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Abstract
Background  Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment by significantly improving 
the efficacy of treatments and tolerability for patients with non-small cell lung cancer (NSCLC). However, even after 
meticulous selection based on molecular criteria, only 20–30% of the patients respond to ICIs. This highlights the 
urgent clinical need to develop more precise biomarkers to better identify individuals who will benefit from these 
expensive therapies.

Methods  Data from NSCLC patients treated with immunotherapy were collected from two institutions. From 
the histological images of tumors, pathomics features were extracted. We employed six machine learning models 
and seven feature selection methods to predict expression of the programmed death-ligand 1 (PD-L1), a current 
biomarker used to select patients for immunotherapy, and progression-free survival (PFS). The association between 
pathomics features and biological pathways was explored to validate pathomics-based signatures. We performed 
gene set enrichment analysis to identify the pathways enriched with the predictive signatures.

Results  Handcrafted histological features were extracted from the whole slide images (WSI). The Support Vector 
Machines model with the SurfStar feature selection method, offered the best results, with an area under the curve 
(AUC) of around 0.66 for both the training and validation sets to predict PD-L1. For the prediction of PFS, the most 
effective model was linear discriminant analysis using the Multi Surf feature selection method with an AUC of 0.71 
for the training set and 0.62 for the validation set. We found immune pathways to be upregulated in the high PD-L1 
and high PFS groups, confirming the utility of image analysis for predicting clinical endpoints in patients treated with 
immunotherapy.
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Introduction
Traditional systemic therapies have long been the cor-
nerstone of treatment for advanced non-small cell lung 
cancer (NSCLC) patients; however, their effectiveness 
has now plateaued. Therapeutic options for NSCLC are 
limited and associated with low response rates and signif-
icant toxicities [1], largely due to the late diagnoses. How-
ever, the advent of immune checkpoint inhibitors (ICIs) 
has marked a turning point, significantly improving treat-
ment efficacy and tolerability for patients presented with 
NSCLC, compared to traditional therapeutic interven-
tions [2]. Programmed death-ligand 1 (PD-L1) expres-
sion is currently the only validated biomarker for guiding 
the use of ICIs, influencing treatment choice based on 
the disease stage and the type of ICI. Although sys-
temic treatments have long been the standard of care for 
advanced NSCLC, the emergence of ICIs has profoundly 
changed clinical paradigm and therapeutic options for 
these patients, surpassing the results obtained with plati-
num-based chemotherapies [3]. Research is now directed 
towards innovative combinations of ICIs with other 
treatments to overcome therapeutic failures and improve 
personalized outcomes [4]. Nonetheless, primary and 
secondary resistance to ICIs presents a major challenge, 
necessitating the development of predictive biomarkers 
for more accurate patient selection who are likely to ben-
efit from these treatments.

In this complex context, ICIs have established a new 
standard of care for advanced NSCLC, offering survival 
prospects previously unattainable. However, the variable 
response to ICIs, even among patients selected based on 
PD-L1 expression, underscores the urgent need to iden-
tify more reliable predictive biomarkers. The goal is to 
avoid unnecessary toxicities and maximize the chances 
of response by targeting treatments to the patients most 
likely to benefit, highlighting the crucial importance of 
ongoing research to refine and personalize therapeutic 
strategies against NSCLC.

With the emergence of digital pathology, the genera-
tion of data in the form of high-resolution images during 
tumor biopsy diagnostics has become common in clinical 
settings. These images, now indispensable tools, are uti-
lized by researchers to develop predictive and prognostic 
biomarkers leveraging machine learning and deep learn-
ing models. These models, particularly those based on 
deep learning, have proven effective for detecting, classi-
fying certain tumors and predicting treatment responses 
[5]. For example, Vanguri et al. [5] developed a dynamic 

deep attention-based multiple-instance learning model 
with masking (DyAM) from genomic, histological, and 
radiological data to predict the response to immunother-
apies, using RECIST criteria as an indicator of response 
in NSCLC patients treated with PD-L1 inhibition. To 
generalize the results, it is necessary to validate the model 
on a larger and multimodal cohort. Other studies using 
deep learning to predict the response to immunotherapy 
have been conducted, although their lack of interpret-
ability limits their clinical use. To develop both efficient 
and interpretable models, research efforts have been 
undertaken to employ machine learning methods. In this 
regard, Wang et al. [6] utilized tumor-infiltrating lympho-
cytes (TIL) in the tumor microenvironment to predict 
the response to ICIs by extracting quantitative histomor-
phometric features from histological images. Despite 
validation on various cohorts, these models require fur-
ther biological validation and training on larger datasets. 
Ding et al. [7] developed machine learning models using 
pathomic features to differentiate morphological and 
molecular aspects of immune responses in Hematoxylin 
and Eosin (H&E) images, though an automatic selection 
of patches may introduce biases. Although several mod-
els for predicting treatment response and survival have 
been developed, they exhibit significant limitations. The 
variability in radiological images, due to differences in 
acquisition parameters or the type of equipment used, 
compromise model performance. Furthermore, mod-
els are often trained and validated on the same cohort 
and suffer from generalization problems and overfitting, 
especially due to the large number of features extracted 
from pathological or radiological images. The lack of bio-
logical validation also poses a major hurdle affecting the 
reliability of predictions regarding survival or treatment 
response.

Developing prognostic and predictive models is a 
complex process, as no single modeling approach out-
performs others. Additionally, validating these mod-
els necessitates the use of multi-institutional cohorts to 
demonstrate their applicability across various external 
datasets. Moreover, biological and external validation of 
these models require multi-institutional cohorts to dem-
onstrate that the developed signatures are applicable to 
external datasets. In this study, we performed a system-
atic comparison leveraging a compendium of machine 
learning and feature selection approaches to develop 
predictive models for survival, leveraging multi-insti-
tutional WSI profiles of NSCLC patients treated with 

Conclusion  Our models, based on the analysis of histological images, can serve as predictive biomarkers for PD-L1 
and PFS. This approach, focused on histological images, enables the distinction of patients based on treatment 
response, thus providing clinicians with a valuable tool for patient management. With further validation on external 
cohorts, these models could enhance clinical decision-making through analysis of routine medical images.
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immunotherapy. We developed and biologically validated 
pathomics signatures predicting survival end points, and 
also PD-L1 expression, an area that is still underexplored. 
We explored various feature selection techniques to 
develop predictive models and minimize the risk of over-
fitting. By examining the association of pathomic features 
with biological pathways through gene set enrichment 
analysis (GSEA), we assessed the effectiveness of 
pathomic models as well as the relevance of different 
variable selection techniques to enhance prediction.

Materials & methods
Description of cohorts
This study retrospectively analyzed data from two promi-
nent lung cancer treatment facilities: the Quebec Heart 
and Lung Institute at Université Laval (IUCPQ-UL) and 
the University of Montreal Hospital Centre (CHUM). 
Ethical approval for this research was granted by the 
respective institutional review boards (approval num-
ber MP-10-2020-3397). Eligible patients had a con-
firmed diagnosis of NSCLC and were treated with one 
of three immune checkpoint inhibitors (Atezolizumab, 
Nivolumab, or Pembrolizumab). Samples were collected 
between 2015 and 2021, with tissue slides prepared 
from archival biopsies. Patients were required to provide 
informed consent for the use of their clinical and patho-
logical data in research. The selection of patient samples 
was based on strict inclusion criteria to ensure the suit-
ability and clinical relevance of the dataset for pathomics 
analysis. Only patients with archival H&E-stained histo-
logical slides were included, ensuring that high-quality 
images were available for computational analysis. Addi-
tionally, all selected patients had a confirmed diagnosis 
of advanced non-small cell lung cancer (NSCLC) at the 
time of inclusion, as verified by pathology reports. To 
maintain a homogeneous treatment background, only 
patients who had received immune checkpoint inhibi-
tors (ICIs), specifically Atezolizumab, Nivolumab, or 
Pembrolizumab, were considered. Furthermore, patients 
were required to have documented PD-L1 immunohisto-
chemistry (IHC) scores, which served as a reference for 
validating the predictive performance of the pathomic 
models. Finally, adequate clinical follow-up data, includ-
ing progression-free survival (PFS) outcomes, was essen-
tial for model training and evaluation, ensuring that the 
study findings could be meaningfully interpreted in a 
clinical context.

