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Abstract 

Background The intricate shared genetic architecture underlying allergic disorders—including allergic asthma, 
atopic dermatitis, contact dermatitis, allergic rhinitis, allergic conjunctivitis, allergic urticaria, anaphylaxis, 
and eosinophilic esophagitis—remains incompletely characterized.

Methods Our study employed genomic structural equation modeling (Genomic SEM) to define the common 
factor representing the shared genetic architecture of allergic disorders. Coupled with diverse post-GWAS analytical 
methods, we aimed to discover susceptible loci and investigate genetic associations with external traits. Furthermore, 
we explored enriched genetic pathways, cellular layers, and genomic elements, and investigated putative plasma 
protein biomarkers. Polygenic risk score (PRS) analyses, leveraging our integrated GWAS data, were conducted 
to assess chromosomal-level risk associations for allergic disorders.

Results A well-fitted genomic SEM integrated GWAS data, revealing the shared genetic architecture of allergic 
disorders. We identified a total of 2038 genome-wide significant SNP loci (p < 5e-8), including 31 previously 
unreported loci. Fine-mapping of variants and gene sets pinpointed 2 causal variants and 31 candidate susceptible 
genes. Genetic correlation analyses further illuminated the shared genetic architecture underlying multiple traits, 
notably psychiatric disorders. Preliminary findings identified four putative causal plasma protein biomarkers.

Conclusion Notably, this study presents the first comprehensive genetic characterization of allergic disorders 
through a GWAS analysis of an unmeasured composite phenotype, providing novel insights into shared etiological 
pathways across these conditions.
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Introduction
Allergy exemplifies the dual nature of the immune 
system—it serves as both a protector and a potential 
threat. It is a systemic disorder caused by immune 

system dysregulation and encompasses conditions such 
as allergic asthma, atopic dermatitis, contact dermatitis, 
allergic rhinitis, allergic conjunctivitis, allergic urticaria, 
anaphylaxis, and eosinophilic esophagitis. Given the 
high prevalence of allergic diseases, the World Health 
Organization (WHO) has classified them among 
the top three diseases requiring priority prevention 
and treatment in the twenty-first century. Recent 
estimates from the Global Burden of Disease Study 
reveal substantial global allergic disease burdens, with 
approximately 260 million prevalent cases of asthma 
and 204 million cases of atopic dermatitis worldwide 
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[1, 2]. Allergic rhinitis, meanwhile, is estimated to 
afflict approximately 20% of the global population [3]. 
Alarmingly, the prevalence of these conditions continues 
to escalate, reflecting a persistent upward trajectory in 
allergic disease morbidity that underscores urgent public 
health priorities [3].

Allergic disorders arise from complex gene-environ-
ment interactions and are closely associated with type 2 
inflammation and epithelial barrier dysfunction. While 
these conditions are often viewed as distinct diseases, 
comorbidities and multimorbidities are common. For 
instance, cross-sectional studies indicate that individu-
als with other allergic disorders are more susceptible to 
developing asthma [4, 5]. A birth cohort study of 2,311 
Canadian children revealed that infants diagnosed with 
atopic dermatitis at one year of age had an 11-fold and 
sevenfold increased risk of developing allergic asthma 
and allergic rhinitis, respectively, by the age of three, 
compared to those without atopic dermatitis [6]. This 
temporal pattern of disease progression, where differ-
ent allergic disorders emerge sequentially over time, is 
known as the"atopic march".

The mechanisms underlying allergic disease comor-
bidities and multimorbidities are highly complex, with 
current research suggesting that genetic factors, gut 
microbiota, IgE-mediated and non-IgE-mediated path-
ways all contribute [7, 8]. With the advent of the Human 
Genome Project (HGP), genome-wide association stud-
ies (GWAS) and epigenome-wide association studies 
(EWAS) have underscored the role of genetic heritabil-
ity in allergic disorders [9]. GWAS have identified key 
susceptibility loci, such as rs11740584 and rs2299007 in 
KIF3 A for food allergy, rs8111930 near MRPL4 for aller-
gic rhinitis, and rs2243250 in IL4 and rs20541 in IL13 for 
allergic asthma [10]. For instance, a recent study lever-
aging GWAS data and innovative analytical approaches 
identified multiple shared loci between eosinophilic dis-
orders and allergic diseases (e.g., C11orf30 and SMAD3) 
[11]. Using genomic structural equation modeling 
(Genomic-SEM), Gong et  al. demonstrated substantial 
genetic correlation, represented by a common latent fac-
tor, among asthma, eczema, and allergic rhinitis [12]. 
These findings highlight the crucial role of genetic factors 
in allergic disease comorbidities and multimorbidities.

To date, numerous susceptibility single nucleotide pol-
ymorphisms (SNPs) and genes linked to specific allergic 
disorders have been identified. However, our understand-
ing of the precise genetic and biological mechanisms 
underlying allergic disorder comorbidities remains lim-
ited, and existing GWAS findings are still underexplored 
in the context of combined allergic conditions.

