristics, focusing on inflammation, 
metabolism, and neurobehavioral issues.

Brain–gut subtypes
In our study, B-GS1 patients exhibited abnormalities 
primarily in the functional‒genus linkage, where the 
intersection between brain function and the microbial 
composition was notably disrupted. Specifically, the weak 
connectivity observed at the SCN–Roseburia intersec-
tion aligned with previous studies suggesting a negative 
correlation between Roseburia and functional brain fea-
tures [41]. This finding suggests that Roseburia may be 
related to variations in the structure and function of the 
SCN through metabolic pathways, which could be linked 
to cognitive impairment and mood disturbances in SZ 
patients, especially reduced attention. This finding rein-
forces the role of Roseburia as a potential factor influenc-
ing brain structure via the brain‒gut axis.

In contrast, B-GS2 patients displayed structural abnor-
malities in the brain’s linkage to specific gut genera. 
Abnormal connectivity involving Oscillospira, Lach-
nospira, and Veillonella was linked to elevated levels 
of SCFAs and glutamate in the brain, which have been 
linked to inflammation and neural dysfunction in SZ 
patients. The associations between these gut microbes 
and hippocampal glutamate concentrations suggest that 
Lachnospira and Veillonella may exacerbate SZ symp-
toms through excitatory neurotransmitter pathways [89]. 
These findings underscore the distinct role of B-GS2 in 
relation to brain structure via interactions with the gut 
microbiota.

Both B-GS1 and B-GS2 patients exhibited significant 
connections between the SMN and the gut microbiota, 
particularly in the “SMN–Oscillospira” and “SMN–Pre-
votella” interactions, supporting the mediating role of 
the SMN in gut–brain communication [40]. In B-GS1 
patients, the disrupted SMN–Roseburia link was associ-
ated with functional alterations, suggesting a differen-
tiated pathway in which these genera are linked to SZ 
pathophysiology. Prevotella was associated with SCFAs 
production and lipopolysaccharide-binding protein 
secretion in B-GS2 patients, which have been associ-
ated with proinflammatory responses that potentially 
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influencing brain structures and exacerbate SZ symptoms 
[83, 90–92]. In addition, BGS2 patients are character-
ized by heightened attention/vigilance, elevated positive 
symptom scores, and stronger SMN‒Prevotella con-
nections. Previous studies have indicated that the SMN, 
which represents sensorimotor function, has potential as 
a biomarker for personalized therapy in SZ patients [93]. 
Furthermore, disruptions in the somatosensory‒motor 
system and inefficient integration of sensory informa-
tion with attention-demanding processes are significant 
contributors to SZ-specific cognitive deficits [94]. Our 
findings expand upon these conclusions by suggesting 
that the BGS subtype provides a more nuanced charac-
terization of SZ, particularly in relation to sensorimo-
tor and cognitive integration. Both subtypes reveal the 
critical role of gut–brain interactions in modulating SZ 
symptoms, providing insights into targeted interventions 
based on the microbial composition and its impact on 
brain function.

For personalized treatment of B-GS1 and B-GS2 sub-
types, B-GS1 patients may benefit from probiotics (e.g., 
Roseburia) supplemented with prebiotics (e.g., inulin) to 
restore gut microbiota balance [95], along with an anti-
inflammatory Mediterranean diet [96]. Neuromodula-
tion strategies include N-acetylcysteine for glutamate 
regulation [97], and high frequency TMS or tDCS to 
enhance SMN function [74]. B-GS2 patients may require 
SCFAs antagonists, and interleukin-6/tumor necro-
sis factor-α inhibitors to mitigate inflammation [98], 
as well as N-Methyl-D-Aspartate receptor modulators 
(e.g., memantine) to stabilize excitatory neurotransmis-
sion [99]. Both subtypes require biomarker monitoring, 
personalized probiotic interventions, exercise, and stress 
management for optimal brain-gut regulation.