The tissue samples utilized in this research were 
sourced from the Quebec Respiratory Health Network 
Tissue Bank (accessible at https://rsr-qc.ca/biobanque/), 
located at the IUCPQ-UL. H&E-stained slides were 
digitized using a NanoZoomer 2.0-HT slide scanner 
with a 20X objective lens. From the CHUM and IUCPQ 
cohorts, 43 and 25 samples, respectively, were selected 

based on the availability of histological data. In total, the 
combined dataset from these institutions encompasses 
68 patients, all included in the subsequent analyses.

PD-L1 assessment
PD-1, a protein found on the surface of activated T 
cells, acts to suppress T cell activity when it binds to its 
ligands, PD-L1 and PD-L2 [8]. This interaction is a criti-
cal immune checkpoint in regulating immune responses. 
The presence of PD-L1 on tumor cells, also known as the 
tumor proportion score (TPS), is determined through 
immunohistochemical staining using the 22C3 clone 
(pharmDx kit) on a Dako Autostainer, a standard pro-
cedure in patient care following a lung cancer diagno-
sis. PD-L1 expression levels are quantified by the TPS, 
which measures the percentage of tumor cells exhibiting 
positive membranous staining, ranging from 0 to 100%. 
For clinical relevance, tumors are categorized based on 
PD-L1 TPS thresholds: less than 1%, between 1 and 49%, 
and 50% or higher. In our study, we have consolidated the 
first two categories into a single group.

PFS assessments
Progression-free survival (PFS) is measured from the ini-
tiation of therapy to the point of disease progression or 
any cause of death, whichever comes first [9]. This met-
ric is increasingly recognized as a critical, often primary, 
endpoint in cancer clinical trials for solid tumors due to 
its practicality and clinical relevance [10]. PFS duration 
is counted in days or months from treatment commence-
ment to disease progression, death, or last known follow-
up whichever occurs first with the latter scenario being 
treated as a censored observation. In our research, we 
aimed to develop a predictive model that distinguishes 
between responders (PFS > 12 months) and non-respond-
ers (PFS < 12 months) in patients undergoing treatment 
with ICIs. For this purpose, we categorized the collected 
datasets from CHUM and IUCPQ into two groups based 
on PFS: those exceeding 12 months and those falling 
below this duration.

RNA sequencing analysis pipeline
RNA extraction from snap frozen primary tumour biop-
sies and resections was conducted using a Qiagen RNA 
extraction kit using the standard protocol (Qiagen). Prior 
library construction, mRNA was enriched using a polyA 
kit from 1 ug of total RNA. 400u of mRNA was used as 
input for library construction with the TruSeq® RNA 
Sample Preparation kit (Illumina) following the protocol 
recommendation. Libraries were sequenced on a HiSeq™ 
2500 Sequencing System (Illumina) at a depth of 25 mil-
lion paired-end reads per sample of length of 75 bp. Qual-
ity control was done with Fastqc (version 0.11.9) [11]. 
Base pair below a phred score of 30 and adapter were clip 

https://rsr-qc.ca/biobanque/
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off with trimmomatic/picard. Transcript abundance in 
transcript per million (TPM) was estimated using Kallisto 
(version v0.50.0) [12]. Transcripts were mapped on the 
reference genome GRCh38 and annotated with the GEN-
CODE release 34 (GRCh38.p13). Gene-level estimated 
counts were computed using tximport (version 1.0.3) and 
applied a gene-level offset to correct for changes associ-
ated with transcript length with the option countsFrom
Abundance="lengthScaledTPM”. Estimated gene counts 
(lengthScaledTPM) were used for subsequent analyses.

Whole slide image (WSI) pre-processing
Pre-processing whole slide images (WSIs) is an essential 
initial step in cancer research involving artificial intel-
ligence, as it ensures the accurate extraction of patches. 
Digitizing WSIs can introduce various anomalies, includ-
ing noise and background interference, which can affect 
the quality of the images. To address these issues, we 
employed the ‘histolab 0.06’ [13] module in Python, a 
sophisticated tool for WSI pre-processing. Our meth-
odology involved a series of precise steps to enhance the 
WSIs’ quality. Initially, we converted the images to gray-
scale, which simplifies the detection of anomalies. Next, 
we applied Otsu thresholding to segregate the tissue 
regions from the background clearly. This was followed 
by binary dilation, which helps in expanding the regions 
of interest. Additionally, we implemented techniques 
(such as a chain of filters to calculate the tissue area mask) 
to eliminate small holes and remove insignificant objects 
from the images. This resulted in high-quality WSIs, pre-
dominantly containing tissue content of at least 80%. This 
rigorous pre-processing ensured that only the regions of 
interest, crucial for downstream analysis, were retained. 
Our primary objective was to develop a machine learn-
ing model that could predict PD-L1 expression and PFS 
using pathomic features and clinical data. Therefore, it 
was imperative to focus on those areas of the WSI rich in 
nuclei, as these are most relevant for our analysis.

The prioritization of regions abundant in nuclei within 
WSIs is driven by the objective of accurately represent-
ing the tissue’s cellular composition and pathologi-
cal characteristics through the extracted patches. The 
pre-processing procedures were specifically developed 
to improve the visibility and contrast of these nuclei, 
thereby enabling precise identification and thorough 
analysis. This careful approach in pre-processing signifi-
cantly helps in reducing any potential biases that might 
arise from non-tissue components or artifacts pres-
ent in the WSIs. By focusing on nuclei-rich regions, our 
study enables a direct association between the features 
extracted from these regions and the clinical outcomes, 
particularly in terms of PFS and PD-L1 expression. This 
strategy aims to provide insights that are not only more 
interpretable but also highly relevant to clinical contexts. 

The meticulous selection of these regions for analysis is a 
crucial aspect of the study. It not only ensures the accu-
racy of the research but also strengthens the reliability of 
our conclusions about the relationship between pathomic 
features and important clinical endpoints like PFS and 
PD-L1. This approach is fundamental in understand-
ing the complex interactions within pathomics and their 
implications in clinical outcomes.

WSI segmentation and patching
The patches extracted from WSIs were of the dimensions 
2000 × 2000 pixels, magnified 20X. We selected patches 
containing at least 15% nuclei coverage for extraction 
[14]. This extraction process utilized the ScoreTiler 
class from histolab (​h​t​t​p​​s​:​/​​/​h​i​s​​t​o​​l​a​b​​.​r​e​​a​d​t​h​​e​d​​o​c​s​​.​i​o​​/​e​n​
/​​l​a​​t​e​s​t​/​r​e​a​d​m​e​.​h​t​m​l), a tool designed to evaluate each 
patch, based on its nuclei count. The ScoreTiler func-
tion applies various methods including threshold-based 
techniques, color space conversion, watershed transfor-
mation, and morphological operations to enhance nuclei 
detection. These patches were then subdivided into tiles 
of 50 μm². Cell density estimation, a measure of the spa-
tial arrangement of cells within a tissue, was performed 
on each patch as described by Alvarez-Jimenez et al. [15]. 
This involved segmenting nuclei and assigning a specific 
gray level to each patch, based on the estimated nuclei 
count [15, 16]. The output is a map visualizing cell den-
sity, highlighting the distribution of cells across differ-
ent areas within the patch. Nucleus segmentation was 
achieved using the Watershed algorithm [17], after sev-
eral preprocessing steps. These included removing small 
white noise and holes in the nuclei to define foreground 
and background regions. The nuclei areas were identified 
using distance transform and thresholding, followed by 
isolating non-nuclei areas through dilation. The Water-
shed algorithm [17] effectively delineates each nucleus 
by identifying peaks and valleys in the grayscale image, 
an essential step for dense regions. After segmentation, 
nuclei were classified based on size and shape, aiding in 
the analysis of cell density and distinguishing between 
different cell types and states.