To address these challenges, this study aims to integrate 
multiple genetic analysis methodologies and highly 

correlated association analysis tools to uncover potential 
molecular mechanisms and expand the understanding 
of disease interconnections. Specifically, we focus on 
genomic loci and chromosomal regions associated with 
allergic disorders to identify potential therapeutic targets. 
This research not only enhances our comprehension 
of allergic disorders but also provides a theoretical and 
practical foundation for prevention and intervention 
strategies aimed at reducing allergic disease burden and 
associated complications.

In this study, we constructed a Genomic-SEM utilizing 
publicly available GWAS summary statistics for specific 
allergic disorders. This method integrates genome-wide 
association data with structural equation modeling to 
elucidate shared genetic architectures and causal rela-
tionships between traits, while rigorously accounting 
for sample overlap and pleiotropic effects. The analytical 
framework has been validated in prior studies investigat-
ing comorbidities such as inflammatory bowel disease 
and asthma, as well as associations between body mass 
index and childhood asthma, among others [12–14]. 
By leveraging GWAS statistics, we estimated the asso-
ciations of SNPs with latent phenotypes, effectively 
conducting a GWAS on an unmeasured allergic disor-
der construct. Furthermore, we employed integrative 
approaches from systems biology, defining unexplained 
genetic variation within allergic disorders as potential 
novel genetic markers and conducting extensive GWAS-
related analyses. Although this approach does not fully 
capture the intricate interactions between allergic disor-
der pathways and multifactorial influences—given that 
allergic disorders are driven by a combination of genetic, 
environmental, and stochastic factors—our methodology 
minimizes confounding effects from known biomark-
ers, enabling analysis of previously challenging datasets. 
Additionally, we performed thousands of causal inference 
analyses based on GWAS summary data to help clini-
cians and biologists predict potential plasma biomark-
ers and clinical disease causal relationships, ultimately 
informing prevention strategies and potential interven-
tions for patients.

Methods
A flowchart overview is presented in Fig. 1.

Genomic‑SEM GWAS data source
The GWAS summary statistics used for Genomic-
SEM analyses were derived from eight independent 
GWAS related to allergic disorders. These datasets were 
obtained from previously published GWAS studies, 
as well as the FinnGen R12 and UK Biobank (UKB) 
databases. The allergic phenotypes included in the 
analysis were allergic asthma, atopic dermatitis, contact 
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dermatitis, allergic rhinitis, allergic conjunctivitis, allergic 
urticaria, anaphylaxis, and eosinophilic esophagitis. All 
contributing GWAS studies received ethical approval 
from their respective institutional review boards, and all 
participants provided informed consent. The summary 
statistics underwent rigorous quality control procedures 
to ensure data integrity. A detailed list of the included 
GWAS datasets is available in Table S1.

Quality control for genomic‑SEM
We implemented a rigorous quality control pipeline 
based on recommended filtering criteria for all autoso-
mal SNPs from the eight input GWAS datasets. To ensure 
consistency across studies, SNPs were filtered against the 
1000 Genomes Phase 3 European (EUR) reference panel, 
excluding those with a minor allele frequency (MAF) 
< 0.01, effect size estimates of zero, reference panel mis-
matches, or allele inconsistencies. Given that the GWAS 
datasets originated from different genomic repositories 
and study populations, we accounted for potential sample 
overlap to prevent inflation in test statistics and improve 

result robustness. Statistical methods were applied to 
estimate and adjust for any residual overlap, minimizing 
bias in effect size estimates and ensuring the reliability of 
downstream analyses.

Genomic‑SEM construction
We applied Genomic-SEM using GenomicSEM R pack-
age (v0.0.5) to investigate the shared genetic architecture 
underlying allergic traits. Genomic-SEM is a recently 
developed multivariate method that enables the explo-
ration of latent structures across multiple phenotypes 
by estimating a multivariable genetic model [15]. A key 
advantage of Genomic-SEM is that it is robust to sam-
ple overlap and differences in sample sizes, minimizing 
biases associated with these factors. Additionally, it facili-
tates the identification of genetic variants that influence 
only a subset of traits rather than all complex traits under 
investigation, thereby distinguishing trait-specific effects 
from broader cross-trait genetic susceptibility.
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The Genomic-SEM analysis was conducted in two 
stages. In the first stage, we estimated the empirical 
genetic covariance matrix and the corresponding 
sampling covariance matrix. To achieve this, we 
compiled GWAS summary statistics for allergic 
disorders and applied a multivariate extension of Linkage 
Disequilibrium (LD) Score Regression (LDSC). LDSC is 
a robust statistical framework that quantifies polygenic 
architecture using GWAS summary statistics. By 
modeling the relationship between variant association 
statistics and their LD profiles, LDSC disentangles true 
polygenic signals from confounding biases such as cryptic 
relatedness and population stratification. In our study, 
we used a multivariate LDSC to generate an empirical 
genetic covariance matrix across eight allergic traits. This 
matrix served as the input for the common factor model 
in SEM, while SNP-based heritability estimates  (h2) for 
each trait are reported in Table S2.