Comparison of biomarkers of multiple biological subtypes
Each group of the multiple biological subtypes showed 
significant differences in their respective features, clini-
cal symptoms and cognitive performance, with unique 
biomarkers. Clinically relevant biomarkers in BS patients 
were primarily associated with the PANSS score, which 
revealed more pronounced cognitive differences in BS 
patients. These findings verify that alterations in brain 
structure or function significantly impact the cognitive 
performance of individuals with SZ [100]. Moreover, BSs 
were validated using public datasets and demonstrated 
more significantly different features and more robust per-
formance because of the disproportionate differences in 
sample size [101]. Although the GS patients showed no 
cognitive differences, their features were significantly 
correlated with the MCCB scores. The cognitive differ-
ences in B-GS patients were not as pronounced as those 
in BS patients. However, the biomarkers of B-GS patients 
were associated with both the PANSS and the MCCB 

scores; in particular, the biomarker of B-GS2 patients 
had the strongest correlation with clinical symptoms 
and cognitive performance. The significant correlations 
between the brain–gut fusion features and the scores of 
the PANSS or MCCB highlight promising research direc-
tions, which may provide more comprehensive insights 
into the clinical profiles of SZ patients [36, 39]. This 
approach provides an integrated perspective on both 
clinical symptoms and cognitive deficits. By integrating 
brain and gut biomarkers, the analysis of brain‒gut fusion 
improves our understanding of the complex interactions 
between neurophysiological and microbiome factors, 
potentially identifying novel therapeutic targets for more 
personalized and effective interventions in SZ patients.

Limitations
This study has several limitations. Although we identified 
key interactions between brain and gut features in the 
study of B-GSs, the small sample size of patients with SZ 
in the analysis of the brain–gut overlap using the data-
driven approach might limit the universality and stability 
of our findings [101]. Furthermore, the absence of exter-
nal validation using independent datasets, along with the 
lack of cross-cohort validation (such as UK Biobank or 
PNC), may constrain the generalizability of our findings. 
Additionally, the absence of multicenter study data fur-
ther limits the generalizability of our findings across dif-
ferent ethnic and geographical contexts.

The lack of follow-up data and medication control also 
prevented us from analyzing treatment outcomes and 
the impact of antipsychotic medications on specific sub-
types. Although we controlled for potential confounders 
through inclusion/exclusion criteria, such as medication 
status, comorbid conditions (e.g., depression, anxiety, 
metabolic disorders), and lifestyle factors (e.g., diet and 
exercise habits), the study did not fully account for these 
influences. Antipsychotic medications are known to sig-
nificantly alter gut microbiota composition and brain 
structure, yet we did not perform stratification based on 
medication use. Additionally, comorbidities that could 
affect both brain imaging and gut microbiota characteris-
tics were not extensively analyzed. Moreover, lifestyle fac-
tors such as diet, which are well-documented to impact 
gut microbiota composition, were not comprehensively 
addressed. These limitations may have subtly influenced 
our results. Furthermore, the cross-sectional design of 
this study prevents the establishment of causal relation-
ships between brain–gut interactions and clinical symp-
toms. Future studies should incorporate longitudinal 
follow-up data to better elucidate the temporal dynamics 
and causal mechanisms underlying these interactions.

While our findings indicate an association between 
gut microbiota and brain function, the cross-sectional 
nature of our study limits causal inferences. Moreover, 
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we cannot exclude the possibility of reverse causality. 
Cognitive impairments, schizophrenia symptoms, or 
medication use may influence gut microbiota composi-
tion. Finally, this study did not develop predictive mod-
els for patient prognosis or treatment response, which 
are crucial for translating brain–gut interaction findings 
into personalized therapeutic strategies. Future research 
should incorporate machine learning-based predictive 
modeling to improve clinical applicability.

Conclusions
In conclusion, this study demonstrated that the brain, 
gut, and their fusion features are heterogeneous among 
individuals with SZ, whereas the three groups of mul-
tiple biological subtypes are independent. The distinct 
features, clinical symptoms and cognitive performance of 
patients with different SZ subtypes vary, along with their 
correlations. These findings show the potential to distin-
guish SZ subtypes with distinct biomarkers using mul-
tiple biological data, thereby suggesting the possibility of 
personalized and precise treatment for SZ patients.
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