Extraction of pathomics features
Haralick features [18] represent a set of statistical met-
rics used to quantify the textures or patterns visible in 
an image. Originating from the gray-level co-occurrence 
matrix (GLCM), which tabulates the occurrences of 
specific pixel intensity value pairs based on their spatial 
relationship in an image, these features provide a numeri-
cal representation of texture. In the context of cell den-
sity maps, Haralick features facilitate the quantitative 
analysis of the spatial arrangement and patterns of cel-
lular distribution. For each cell density map, these fea-
tures were extracted by computing four distinct GLCMs, 

https://histolab.readthedocs.io/en/latest/readme.html
https://histolab.readthedocs.io/en/latest/readme.html


Page 5 of 13Dia et al. Journal of Translational Medicine          (2025) 23:510 

corresponding to horizontal, vertical, minor diagonal, 
and major diagonal orientations of pixel adjacency, as 
described in an earlier study [19].

Feature selection methods
Haralick features facilitated the extraction of numer-
ous variables from cell density maps. These continuous 
variables exhibit diverse distributions and correlations 
with the target outcome in our study. Since the goal is to 
develop machine learning models capable of accurately 
predicting PD-L1 expression and PFS, meticulous feature 
selection was carried out. Identifying the most relevant 
variables is critical for reducing redundancy and noise 
that could improve model interpretability, while mini-
mizing the risk of overfitting.

To address the large number of features in the dataset, 
an initial data processing strategy was designed to nar-
row down the feature set to the most relevant variables. 
In this study, we implemented a two-step feature selec-
tion approach to develop predictive models for PD-L1 
expression and progression-free survival. First, we com-
puted the Spearman’s correlation coefficient and elimi-
nated features that exhibited a correlation exceeding the 
threshold set at 0.9. 

Following this, five feature selection techniques were 
utilized to build the models [20]: analysis of variance 
(ANOVA) F-test (AFT), mutual information (MI), ReliefF 
(RL), Surf (SF), and Multisurf (MSF), as described below. 

 	– The mutual information-based variable selection 
method assesses the amount of information gained 
about one variable by knowing the other. In other 
words, if two variables are independent, their mutual 
information is zero; conversely, if they are completely 
dependent, the mutual information is high. In 
selecting relevant variables, the mutual information 
of each explanatory variable is calculated in relation 
to the target variable. The variables deemed most 
pertinent for the predictive model are those that 
share the most information with the target variable 
[21].

 	– The ANOVA F-test method for variable selection 
evaluates the degree of linear dependence between 
two variables. It identifies significant variables by 
comparing their F-scores. Variables with the highest 
scores are considered to have a major impact on the 
dependent variable and are therefore often selected 
for inclusion in the final model [22].

 	– ReliefF is a feature selection method implemented 
in the Python package ‘scikit-rebate’ [23, 24]. This 
method, an extension of Relief, is optimized for 
better handling of data with missing features, 
multiclass classification problems, and complex 
datasets. ReliefF randomly selects examples from 

a dataset, identifies the nearest neighbors in the 
same and other classes, assesses the importance 
of variables based on their ability to differentiate 
these examples, and adjusts the variable scores with 
each iteration. These scores are accumulated over 
many repetitions to determine the most significant 
variables. Extensions of ReliefF, such as Surf, 
Multisurf, and SurfStar, automatically calculate the 
ideal number of neighbors to consider in the variable 
score evaluation.

Pathomics model development
The development of machine learning models involves 
several key steps. Data integrity is crucial for devising 
reliable models. In this study, we utilized histological 
images as input data, with PD-L1 expression and PFS as 
output variables. A meticulous process was applied to 
WSIs to ensure they were clean and free from defects, 
thus guaranteeing a tissue content of at least 80%. Fol-
lowing variable extraction, we normalized the data to 
achieve a mean of zero and a standard deviation of one, 
thereby standardizing the measurement units. We tested 
various machine learning models and feature selection 
methods to identify the optimal combination. The mod-
els examined include Adaptive Boosting (Adaboost), 
Decision Tree (DT), Random Forest (RF), Linear Dis-
criminant Analysis (LDA), Support Vector Machines 
(SVM), K-Nearest Neighbors (KNN) and eXtreme Gradi-
ent Boosting (XG), all implemented via the Python scikit-
learn package [25]. The analysis pipeline is illustrated in 
Fig. 1.

The model development phases include:

 	• Removing any empty rows among our variables 
of interest, resulting in 43 samples for the CHUM 
cohort and 25 for the IUCPQ-UL cohort. Due 
to data imbalance, we adopted the SVMSMOTE 
oversampling technique, a variant of the SMOTE 
algorithm, which uses SVM to identify samples 
suitable for generating new synthetic instances.

 	• Using the CHUM cohort as the training set, with 
validation on the IUCPQ cohort.

 	• Defining a training pipeline that includes feature 
selection, sampling method, and the model itself. 
For each model and at each iteration, we applied a 
variable selection method, a sampling technique, 
and then the model itself. To determine the optimal 
number of variables, we examined all available 
variables, choosing the number that provided 
the best AUC performance on the training and 
validation sets. This variable selection, carried out 
at each fold of the cross-validation, aims to prevent 
overfitting, especially critical given the small size of 
our samples.
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Biological validation of pathomics signature
To validate our model and confirm its biological rel-
evance, we investigated the relationship between 
pathomics features and molecular pathways. The vari-
ables that contributed to the development of the most 
effective model were used to define a variable named 
“pathomic score”. This score was developed by initially 
calculating the median of the selected variables values for 
each patient. Subsequently, this variable was converted 
into two groups: high-risk group, if the variable’s value 
exceeds the median, and the low-risk group otherwise. 
Differentially Expressed Genes (DEGs) were identified 
between the high-risk and low-risk groups. The Gene 
Set Enrichment Analysis (GSEA) was conducted using 
the Kegg gene sets collection for GSEA, provided by the 
Molecular Signatures Database (MSigDB) [26].

Pathway enrichment analysis
The pathway enrichment analysis was performed by 
employing the gene set enrichment analysis (GSEA) 
method using the statistic obtained from the t test (that 
assesses the difference in the gene expression between 
the two groups as defined in the previous section). The 
enrichment score for each pathway was computed using 
the GSEA method with statistical significance calculated 
using a permutation test (10,000 permutations). Nomi-
nal P-values obtained for each pathway was corrected 
for multiple testing using the false discovery rate (FDR) 

approach, and a threshold of P < 0.1 was considered sta-
tistically significant. The enrichment score is used as a 
fold change. If it is greater than 0 and FDR < 0.1, the gene 
is considered upregulated. Conversely, if it is less than 0 
and FDR < 0.1, the gene is considered downregulated.