In the second stage, we specified an SEM model to 
minimize the discrepancy between the hypothesized 
covariance structure and the empirical covariance 
matrix estimated in the first stage. Our primary objec-
tive was to identify the shared genetic factors underly-
ing eight allergic disorders. To this end, we tested the 
fit of a single-factor model, evaluating model adequacy 
using Standardized Root Mean Square Residual (SRMR), 
model chi-square (χ2), Akaike Information Criterion 
(AIC), and Comparative Fit Index (CFI) (see Table  S3 
and Table S4). By implementing an appropriate common 
factor SEM specification, we incorporated individual 
autosomal SNP associations into the genetic and sample 
covariance matrix, allowing for a genome-wide analysis 
of shared covariance across the eight allergic disorder 
GWAS datasets. Furthermore, to ensure that the SNPs 
identified by the novel genomic SEM exhibit consistent 
effect directions, we conducted a heterogeneity test for 
each SNP and excluded those with a Cochran’s Q statistic 
p-value less than 0.05.

Multilevel evaluation of genomic structural equation 
model
In addition to the aforementioned methods for testing 
genomic-SEM fitting, we implemented another LDSC 
approach to evaluate the stability of the genomic-SEM 
fit. Specifically, we assessed the model using parameters 
such as the mean chi-square, lambda GC, maximum 
chi-square,  h2, intercept, and ratio (calculated as (LDSC 
intercept – 1)/(mean χ2 – 1)). The detailed control of 
LDSC parameters included: retaining SNPs with miss-
ing values, retaining SNPs with an INFO score < 0.9, 
retaining SNPs with a MAF < 0.01, and excluding SNPs 
with p-values outside the valid range or with ambiguous 
strand orientation.

Identification of significant and novel genomic loci
We used FUMA (Functional Mapping and Annotation; 
https:// fuma. ctglab. nl/) to identify genomic loci and 
to detect both independent significant and lead SNPs 
associated with the Genomic-SEM of allergic disorders 
[16]. These SNPs exhibited low LD with other variants 
 (r2 < 0.6 for independent SNPs and  r2 < 0.1 for lead SNPs) 
and surpassed the genome-wide significance threshold (p 
< 5 ×  10−8). We then compared the identified lead SNPs 
and loci with those reported in single-trait GWAS to 
assess potential pleiotropy, cross-referencing significant 
published associations (p < 5 ×  10−8) in the GWAS 
Catalog. Next, we performed a risk locus analysis of this 
novel model (p < 5 ×  10−8) using FUMA. Subsequently, 
we conducted post-GWAS analysis with Multi-marker 
Analysis of GenoMic Annotation (MAGMA) to 
investigate gene-level and gene-set associations between 
genetic variants and phenotypes, applying a False 
Discovery Rate Correction (FDR)-corrected p-value 
threshold of < 0.05 for statistical significance. In addition, 
we applied the"GWAS-by-Subtraction"method, which 
involves comparing the lead loci identified through 
Genomic-SEM with those pinpointed using the genome-
wide significance threshold (p < 5 × 10⁻⁸) in single-input 
GWAS. This approach facilitates the discovery of novel, 
high-utility loci by"subtracting"previously identified 
findings, thereby enhancing the efficiency and precision 
of genetic discoveries.

Finemap
To identify the most likely causal variants associated with 
our GWAS, we employed—fine-mapping methods of 
Bayesian Fine-Mapping Method (FINEMAP), that was 
implemented in the R package echolocatoR (v2.0.3). We 
set a posterior probability threshold of 0.95 to define a 
credible set of candidate causal variants. Specifically, 
we analyzed a 250-kb window around each lead SNP, 
computing each SNP’s posterior probability of causality 
within these regions. Any variant with a posterior prob-
ability exceeding 0.95 was considered a putative causal 
variant. FINEMAP is a sophisticated Bayesian fine-map-
ping tool designed to pinpoint the most probable causal 
variants driving observed associations. FINEMAP lev-
erages a Bayesian statistical approach to compute the 
posterior probability of causality for each SNP within a 
defined genomic region, adjusting for LD.

Transcriptome‑wide association study
Because proximal SNP-level fine-mapping can be overly 
simplistic, we performed a cross-tissue sCCA-TWAS 
(sparse canonical correlation analysis-based Transcrip-
tome-Wide Association Study) after identifying putative 
causal variants. This approach aims to pinpoint genes 

https://fuma.ctglab.nl/
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most relevant to the Genomic-SEM of allergic disorders 
by leveraging 37,920 precomputed eQTL features from 
the GTEx (v8) dataset [17]. We then selected genes with 
FDR-corrected TWAS p-values < 0.05 for further analysis 
using fine-mapping of gene sets (FOCUS), which evalu-
ates the likelihood of a causal gene–phenotype relation-
ship based on the FOCUS posterior inclusion probability. 
FOCUS applies a Bayesian framework to probabilistically 
attribute causality to genes associated with GWAS sig-
nals. By integrating multi-omics data, it addresses pleiot-
ropy and LD confounding, calculating posterior inclusion 
probabilities (PIPs) to quantify the likelihood of a gene’s 
causal role. A PIP threshold of > 0.8 is commonly adopted 
to identify genes with strong evidence of causality.