Results
Patient characteristics
Table 1 details the clinical characteristics of patients from 
the two cohorts used in this study. The CHUM cohort 
consists of 43 patients, of whom 55.8%, or 24 patients, 
have a PD-L1 level above 50%, and 26 patients have a 
PFS of less than 12 months, representing 60.5%. In the 
IUCPQ-UL cohort, 56% of the patients, or 14 individu-
als, have a PD-L1 below 50% and a PFS of less than 12 
months. The average age in the CHUM cohort is 68 years 
with a standard deviation of 8, while in the IUCPQ_UL 
cohort, it is 66 years with a similar standard deviation. 
The CHUM cohort has a majority of women (58.1%) in 
contrast to the IUCPQ-UL cohort where women consti-
tute 36% of the patients. It is noteworthy that all patients 
in both cohorts have a smoking history. In the CHUM 
cohort, 76.7% of patients are current smokers and 20.9% 
are former smokers, with only one patient, or 2.3%, never 
smoked. This trend is similar in the IUCPQ-UL cohort 
where 68% are current smokers, 24% are former smok-
ers, and only 2 patients, or 8%, never smoked. The over-
all physical condition of the patients is assessed via the 

Fig. 1  The workflow for the development of the model to predict PD-L1 expression and PFS from patients with NSCLC. (A) Whole Slide image pre-
processing and feature extraction. (B) Model development and biological validation
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Eastern cooperative oncology group (ECOG) classifica-
tion, indicating that 65% of patients in the CHUM cohort 
and 80% of the IUCPQ cohort have slightly restricted 
mobility but can perform light work. Some patients are 
self-sufficient but unable to work, active less often than 
the majority (25% in the CHUM cohort and 7.7% in the 
IUCPQ-UL cohort), while others spend most of their 
time at rest without working (9.4% in the CHUM cohort 
and 11.5% in the IUCPQ cohort).

Pathomics features
Whole slide image segmentation enabled the extraction 
of multiple patches per WSI, which were then converted 
into cell density maps. In our analysis, we worked with a 
set of 68 WSIs. Each WSI was subdivided into multiple 
image patches to facilitate processing and analysis. The 
total number of patches generated from the 68 WSIs is 
11,157, which represents an average of 159 patches per 
WSI. This patch-based subdivision approach allows for 
better granularity in the analysis of image features while 
ensuring complete coverage of the information contained 
in each WSI. We extracted 13 Haralick features from four 
distinct gray-level co-occurrence matrices (GLCMs), 
based on cell density maps generated from each patch, 
thereby generating a total of 52 features per patch. Since 
PD-L1 expression is assessed across the entire WSI, 
it is consequently impossible to estimate the model at 
the patch level. Therefore, the model is estimated at the 
WSI level by calculating five statistics, such as the mean, 
median, variance, kurtosis, and skewness, for all patches 

and for each of the 52 features, resulting in a total of 260 
features.

Predictive efficacy of classification methods
We explored the ability of various feature selection meth-
ods and machine learning models to build predictive 
models of PD-L1 expression and PFS. This evaluation 
was conducted using the Area Under the Curve (AUC). 
Six models and variable selection techniques were tested 
to identify the optimal combination ensuring the best 
performance. The AUC was utilized to assess each model 
with each selection technique. Figures 2 and 3 display the 
performance of the models (on the y-axis) and variable 
selection techniques (on the x-axis) for PD-L1 expres-
sion and PFS, respectively. Figure  2A shows the results 
obtained during the cross-validation phase, while Fig. 2B 
pertains to the external validation phase. The assess-
ments of the different models and selection techniques 
yielded an AUC range of 0.51 to 0.76 for the training set 
and 0.48 to 0.66 for the validation set. These results sug-
gest that some models struggle to distinguish between 
high and low PD-L1 expression classes (AUC ≤ 0.5), 
whereas others exhibit satisfactory predictive perfor-
mances (AUC > 0.6). The Surf Star selection method 
provided the highest AUC of 0.66 with the support vec-
tor machine model on the training and validation set. 
Other models also show acceptable performances, such 
as GB with the Surf technique (0.64 for training and 0.63 
for validation) and Gradient Boosting with the Anova 
technique (0.76 for training and 0.65 for validation). The 
lowest performance was observed with the Gradient 
Boosting Machine model using the Surf Star technique, 
with an AUC of 0.51 for training and 0.48 for validation, 
equating to random classification.

Figure  3A and B respectively present the model and 
variable selection technique performances to predict 
PFS, on the training and validation sets. The AUC for the 
training set ranges from 0.50 to 0.71, and from 0.47 to 
0.63 for the validation set. The Decision Tree and Linear 
Discriminant Analysis models showed identical perfor-
mances on the validation set (AUC = 0.63) with the Multi 
Surf technique. The best performances for these two 
models were observed with an AUC of 0.65 for Linear 
Discriminant Analysis and 0.62 for Decision Tree on the 
training set. The Adaboost model, with the ReliefF tech-
nique, displayed the lowest performance with an AUC of 
0.53 during the cross-validation phase and 0.47 during 
the validation phase.

Median performance of feature selection and machine 
learning methods
The median performance of various models was 
assessed by calculating the median AUC value for each 
model across all feature selection techniques during 

Table 1  Clinical Characteristics of Discovery and Validation 
Cohorts
Clinical Features PD-L1 and PFS

CHUM (Discovery) IUCPQ (Validation)
No. of samples 43 25
Age, mean ± sd 68 ± 8 66 ± 8
Sex, n (%)
  Female 25 (58.1) 9 (36)
  Male 18 (41.9) 16 (64)
Smoking Status, n (%)
  Former 9 (20.9) 6 (24)
  Current 33 (76.7) 17 (68)
  Never 1 (2.3) 2 (8)
ECOG status, n (%)
  1 21 (65.6) 21 (80.8)
  2 8 (25) 2 (7.7)
  3 3 (9.4) 3 (11.5)
PD-L1 expression, n (%)
  > 50% 19 (44.2) 11 (44)
  < 50% 24 (55.8) 14 (56)
PFS, n (%)
  > 12 months 17 (39.5) 11 (44)
  < 12 months 26 (60.5) 14 (56)
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the validation phase. Figure 4A depicts the median per-
formance of PD-L1 expression prediction models. The 
highest median performance was recorded for Gradient 
Boosting (AUC: 0.61 ± 0.06, median ± standard devia-
tion). SVC showed the lowest median performance (SVC: 
0.54 ± 0.05, median ± standard deviation). Figure  4B dis-
plays the median performance of the PFS prediction 
models. The best performance was observed with the 

Decision Tree model (AUC: 0.58 ± 0.03, median ± stan-
dard deviation) and with Linear Discriminant Analysis 
(AUC: 0.57 ± 0.05, median ± standard deviation). Ada-
boost revealed the lowest median performance, with a 
median AUC of 0.51 and a standard deviation of 0.04. 
Thus, more than half of the combinations of models and 
variable selection techniques achieved an AUC above 

Fig. 3  Heatmaps depicting the efficacy of various machine learning models (on the y-axis) across different feature selection techniques (on the x-axis) 
for predicting PFS. (A) AUC scores during cross-validation and (B) AUC scores in the external validation Phase

 

Fig. 2  Heatmaps depicting the efficacy of various machine learning models (on the y-axis) across Different Feature Selection Techniques (on the x-axis) 
for Predicting PD-L1. (A) AUC Scores During Cross-Validation and (B) AUC Scores in the External Validation Phase
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0.5, distinguishing them from models yielding random 
results.

Biological validation of pathomics signature
To explore biological features/pathways/mecha-
nisms associated with the developed pathomics-based 

signatures for PD-L1 expression and PFS, we carried 
pathway analyses. To do so, we used the developed signa-
ture to split patients into two groups– low and high, and 
performed the pathway analysis. The biological validation 
was carried out using the best performing model from 
Figs. 2 and 3. Figure 5A and B illustrate the results of the 

Fig. 5  Biological validation - Volcano plot highlighting pathway enrichment analysis using (A) PD-L1 and (B) PFS. Significantly upregulated signaling 
pathways are highlighted in green, while significantly downregulated pathways are indicated in blue, and non-significant pathways are represented in 
gray. The frame lines represent the threshold of significance, corresponding to the log10FDR with a cutoff of FDR = 0.1

 

Fig. 4  Median performance of machine learning methods to predict (A) PD-L1 and (B) PFS on the validation dataset. The color bars correspond to differ-
ent machine learning models: RF (blue), DT (orange), SVC (brown), and LD (brown, only in panel B). The error bars represent the standard deviation across 
multiple feature selection techniques
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GSEA analysis for PDL1 expression and PFS, showing the 
Enrichment Score (ES) on the x-axis and the logarithm 
of the False Discovery Rate (log(FDR)) on the y-axis. The 
GSEA results for PD-L1 revealed that 22 pathways are 
significantly affected with an FDR threshold below 10%: 
14 are upregulated in the high PD-L1 expression group, 
and 8 are downregulated in the low PD-L1 expression 
group. Among the 14 upregulated pathways, 6 are asso-
ciated with the immune pathway. Regarding the GSEA 
results for the model predicting PFS, 14 pathways were 
significant with an FDR threshold of 10%, of which 13 are 
upregulated and 1 is downregulated in the high group. 
Among these, 2 immune pathways are upregulated in the 
group with high PFS. We have specifically highlighted 
the immune-related pathways by coloring them in red. 
Immune pathways such as natural killer cell mediated 
cytotoxicity, chemokine signaling pathway, and T cell 
receptor signaling pathway have been identified as upreg-
ulated in patients with high levels of PDL1 and prolonged 
PFS. The GSEA results demonstrate the effectiveness of 
our biomarkers in predicting PD-L1 and PFS. In the pres-
ence of tumor cells with high PD-L1 expression, immune 
pathways must be activated [27–29].

Natural killer (NK) cell-mediated cytotoxicity plays a 
crucial role in recognizing and eliminating tumor cells. 
Its strong activation in the high PD-L1 group contributes 
to tumor cell destruction. Similarly, in the chemokine 
signaling pathway, leukocytes are activated, and in the 
T cell receptor (TCR) signaling pathway, T lymphocytes 
are prepared to attack tumor cells, potentially improving 
patient survival.

Discussion
Arrival of ICIs in the therapeutic realm [30] have revo-
lutionized the treatment of various cancers, especially 
advanced NSCLC patients. ICIs have significantly 
improved survival rates for patients with NSCLC treated 
in the first line [31]. By blocking immune checkpoints 
like PD-1/PD-L1, ICIs allow T cells to attack tumor 
cells without being deactivated. The effectiveness of 
ICIs is often related to the characteristics of the tumor’s 
immune microenvironment, with high PD-L1 expres-
sion indicating a better response to these treatments 
[32]. PD-L1 expression in tumors is increasingly rec-
ognized as a predictor of positive response to ICIs, and 
becoming the main biomarker to guide ICI treatment as 
shown in several clinical trials [33]. However, measuring 
PD-L1 expression by immunohistochemistry (IHC) is 
costly and requires experienced pathologists, highlight-
ing the need to develop new biomarkers from available 
clinical data. These biomarkers could help distinguish 
patients benefiting from ICIs from those requiring other 
therapeutic approaches. Several studies have thus turned 
to OMICs data to predict response to ICIs or patient 

survival, although the clinical integration of these models 
is complex due to the need for rigorous development and 
validation. The importance of developing alternative bio-
markers to PD-L1 has prompted researchers to explore 
new avenues, particularly the use of radiological images.

In this regard, various studies have focused on exploit-
ing radiological images to develop predictive models of 
PD-L1, treatment response, and patient survival. Yol-
chuyeva et al. [34–36] analyzed several models and fea-
ture selection approaches to predict survival and PD-L1 
expression in NSCLC patients treated with immunother-
apy, achieving an AUC of 0.69 for PD-L1 and a C-index 
of 0.59 for PFS. Trebeschi et al. [37] extracted features 
from radiological images to create predictive models for 
the response to ICI treatment. Zerunian et al. [38] con-
ducted a study on 21 patients from the same institution 
treated with pembrolizumab, obtaining an AUC of 0.72. 
Although radiological image analyses have shown some 
promise in predicting PD-L1 expression, treatment 
response, and survival, their lack of cellular and molec-
ular resolution limits their ability to detect subtle varia-
tions in PD-L1 expression or small changes in tumor size. 
Despite the accuracy of these models, their interpreta-
tion remains a challenge in clinical practice. To improve 
clinical interpretability, some researchers have devel-
oped machine learning models using histological images 
to predict treatment response [6]. They used RECIST as 
a treatment response variable and a logistic regression 
model. Using the same treatment response variable, Ding 
et al. [7] constructed their model with pathomics features 
and obtained an AUC of 0.61. There are several studies 
in the literature that evaluated PD-L1 using deep learning 
methods [39–42]. A comprehensive review of AI applica-
tions in digital pathology can be found in [43]. However, 
studies exploring pathomics features for predicting treat-
ment response and patient survival remain limited, and 
to our knowledge, none has used these features to spe-
cifically predict PD-L1. Additionally, the literature does 
not provide a clear understanding of which combination 
of feature selection strategies and machine learning algo-
rithms yields the highest accuracy in a multi-institutional 
setting. A systematic comparison of various feature selec-
tion and machine learning strategies has not yet been 
conducted in the context of a multicentric study for 
NSCLC patients. Developing and validating radiomics 
models on larger cohorts across multiple hospitals will 
be crucial for advancing clinical translatability along with 
the biological interpretability.

With this premise, we presented a novel approach to 
explore alternative biomarkers for PD-L1 expression, 
leveraging pathomic features derived from histologi-
cal images. Using data from two institutions (CHUM 
for model training and IUCPQ-UL for validation), we 
generated cell density maps and performed a detailed 
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texture analysis by extracting Haralick features, captur-
ing nuances in cellular structure and tumor cell arrange-
ment. After applying a Spearman-based correlation 
filter to reduce redundancy, we retained 55 key variables 
for testing across 36 combinations of machine learn-
ing models and feature selection methods. Our models, 
including techniques such as Support Vector Machines 
and Random Forest, demonstrated strong performance, 
with an AUC of 0.66 for PD-L1 and 0.63 for PFS on the 
validation set. Biological validation through GSEA con-
firmed the upregulation of immune response pathways 
in patients with high PD-L1 expression and prolonged 
PFS, aligning with existing studies [27–29] and highlight-
ing the clinical relevance of our findings. The strengths 
of our work include the cohorts of patients evaluated at 
two institutions in terms of patient diversity, data hetero-
geneity across centers, along with the use of two clini-
cal endpoints. While prior studies primarily focused on 
deep learning models with limited translatability and 
interpretability without any biological validation, our 
approach emphasizes the extraction of interpretable 
morphological features that are clinically meaningful. 
Additionally, we validated these features with their omics 
counterparts, providing biological relevance for clinical 
integration that was lacking in earlier studies.

Despite the significant advancements presented in this 
study, we acknowledge its limitations. Firstly, the mod-
els were developed from a relatively modest sample size 
(training = 43 and validation = 25). While the sample size 
may not provide sufficient statistical power to general-
ize the findings to broader populations, the consistency 
of results across the training and validation datasets sup-
ports the robustness of our approach. Nevertheless, this 
limitation highlights the need for future studies with 
larger, multi-institutional cohorts to validate and expand 
upon our findings. Such efforts will be critical to ensur-
ing that the predictive value of pathomic features can be 
reliably translated into clinical practice. Additionally, a 
limitation of this study is the potential variability in tis-
sue sectioning between different pathologists. Although a 
standardized slide preparation and scanning protocol was 
used, subtle differences in tissue thickness or sectioning 
angles may influence image quality and subsequent anal-
ysis. Future studies should consider implementing auto-
mated tissue sectioning techniques or validating results 
across multiple pathologists to minimize this source of 
variability. Lastly, the models were trained on retrospec-
tive data. We plan to overcome these challenges in future 
research.