Gene set and pathway enrichment analysis
We performed pathway enrichment analyses using the 
Molecular Signatures Database (MsigDB) [18] with Gene 
Set Enrichment Analysis (GSEA) to investigate poten-
tial relationships between allergic disorders and related 
pathways for the genes identified by MAGMA through 
FUMA gene-to-function. Additionally, we conducted 
further gene enrichment analyses using MendelVar 
(https:// mende lvar. mrcieu. ac. uk/ submit/).

Cell type annotation analysis and regional contribution 
analysis
To identify etiologically relevant cell types associated 
with genomic-SEM–based allergic disorders, we used the 
CELLECT pipeline, which integrates cell-type expression 
specificity from single-cell RNA sequencing (scRNA-seq) 
data [19]. We employed the Tabula Muris dataset, com-
prising transcriptomic data from Mus musculus across 
multiple organs and tissues [20]. Preprocessing and 
normalization were performed in CELLEX to compute 
expression specificity likelihood scores for each region 
[21]. We then carried out cell-type–specific analyses with 
Stratified LD Score Regression (S-LDSC), classified the 
cell types, and applied an FDR-adjusted p-value thresh-
old of < 0.05 to determine significance.

To evaluate each region’s contribution to phenotypic 
variance, we also employed S-LDSC to estimate parti-
tioned heritability across genomic annotations—such as 
genes, enhancers, and repressors. Specifically, S-LDSC 
uses a weighted LD matrix, allele frequency data, and 
GWAS summary statistics to apportion heritability 
among distinct genomic segments [22].

Genetic correlations with external traits
We estimated the genetic correlation (rg) between the 
newly constructed genomic-SEM GWAS dataset and 

each of the 115 GWAS datasets from the FinnR12 data-
base for common diseases in respiratory, digestive, circu-
latory, and other categories, as listed in Table S5.

Identification of plasma protein biomarkers
Next, we also leveraged plasma protein GWAS data from 
the deCODE (Iceland) [23] and UKB-PPP databases [24] 
as exposures, with allergic disorders as the outcome, to 
identify putative plasma biomarkers. We performed 
Mendelian randomization (MR) analyses using the Men-
delianRandomization R package (v0.7.0), with random-
effect inverse-variance weighting (IVW) as the primary 
method for assessing associations. A Bonferroni correc-
tion was applied to account for multiple comparisons, 
with a significance threshold set at p < 0.05. The deCODE 
cohort acted as the discovery dataset, and the UKB-PPP 
cohort served as the validation dataset. Instrumental var-
iables were selected based on the following criteria: p < 
5 ×  10−8 for association with plasma protein levels, not in 
LD with any other selected SNP  (r2 < 0.001), and F-statis-
tic > 10.

Polygenic risk scores evaluation
We constructed PRS from genome-wide summary-level 
data to assess the genetic contributions of distinct chro-
mosomal regions to disease susceptibility. Specifically, 
we applied PRS with Continuous Shrinkage (PRS-CS) 
algorithm, which estimates posterior SNP effect sizes 
by incorporating an external LD reference panel. This 
Bayesian regression framework integrates summary-level 
GWAS data with LD information to produce shrinkage-
based effect estimates and, ultimately, the PRS.

Results
Structural equation model fitting
Based on LD-Score regression analysis, the Z-scores 
of genetic heritability contributions for the 8 GWAS 
that constitute the allergic disorders genomic-SEM 
are almost greater than 3, indicating strong statistical 
significance and robust heritable components 
(Table  S2). The genetic covariance values between 
each pair of traits are presented in Table S6 and Fig. 2. 
The factor model of the genetic covariance matrix and 
the empirical covariance matrix in the Genomic-SEM 
fits well (CFI = 0.964, SRMR = 0.115 (Supplementary 
Table S7)). Estimates of the latent variable loadings and 
residual covariances are provided in Table  S8. These 
results provide evidence for the presence of shared 
genetic factors within the Genomic-SEM. After filtering 
SNPs with significant heterogeneity (Q p-value < 0.05), 
511,970 SNPs were removed. The final genomic-SEM 
analysis generated an indirect measurement-based 

https://mendelvar.mrcieu.ac.uk/submit/
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GWAS comprising 6,918,772 SNPs to investigate the 
genetic architecture of allergic disorder multimorbidity.

Assessment of genomic structural equation model stability 
via LDSC for genomic‑SEM
Using the LDSC method, we applied parameter controls 
and removed a total of 6,296,401 SNPs. The average chi-
square value for the retained SNPs for genomic-SEM 
of allergic disorders was Mean chi-square = 1.514, the 
Lambda GC was 1.323, the Max chi-square was 121.56, 
the was  h2 = 0.0019 (SE = 0.0001), and the intercept was 
1.0915 (SE = 0.0133) in the regression model, indicating a 
relatively good fit, with minor signs of population stratifi-
cation or residual confounding. Additionally, the attenua-
tion ratio of 0.1817 a moderate influence of confounding 
factors, with a stronger contribution from genetic effects.

Risk genetic loci
In the novel genomic-SEM, a total of 6,918,772 
SNPs were analyzed, with 2,038 variants having a 
p-value < 5e-8 (Figure S1). Employing the GWAS-
by-Subtraction methodology, we identified 31 novel 
significant variants that were not previously detected 
in the input trait GWAS statistics or documented 
in the GWAS Catalog databases (Fig.  3, Table  S9). 
Functional annotation via the FUMA tool revealed that 
the majority of these loci were situated in intergenic 
(46.6%) and intronic (36.4%) regions, with a smaller 
fraction of 49 SNPs (1.0%) located in exonic regions. 
Further analysis identified 135 independent SNPs  (r2 < 
0.6) and 83 lead SNPs  (r2 < 0.1) (Table  S10). Among 
the lead SNPs, three novel loci—chr1: rs114695117 
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(near RAVER2), chr6: rs145982144 (near UBDP1), and 
chr17: rs140397920 (near MED24)—were identified, 
representing genomic regions previously unreported 
in association with allergic disorders. These lead SNPs 
contributed to a total of 66 distinct risk loci (Table S11). 
Gene-based analysis using MAGMA highlighted 62 
potential allergic disorder-related genes, with the most 
significant enrichment observed on chromosome 2 and 
chromosome 6. Functional annotation analysis revealed 
that 59 out of 62 candidate genes (95.2%) encompassed 
genomic regions harboring at least one variant with 
high predicted pathogenicity (CADD Scaled C-Score 
≥ 10), with 9 genes (14.5%) containing extremely 
deleterious variants (CADD ≥ 20) (Table  S12, Figure 
S2).

Finemap
Fine-mapping analyses revealed strong associations 
at two genomic loci exceeding a posterior probability 
(PP) threshold of 0.95 and achieving genome-
wide significance (GWAS P < 5 × 10⁻⁸). These loci 
include chr6: rs145982144 (near UBDP1) and chr12: 
rs78017269 (near SOX5), with fine-mapping t-statistics 
of −5.61 and −5.59, and corresponding GWAS P-values 
of 2.03 × 10⁻⁸ and 2.33 × 10⁻⁸, respectively (Fig. 4).

Gene‑level identification of susceptibility
We performed sCCA-based TWAS, identifying 1350 
genes that surpassed the FDR significance threshold. 
Among these, 35 genes had a TWAS P-value < 5e-8 
(Fig. 5A), while 60 genes exhibited a TWAS Z-value > 6 
(Fig.  5B). Subsequently, we conducted fine-mapping 
analysis using the FOCUS method on the genomic 
structural equation data, identifying 127 genes with a 
posterior inclusion probability (PIP) greater than 0.8, 
which suggests they may represent potential pathogenic 
signals. To further confirm the"high-confidence"gene-
level associations, we performed an intersection test to 
include 31 unique genes (Table 1). The TWAS identified 
FAM114 A1 as the most strongly associated locus, 
demonstrating the highest positive association statistic 
(Z = 11.13) and most stringent significance threshold 
(FDR-P = 1 ×  10–24). This was followed by RFTN2 (Z 
= 6.93, FDR-P = 7 ×  10−9) and PLCL1 (Z = 6.76, FDR-P 
= 1.6 ×  10−8), collectively indicating that elevated 
predicted expression of these genes is robustly correlated 
with allergic disorder susceptibility. Conversely, RP5-
1115 A15.1 exhibited the strongest inverse association 
(Z =  − 6.81, FDR-P = 1 ×  10−8), with RERE (Z =  − 6.62, 
FDR-P = 3.9 ×  10−8) ranking second, suggesting that 
reduced expression of these loci may confer increased 
disease risk.

Fig. 4 Fine-mapping Results of Genomic Loci with Strong Associations (PP > 0.95) Identified by FINEMAP
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Pathway and cell type enrichment analysis
GSEA of MAGMA-derived risk loci highlighted 
REACTOME_ADAPTIVE_IMMUNE_ SYSTEM as 
the most significantly enriched pathway within the 
Curated Gene Sets collection. Delving into Canonical 
Pathways, we observed robust associations within 
three prominent immune-related modules including 
R E AC TOME_A DA P TI V E_IMMU N E_SYSTE M, 
REACTOME_ DISEASES_OF_IMMUNE_SYSTEM 
and REACTOME_COSTIMULATION_BY_THE_
CD28_ FAMILY. Notably, these enriched pathways 
encompassed genes critically involved in Th2 
polarization, antigen presentation, and T-cell receptor 

signaling (Table  S13). This mechanistic convergence 
strongly links these pathways to established allergic 
phenotypes such as asthma and atopic dermatitis, 
as well as immune-mediated comorbidities like 
type 1 diabetes and systemic lupus erythematosus. 
Furthermore, cataloged associations for these pathways 
extend beyond allergic disorders, encompassing 
conditions like asthma, type 1 diabetes, and 
systemic lupus erythematosus, and also extending 
to neuropsychiatric conditions such as autism 
spectrum disorder and schizophrenia (Figure S3). 
Additionally, through MendelVar enrichment mapping, 
we observed significant gene overlap with diseases 