In summary, our work introduces an effective frame-
work for predicting PD-L1 expression and PFS in patients 
with NSCLC treated with immunotherapy. Its robust-
ness during multi-site external validation, along with 
biological validation that aligns with current knowledge, 

attests to its reliability. Our pathomics approach offers a 
complementary perspective to the existing immunohis-
tochemistry (IHC)-based PD-L1 testing, addressing key 
limitations of current diagnostic workflows. While IHC 
is a well-established standard, it is associated with signifi-
cant costs, requires specialized pathologists, and is sub-
ject to inter-observer variability. In contrast, our method 
leverages readily available H&E-stained slides, elimi-
nating the need for additional molecular tests or costly 
reagents. This makes the approach particularly advan-
tageous in resource-limited settings where access to 
advanced diagnostic facilities may be constrained. More-
over, the interpretability of our machine learning mod-
els enhances their clinical utility. By using handcrafted 
features derived from histological images, we bridge 
the gap between computational analysis and biological 
insight. These features, biologically validated and linked 
to immune pathways, provide clinicians with a tool to 
stratify patients based on their likelihood of respond-
ing to immunotherapy, independent of PD-L1 expres-
sion levels measured by IHC. Importantly, this approach 
preserves tissue integrity, as it does not rely on destruc-
tive molecular analyses, making it suitable for scenarios 
where limited tissue samples are available. By providing 
a cost-effective and accessible alternative, our pathomics-
based models could be integrated into routine clinical 
workflows with further validation, thus, complementing 
PD-L1 IHC testing and broadening the scope of precision 
oncology.

Acknowledgements
We would like to thank the patients who have participated in this project 
at the Quebec Heart & Lung Institute Research Center and their biobank for 
providing the specimens.

Author contributions
Conceptualization: A.D, S.Y. and V.S.K.M.; method development and analysis: 
A.D, A.K., S.Y. and V.S.K.M.; data curation: M.T., F.C.L., M.O., F.C., J.M., W.B., F.B, B.R. 
and P.J.; writing—original draft preparation: A.D and V.S.K.M.; writing—review 
and editing: A.D, S.Y., A.K., M.T., F.C.L., M.O., F.C., F.B, J.M., W.B., B.R., P.J., A.G., M.L., 
S.B., and V.S.K.M. All authors have read and agreed to the published version of 
the manuscript.

Funding
Venkata Manem holds a salary support award from the Fonds de recherche du 
Québec—Santé, IVADO, and the Pulmonary Association of Quebec.

Data availability
Data presented in this study are not publicly available at this time but may be 
obtained from the corresponding author, Venkata Manem upon reasonable 
request.

Declarations

Ethics approval and consent to participate
The study was approved by the Institutional Review Boards at the two 
academic institutions where the data was collected (MP-10-2020-3397 
/ CÉR CHUM: 19.397). Informed consent was obtained from all the study 
participants.



Page 12 of 13Dia et al. Journal of Translational Medicine          (2025) 23:510 

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1Centre de Recherche du CHU de Québec - Université Laval, Québec, 
Canada
2Quebec Heart & Lung Institute Research Center, Québec, Canada
3Centre de Recherche du Centre Hospitalier Universitaire de Montréal, 
Montréal, Canada
4Department of Molecular Biology, Medical Biochemistry and Pathology, 
Université Laval, Québec, Canada
5Université de médecine de Lille, Lille, France
6Department of Pathology and Laboratory Medicine, Emory University 
School of Medicine, Atlanta, USA
7Université Laval, Québec, Canada
8Cancer Research Center, Université Laval, Québec, Canada
9Big Data Research Center, Université Laval, Québec, Canada

Received: 26 September 2024 / Accepted: 13 April 2025

References
1.	 Antonia SJ, Vansteenkiste JF, Moon E. Immunotherapy: beyond Anti-PD-1 and 

Anti-PD-L1 therapies. Am Soc Clin Oncol Educ Book. 2016;35:e450–8. ​h​t​t​p​​s​:​/​​/​
d​o​i​​.​o​​r​g​/​​1​0​.​​1​2​0​0​​/​E​​D​B​K​_​1​5​8​7​1​2.

2.	 Otano I, Ucero AC, Zugazagoitia J, Paz-Ares L. At the crossroads of immu-
notherapy for oncogene-addicted subsets of NSCLC. Nat Rev Clin Oncol. 
2023;20:143–59. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​3​8​​/​s​​4​1​5​7​1​-​0​2​2​-​0​0​7​1​8​-​x.

3.	 Scagliotti GV, Parikh P, von Pawel J, Biesma B, Vansteenkiste J, Manegold C, et 
al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus 
pemetrexed in Chemotherapy-Naive patients with Advanced-Stage Non-
Small-Cell lung Cancer. J Clin Oncol. 2023;41:2458–66. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​2​0​
0​​/​J​​C​O​.​2​2​.​0​2​5​4​4.

4.	 Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E, et 
al. Nivolumab versus docetaxel in advanced Squamous-Cell Non-Small-Cell 
lung Cancer. N Engl J Med. 2015;373:123–35. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​5​6​​/​N​​E​J​M​o​a​
1​5​0​4​6​2​7.

5.	 Vanguri RS, Luo J, Aukerman AT, Egger JV, Fong CJ, Horvat N, et al. Multimodal 
integration of radiology, pathology and genomics for prediction of response 
to PD-(L)1 Blockade in patients with non-small cell lung cancer. Nat Cancer. 
2022;3:1151–64. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​3​8​​/​s​​4​3​0​1​8​-​0​2​2​-​0​0​4​1​6​-​8.

6.	 Wang X, Barrera C, Bera K, Viswanathan VS, Azarianpour-Esfahani S, Koyuncu 
C, et al. Spatial interplay patterns of cancer nuclei and tumor-infiltrating 
lymphocytes (TILs) predict clinical benefit for immune checkpoint inhibitors. 
Sci Adv. 2022;8:eabn3966. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​2​6​​/​s​​c​i​a​d​v​.​a​b​n​3​9​6​6.

7.	 Ding R, Prasanna P, Corredor G, Barrera C, Zens P, Lu C, et al. Image analysis 
reveals molecularly distinct patterns of TILs in NSCLC associated with treat-
ment outcome. NPJ Precis Oncol. 2022;6:33. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​3​8​​/​s​​4​1​6​9​8​-​0​
2​2​-​0​0​2​7​7​-​5.

8.	 Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J 
Cancer Res. 2020;10:727–742. Available: ​h​t​t​p​​s​:​/​​/​w​w​w​​.​n​​c​b​i​​.​n​l​​m​.​n​i​​h​.​​g​o​v​​/​p​u​​b​m​
e​d​​/​3​​2​2​6​6​0​8​7

9.	 Booth CM, Eisenhauer EA. Progression-free survival: meaningful or simply 
measurable? J Clin Oncol. 2012;30:1030–3. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​2​0​0​​/​J​​C​O​.​2​0​1​1​.​
3​8​.​7​5​7​1.

10.	 Korn RL, Crowley JJ. Overview: progression-free survival as an endpoint in 
clinical trials with solid tumors. Clin Cancer Res. 2013;19:2607–12. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​
o​​r​g​/​​1​0​.​​1​1​5​8​​/​1​​0​7​8​​-​0​4​​3​2​.​C​​C​R​​-​1​2​-​2​9​3​4.