Fig. 5 Manhattan Plot of Results from sCCA TWAS Analysis for Allergic Disorders. Manhattan plot of the TWAS P-values for allergic disorders. The 
x-axis represents chromosomes, and the y-axis shows the negative logarithm of the P-value (− log10(p)). The horizontal red line corresponds 
to a threshold of TWAS P = 1e-12 (A). Manhattan plot of the TWAS Z-scores for allergic disorders. The x-axis represents chromosomes, and the y-axis 
displays the Z-scores. The horizontal blue lines mark the absolute Z-score value of 7, which represents the threshold for significance (B)
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such as Mayer-Rokitansky-Kuster-Hauser syndrome, 
osteochondrodysplasia, and immune system diseases 
like primary immunodeficiency. Diseases related to 
glucose metabolism and liver conditions, including 
liver cirrhosis, were also enriched (Figure S4). The most 
significant cell types enriched in the allergic disorder 
GWAS were primarily immune-related, with a strong 
representation of T cells, natural killer (NK) cells, and 
B cells. These cell types, including Fat T cells, Marrow 

B cells, Limb Muscle T cell, Lung T cells, and Marrow 
regulatory T cell, Trachea blood cell, Spleen T cell, 
play crucial roles in immune regulation and allergic 
responses. Additionally, myeloid cells and leukocytes 
from various tissues, such as the Lung myeloid cells 
and Kidney leukocytes, were also significantly enriched 
(Table S14).

Table 1 Genetic associations with allergic disorders in sCCA and FOCUS analysis

Gene CHR Srart position End position Heritability 
Squared

TWAS Z TWAS FDR P FOCUS pip

RP5-1115 A15.1 1 8,424,644 8,424,645 0.1611 − 6.81478 1.2E-08 0.923

RERE 1 8,817,642 8,817,643 0.3321 − 6.61544 3.9E-08 0.997

RFTN2 2 197,676,044 197,676,045 0.1435 6.93279 7.2E-09 0.969

PLCL1 2 197,804,701 197,804,702 0.1789 6.757755 1.6E-08 0.837

IL1R2 2 101,991,843 101,991,844 0.4395 4.325578 1.8E-03 0.95

FARP2 2 241,356,242 241,356,243 0.3243 3.11431 5.0E-02 0.932

ATP1B3 3 141,876,123 141,876,124 0.0905 − 4.92 2.0E-04 0.999

FAM114 A1 4 38,867,676 38,867,677 0.3223 11.1337 1.0E-24 1

KLF3 4 38,680,586 38,680,587 0.0735 − 6.40443 1.3E-07 0.999

FAM114 A1 4 38,867,676 38,867,677 0.5296 5.56709 1.1E-05 1

FAM114 A1 4 38,867,676 38,867,677 0.3542 5.0457 1.2E-04 0.997

FAM114 A1 4 38,867,676 38,867,677 0.3542 5.0457 1.2E-04 0.971

RFC1 4 39,366,374 39,366,375 0.1071 4.52361 9.2E-04 0.997

RFC1 4 39,366,374 39,366,375 0.1071 4.52361 9.2E-04 1

SPATA5 4 122,923,073 122,923,074 0.2112 3.83259 8.5E-03 0.98

U91328.19 6 25,992,661 25,992,662 0.7309 5.824 3.0E-06 0.964

U91328.19 6 25,992,661 25,992,662 0.475 − 5.64151 7.9E-06 0.998

ABT1 6 26,596,951 26,596,952 0.2157 − 3.6894 1.3E-02 0.902

PVT1 8 127,794,532 127,794,533 0.2175 5.58441 1.0E-05 0.883

RANBP6 9 6,015,624 6,015,625 0.1052 4.31736 1.8E-03 0.956

KIAA2026 9 6,007,824 6,007,825 0.1628 4.26985 2.1E-03 0.984

TGFBR1 9 99,104,037 99,104,038 0.1129 − 3.76475 1.0E-02 0.985

IL15RA 10 5,978,186 5,978,187 0.3351 6.06753 8.8E-07 1

SUFU 10 102,503,986 102,503,987 0.109 5.95708 1.5E-06 0.916

RBM17 10 6,088,986 6,088,987 0.2453 5.18371 6.9E-05 0.994

CUEDC2 10 102,432,660 102,432,661 0.0362 − 4.91882 2.0E-04 0.874

RP11-563 J2.2 10 6,277,686 6,277,687 0.2516 − 3.89475 7.0E-03 0.993

PRKCQ-AS1 10 6,580,418 6,580,419 0.1954 3.78693 9.8E-03 0.999

SIK2 11 111,602,390 111,602,391 0.1017 6.103014 7.2E-07 0.998

C11orf1 11 111,878,934 111,878,935 0.1407 − 4.76819 3.7E-04 0.933

ELF1 13 41,061,272 41,061,273 0.0806 − 5.17324 7.1E-05 0.983

CHP1 15 41,230,838 41,230,839 0.2169 5.69736 6.0E-06 0.95

TOM1L2 17 17,972,421 17,972,422 0.0527 − 4.43104 1.2E-03 0.936

KRT15 17 41,522,528 41,522,529 0.3557 − 4.138814 3.2E-03 0.834

CCDC116 22 21,632,715 21,632,716 0.4066 − 4.66051 5.7E-04 0.945

LINC01637 22 20,957,091 20,957,092 0.2046 − 3.639734 1.5E-02 0.823
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Heritability enrichment across genomic functional 
and regulatory regions
Based on the genetic enrichment analysis of genomic 
functional regions using S-LDSC (Table  S15), we 
observed a significant enrichment pattern of heritability 
in epigenetic regulatory elements and core functional 
regions of genes. Specifically, evolutionarily enhancer 
regions, conserved elements, and DNase I hypersensitive 
sites (DGF) showed the strongest positive genetic contri-
bution, suggesting that these regulatory elements play a 
key role in influencing complex traits through cis-regula-
tory networks. These findings underscore the critical role 
of cis-regulatory networks, orchestrated through these 
genomic elements, in influencing the complex genetic 
architecture of allergic disorders, highlighting that vari-
ations within these regulatory regions are likely key driv-
ers of disease susceptibility and multimorbidity.

Genetic correlations with external traits and plasma 
biomarkers identification
Comprehensive genetic correlation analyses using LDSC 
revealed significant pleiotropy between allergic disorders 
and 12 out of 115 common diseases. Notably, acute upper 
respiratory infections exhibited the strongest positive 
genetic correlation (rg = 0.143 ± 0.046, P = 0.002), 
followed by bipolar affective disorders (rg = 0.136 ± 0.05, 
P = 0.007) and Crohn’s disease (rg = 0.148 ± 0.075, P = 
0.048). Conversely, inverse associations were observed 
for disorders of lipoprotein metabolism (rg = − 0.101 
± 0.043, P = 0.02) and heart failure (rg = − 0.088 ± 0.043, 
P = 0.04), suggesting potential protective mechanisms 
(Fig. 6). Two-sample MR analysis revealed seven plasma 
proteins with genetically predicted levels significantly 
associated with allergic disorders after Bonferroni 
correction in the deCODE discovery cohort:  MANF, 
GLB1,  HEXIM1,  KYNU,  ICAM4,  KRT5, and  LAYN. Of 
these, four proteins (MANF, GLB1, ICAM4, and LAYN) 
were consistently replicated in the UKB-PPP cohort 
using inverse-variance weighted models, demonstrating 
bidirectional concordance (Fig. 7).

Construction of polygenic risk scores from summary data
Our analysis demonstrates that the variants in our PRS 
are strongly associated with disease onset risk, and that 
the genetic contribution to disease susceptibility varies 
significantly across chromosomal regions (Table  S16). 
Specifically, when considering all SNPs, chromosomes 14 
and 20 exhibit the highest positive genetic contribution. 
However, among the top 1000 most contributing SNPs, 
chromosomes 6 (86 SNPs) and 5 (85 SNPs) are most 
prominent, while within the top 10,000, chromosomes 
2 (821 SNPs) and 1 (805 SNPs) are most frequent. This 
shift in prominent chromosomes suggests that different 

sets of genes and regulatory elements, located in these 
regions, influence disease susceptibility at different levels 
of genetic contribution.

Discussion
Allergic disorders, encompassing conditions such as 
allergic asthma, atopic dermatitis, allergic rhinitis, and 
others, represent a significant global health burden, char-
acterized by not only highly prevalent but also exhibit 
complex comorbidities and multimorbidities, often pro-
gressing through a well-documented sequence known as 
the"atopic march". The genetic basis of allergic multimor-
bidity remains underexplored, as traditional single-trait 
GWAS approaches face inherent limitations in dissecting 
the intricate genetic and phenotypic interplay underly-
ing co-occurring allergic disorders. Previously, genomic 
SEM has demonstrated utility in identifying shared 
genetic architectures, such as the comorbidity between 
inflammatory bowel disease and asthma, as well as asso-
ciations between allergic disorders and inflammatory 
diseases, body mass index, and gastroesophageal reflux 
disease [12–14]. We applied this novel approach to inte-
grate genome-wide association data by first constructing 
a genetic covariance matrix via multivariable LDSC, fol-
lowed by specifying a latent factor model representing 
eight allergic traits within the SEM framework. The appli-
cation of Genomic-SEM to metabolic syndrome research 
recently successfully identified 159 novel SNPs not pre-
viously cataloged in the GWAS Catalog, along with 82 
additional SNPs exhibiting significant pleiotropic effects 
independent of the constituent metabolic syndrome 
traits [25]. Similarly, Andrew et  al. used this method to 
analyze gene expression profiles across 13 major psychi-
atric disorders. This analysis successfully identified genes 
associated with both shared and disorder-specific genetic 
risks, leading to the proposal of repurposing existing 
drugs as potential therapeutic agents [26].