11.	 Andrews S. FastQC: A quality control analysis tool for high throughput 
sequencing data. Github. Available: ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​s​-​a​n​​d​r​​e​w​s​/​F​a​s​t​Q​C

12.	 Bray NL, Pimentel H, Melsted P, Pachter L, Erratum. Near-optimal probabilistic 
RNA-seq quantification. Nat Biotechnol. 2016;34:888. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​3​8​​/​
n​​b​t​0​8​1​6​-​8​8​8​d.

13.	 Marcolini A, Bussola N, Arbitrio E, Amgad M, Jurman G, Furlanello C. Histolab: 
A Python library for reproducible digital pathology preprocessing with auto-
mated testing. SoftwareX. 2022;20:101237. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​s​o​​f​t​x​​.​2​0​2​​
2​.​​1​0​1​2​3​7.

14.	 Salvi M, Molinari F, Acharya UR, Molinaro L, Meiburger KM. Impact of stain 
normalization and patch selection on the performance of convolutional neu-
ral networks in histological breast and prostate cancer classification. Comput 
Methods Programs Biomed Update. 2021;1:100004. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​
c​m​​p​b​u​​p​.​2​0​​2​1​​.​1​0​0​0​0​4.

15.	 Alvarez-Jimenez C, Sandino AA, Prasanna P, Gupta A, Viswanath SE, Romero 
E. Identifying Cross-Scale associations between radiomic and pathomic sig-
natures of Non-Small cell lung Cancer subtypes: preliminary results. Cancers. 
2020;12. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​3​3​9​0​​/​c​​a​n​c​e​r​s​1​2​1​2​3​6​6​3.

16.	 Brancato V, Cavaliere C, Garbino N, Isgrò F, Salvatore M, Aiello M. The relation-
ship between radiomics and pathomics in glioblastoma patients: preliminary 
results from a cross-scale association study. Front Oncol. 2022;12:1005805. ​h​t​t​
p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​3​3​8​9​​/​f​​o​n​c​.​2​0​2​2​.​1​0​0​5​8​0​5.

17.	 Kornilov AS, Safonov IV. An overview of watershed algorithm implementa-
tions in open source libraries. J Imaging. 2018;4:123. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​3​3​9​0​​/​j​​
i​m​a​g​i​n​g​4​1​0​0​1​2​3.

18.	 Löfstedt T, Brynolfsson P, Asklund T, Nyholm T, Garpebring A. Gray-level invari-
ant Haralick texture features. PLoS ONE. 2019;14:e0212110. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​
1​3​7​1​​/​j​​o​u​r​​n​a​l​​.​p​o​n​​e​.​​0​2​1​2​1​1​0.

19.	 Dia AK, Ebrahimpour L, Yolchuyeva S, Tonneau M, Lamaze FC, Orain M, et 
al. The Cross-Scale association between pathomics and radiomics features 
in Immunotherapy-Treated NSCLC patients: A preliminary study. Cancers. 
2024;16. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​3​3​9​0​​/​c​​a​n​c​e​r​s​1​6​0​2​0​3​4​8.

20.	 Demircioğlu A. Measuring the bias of incorrect application of feature selec-
tion when using cross-validation in radiomics. Insights Imaging. 2021;12:172. ​
h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​8​6​​/​s​​1​3​2​4​4​-​0​2​1​-​0​1​1​1​5​-​1.

21.	 Ross BC. Mutual information between discrete and continuous data sets. 
PLoS ONE. 2014;9:e87357. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​3​7​1​​/​j​​o​u​r​​n​a​l​​.​p​o​n​​e​.​​0​0​8​7​3​5​7.

22.	 Swanberg M, Globus-Harris I, Griffith I, Ritz A, Groce A, Bray A. Improved Dif-
ferentially Private Analysis of Variance. arXiv [cs.CR]. 2019. Available: ​h​t​t​p​​:​/​/​​a​r​x​i​​
v​.​​o​r​g​​/​a​b​​s​/​1​9​​0​3​​.​0​0​5​3​4

23.	 Urbanowicz RJ, Olson RS, Schmitt P, Meeker M, Moore JH. Benchmarking 
relief-based feature selection methods for bioinformatics data mining. J 
Biomed Inf. 2018;85:168–88. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​j​b​i​.​2​0​1​8​.​0​7​.​0​1​5.

24.	 Scikit-Rebate implementation. In: epistasislab.github.io. [cited 2024]. Avail-
able: ​h​t​t​p​​s​:​/​​/​e​p​i​​s​t​​a​s​i​​s​l​a​​b​.​g​i​​t​h​​u​b​.​​i​o​/​​s​c​i​k​​i​t​​-​r​e​b​a​t​e​/​u​s​i​n​g​/

25.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O et al. Scikit-
learn: Machine Learning in Python. J Mach Learn Res. 2011;12:2825–2830. 
Available: ​h​t​t​p​​s​:​/​​/​w​w​w​​.​j​​m​l​r​​.​o​r​​g​/​p​a​​p​e​​r​s​/​​v​1​2​​/​p​e​d​​r​e​​g​o​s​a​1​1​a​.​h​t​m​l

26.	 Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The 
molecular signatures database (MSigDB) hallmark gene set collection. Cell 
Syst. 2015;1:417–25. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​c​e​l​s​.​2​0​1​5​.​1​2​.​0​0​4.

27.	 Aiba T, Hattori C, Sugisaka J, Shimizu H, Ono H, Domeki Y, et al. Gene expres-
sion signatures as candidate biomarkers of response to PD-1 Blockade in 
non-small cell lung cancers. PLoS ONE. 2021;16:e0260500. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​
1​3​7​1​​/​j​​o​u​r​​n​a​l​​.​p​o​n​​e​.​​0​2​6​0​5​0​0.

28.	 Yang Y, Sun J, Wang Z, Fang J, Yu Q, Han B, et al. Updated overall survival data 
and predictive biomarkers of sintilimab plus pemetrexed and platinum as 
first-line treatment for locally advanced or metastatic nonsquamous NSCLC 
in the phase 3 ORIENT-11 study. J Thorac Oncol. 2021;16:2109–20. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​
o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​j​t​h​o​.​2​0​2​1​.​0​7​.​0​1​5.

29.	 Yu H, Chen Z, Ballman KV, Watson MA, Govindan R, Lanc I, et al. Correlation 
of PD-L1 expression with tumor mutation burden and gene signatures for 
prognosis in Early-Stage squamous cell lung carcinoma. J Thorac Oncol. 
2019;14:25–36. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​j​t​h​o​.​2​0​1​8​.​0​9​.​0​0​6.

30.	 Tan S, Day D, Nicholls SJ, Segelov E. Immune checkpoint inhibitor therapy in 
oncology: current uses and future directions: JACC: cardiooncology State-of-
the-Art review. JACC CardioOncol. 2022;4:579–97. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​j​a​​
c​c​a​​o​.​2​0​​2​2​​.​0​9​.​0​0​4.

31.	 Siciliano MA, Caridà G, Ciliberto D, d’Apolito M, Pelaia C, Caracciolo D, et al. 
Efficacy and safety of first-line checkpoint inhibitors-based treatments for 
non-oncogene-addicted non-small-cell lung cancer: a systematic review and 
meta-analysis. ESMO Open. 2022;7:100465. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​e​s​​m​o​o​​p​.​
2​0​​2​2​​.​1​0​0​4​6​5.

32.	 Olivares-Hernández A, Del González E, Tamayo-Velasco Á, Figuero-Pérez L, 
Zhilina-Zhilina S, Fonseca-Sánchez E, et al. Immune checkpoint inhibitors in 
non-small cell lung cancer: from current perspectives to future treatments-a 
systematic review. Ann Transl Med. 2023;11:354. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​2​1​0​3​​7​/​​a​t​
m​-​2​2​-​4​2​1​8.

33.	 Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in Cancer 
immunotherapy. Mol Cancer Ther. 2015;14:847–56. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​5​8​​/​1​​
5​3​5​​-​7​1​​6​3​.​M​​C​T​​-​1​4​-​0​9​8​3.

https://doi.org/10.1200/EDBK_158712
https://doi.org/10.1200/EDBK_158712
https://doi.org/10.1038/s41571-022-00718-x
https://doi.org/10.1200/JCO.22.02544
https://doi.org/10.1200/JCO.22.02544
https://doi.org/10.1056/NEJMoa1504627
https://doi.org/10.1056/NEJMoa1504627
https://doi.org/10.1038/s43018-022-00416-8
https://doi.org/10.1126/sciadv.abn3966
https://doi.org/10.1038/s41698-022-00277-5
https://doi.org/10.1038/s41698-022-00277-5
https://www.ncbi.nlm.nih.gov/pubmed/32266087
https://www.ncbi.nlm.nih.gov/pubmed/32266087
https://doi.org/10.1200/JCO.2011.38.7571
https://doi.org/10.1200/JCO.2011.38.7571
https://doi.org/10.1158/1078-0432.CCR-12-2934
https://doi.org/10.1158/1078-0432.CCR-12-2934
https://github.com/s-andrews/FastQC
https://doi.org/10.1038/nbt0816-888d
https://doi.org/10.1038/nbt0816-888d
https://doi.org/10.1016/j.softx.2022.101237
https://doi.org/10.1016/j.softx.2022.101237
https://doi.org/10.1016/j.cmpbup.2021.100004
https://doi.org/10.1016/j.cmpbup.2021.100004
https://doi.org/10.3390/cancers12123663
https://doi.org/10.3389/fonc.2022.1005805
https://doi.org/10.3389/fonc.2022.1005805
https://doi.org/10.3390/jimaging4100123
https://doi.org/10.3390/jimaging4100123
https://doi.org/10.1371/journal.pone.0212110
https://doi.org/10.1371/journal.pone.0212110
https://doi.org/10.3390/cancers16020348
https://doi.org/10.1186/s13244-021-01115-1
https://doi.org/10.1186/s13244-021-01115-1
https://doi.org/10.1371/journal.pone.0087357
http://arxiv.org/abs/1903.00534
http://arxiv.org/abs/1903.00534
https://doi.org/10.1016/j.jbi.2018.07.015
https://epistasislab.github.io/scikit-rebate/using/
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1371/journal.pone.0260500
https://doi.org/10.1371/journal.pone.0260500
https://doi.org/10.1016/j.jtho.2021.07.015
https://doi.org/10.1016/j.jtho.2021.07.015
https://doi.org/10.1016/j.jtho.2018.09.006
https://doi.org/10.1016/j.jaccao.2022.09.004
https://doi.org/10.1016/j.jaccao.2022.09.004
https://doi.org/10.1016/j.esmoop.2022.100465
https://doi.org/10.1016/j.esmoop.2022.100465
https://doi.org/10.21037/atm-22-4218
https://doi.org/10.21037/atm-22-4218
https://doi.org/10.1158/1535-7163.MCT-14-0983
https://doi.org/10.1158/1535-7163.MCT-14-0983


Page 13 of 13Dia et al. Journal of Translational Medicine          (2025) 23:510 

34.	 Yolchuyeva S, Giacomazzi E, Tonneau M, Lamaze F, Orain M, Coulombe F, et al. 
Radiomics approaches to predict PD-L1 and PFS in advanced non-small cell 
lung patients treated with immunotherapy: a multi-institutional study. Sci 
Rep. 2023;13:11065. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​3​8​​/​s​​4​1​5​9​8​-​0​2​3​-​3​8​0​7​6​-​y.

35.	 Yolchuyeva S, Ebrahimpour L, Tonneau M, Lamaze F, Orain M, Coulombe F, 
et al. Multi-institutional prognostic modeling of survival outcomes in NSCLC 
patients treated with first-line immunotherapy using radiomics. J Transl Med. 
2024;22:42. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​8​6​​/​s​​1​2​9​6​7​-​0​2​4​-​0​4​8​5​4​-​z.

36.	 Yolchuyeva S, Giacomazzi E, Tonneau M, Lamaze F, Orain M, Coulombe F, et al. 
Imaging-Based biomarkers predict programmed Death-Ligand 1 and survival 
outcomes in advanced NSCLC treated with nivolumab and pembrolizumab: 
A Multi-Institutional study. JTO Clin Res Rep. 2023;4:100602. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​
0​.​​1​0​1​6​​/​j​​.​j​t​​o​c​r​​r​.​2​0​​2​3​​.​1​0​0​6​0​2.

37.	 Trebeschi S, Drago SG, Birkbak NJ, Kurilova I, Cǎlin AM, Delli Pizzi A, et al. 
Predicting response to cancer immunotherapy using noninvasive radiomic 
biomarkers. Ann Oncol. 2019;30:998–1004. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​9​3​​/​a​​n​n​o​n​c​/​
m​d​z​1​0​8.

38.	 Zerunian M, Caruso D, Zucchelli A, Polici M, Capalbo C, Filetti M, et al. CT 
based radiomic approach on first line pembrolizumab in lung cancer. Sci Rep. 
2021;11:6633. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​3​8​​/​s​​4​1​5​9​8​-​0​2​1​-​8​6​1​1​3​-​5.

39.	 Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi A. Artificial intelligence 
in digital pathology - new tools for diagnosis and precision oncology. Nat Rev 
Clin Oncol. 2019;16:703–15. ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​​o​r​​g​​/​​1​0​​.​1​0​​​3​8​​/​s​4​1​​5​7​1​-​​0​1​9​-​​0​2​5​2​-​y.

40.	 Sha L, Osinski BL, Ho IY, et al. Multi-field-of-view deep learning model predicts 
nonsmall cell lung cancer programmed death-ligand 1 status from whole-
slide hematoxylin and Eosin images. J Pathol Inf. 2019;10:24.

41.	 Kapil A, Meier A, Zuraw A, et al. Deep semi supervised generative learning 
for automated PD-L1 tumor cell scoring on NSCLC tissue needle biopsies. Sci 
Rep. 2018;8:17343.

42.	 Xia D, Casanova R, Machiraju D, et al. Computationally-guided development 
of a stromal inflammation histologic biomarker in lung squamous cell carci-
noma. Sci Rep. 2018;8:3941.

43.	 Viswanathan VS, Toro P, Corredor G, Mukhopadhyay S, Madabhushi A. The 
state of the Art for Artificial intelligence in lung digital pathology. J Pathol. 
2022;257(4):413–29.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://doi.org/10.1038/s41598-023-38076-y
https://doi.org/10.1186/s12967-024-04854-z
https://doi.org/10.1016/j.jtocrr.2023.100602
https://doi.org/10.1016/j.jtocrr.2023.100602
https://doi.org/10.1093/annonc/mdz108
https://doi.org/10.1093/annonc/mdz108
https://doi.org/10.1038/s41598-021-86113-5
https://doi.org/10.1038/s41571-019-0252-y

	﻿Computational analysis of whole slide images predicts PD-L1 expression and progression-free survival in immunotherapy-treated non-small cell lung cancer patients
	﻿Abstract
	﻿Introduction
	﻿Materials & methods
	﻿Description of cohorts
	﻿PD-L1 assessment
	﻿PFS assessments
	﻿RNA sequencing analysis pipeline
	﻿Whole slide image (WSI) pre-processing
	﻿WSI segmentation and patching
	﻿Extraction of pathomics features
	﻿Feature selection methods
	﻿Pathomics model development
	﻿Biological validation of pathomics signature
	﻿Pathway enrichment analysis

	﻿Results
	﻿Patient characteristics
	﻿Pathomics features
	﻿Predictive efficacy of classification methods
	﻿Median performance of feature selection and machine learning methods