Through the novel established model and a suite of inte-
grative post-GWAS analyses, we identified 31 novel, plei-
otropic variants and prioritized 31 key genes significantly 
associated with allergic disorder multimorbidity. Among 
the lead SNPs, three—chr1:rs114695117 (near RAVER2), 
chr6:rs145982144 (near UBDP1), and chr17:rs140397920 
(near  MED24)—represent previously unreported asso-
ciations with allergic disorders. The variant rs114695117 
is located near  RAVER2, which encodes a ribonucleo-
protein involved in the regulation of alternative splic-
ing. Previous studies have implicated RAVER2 in splicing 
events within the thymic epithelium [27] and identified 
it as a susceptibility gene for liver injury in rheumatoid 
arthritis patients treated with immunomodulatory drugs 
[28]. Consequently,  RAVER2  may contribute to aller-
gic inflammation by modulating the splicing patterns 
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Fig. 6 Genetic associations between allergic disorders and external traits
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of immune-related genes. The variant rs145982144 lies 
near the pseudogene UBDP1, a component of the ubiq-
uitin system. While the precise role of UBDP1 in immune 
regulation remains to be elucidated, ubiquitination is 
known to play a critical role in protein degradation, DNA 
repair, and immune signaling, and its dysregulation has 
been implicated in autoimmunity via modulation of 
NF-κB and STAT signaling pathways [29]. Therefore, 
rs145982144 might influence allergic disease suscepti-
bility by altering  UBDP1  function, potentially affecting 
the activity of these pathways. Finally, rs140397920 is 
located near  MED24, a subunit of the Mediator com-
plex, which bridges transcription factors and RNA poly-
merase II, thereby regulating the expression of specific 
genes. Within the immune system, the Mediator com-
plex is involved in the transcriptional regulation of T cell 
programs [30, 31]. Notably, MED24 has previously been 
identified within a region containing asthma risk alleles, 
supporting its potential role in allergic disease suscepti-
bility [32].

Furthermore, fine-mapping analyses identified two 
putative causal SNPs associated with allergic disorders—
rs145982144 (near UBDP1) and rs78017269 (near SOX5). 
Although these SNPs represent novel discoveries in 
allergic disease GWAS, their positional genes have 
prior indirect evidence supporting immunological 
relevance. Specifically,  SOX5  regulates T-cell receptor 
signaling to maintain immune tolerance—a mechanism 
critically implicated in suppressing type 2 inflammation 
[33]. This aligns with existing GWAS evidence 
linking  SOX5  variants to asthma susceptibility, further 

supporting its pathological significance in allergic 
pathogenesis [34, 35].

Our sCCA and subsequent FOCUS fine-mapping 
identified 31 genes with potential causal roles in 
allergic disorders. While some of these genes, 
such as  IL1R2,  IL15RA,  TGFBR1, and  PVT1, have 
established associations with allergic traits [36, 37], 
others represent novel candidates with plausible links 
to allergic pathways. Notably,  FAM114 A1  (Z = 11.13, 
FDR-P = 1 × 10–24),  RFTN2  (Z = 6.93, FDR-P = 7 
× 10–9),  PLCL1  (Z = 6.76, FDR-P = 1.6 × 10–8),  RP5-
1115 A15.1  (Z = −6.81, FDR-P = 1.2 × 10–8), 
and  RERE  (Z = −6.62, FDR-P = 3.9 × 10–8) emerged 
as high-confidence loci, underscoring their potential 
critical roles in allergic pathogenesis.  FAM114 A1, a 
relatively uncharacterized gene, has been implicated in 
immune responses and apoptosis [38]. Furthermore, its 
role in myocardial fibrosis via regulation of angiotensin 
II has been demonstrated [39], and angiotensin II 
itself has been linked to increased asthma risk and 
airway inflammation [40, 41]. This suggests a potential 
mechanism whereby FAM114 A1 might influence allergic 
processes, possibly modulated by Angiotensin-(1–7). 
However, the precise function of  FAM114 A1  remains 
largely unexplored and warrants further investigation. 
RFTN2  is involved in, or upstream of, dsRNA transport 
and is predicted to correlate with type I interferon 
expression, a pathway implicated in ulcerative colitis 
susceptibility [42]. Recent reports also highlight RFTN2’s 
function in neuroglia [43, 44], adding further complexity 
to its potential roles. PLCL1, located on chromosome 2, 

Fig. 7 Volcano Plot of Plasma Protein Exposures and Associations with Allergic Disorders in Mendelian Randomization Analysis. Volcano plots 
of Mendelian randomization results for plasma protein exposures and allergic disorders in the deCODE discovery cohort (A) and UKB-PPP cohort (B)
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encodes a phospholipase C-like enzyme involved in signal 
transduction. It generates second messengers, such as IP3 
and DAG, activating calcium signaling and protein kinase 
C, thereby influencing B and T cell function. Because 
allergic diseases involve IgE production by B cells and 
mast cell degranulation, increased  PLCL1  expression 
could potentially enhance these immune cell 
responses, elevating allergic risk. While direct studies 
linking  PLCL1  to allergy are limited, research on 
rheumatoid arthritis demonstrates its involvement 
in regulating key inflammatory cytokines, including 
IL-6 and IL-1β [45], suggesting a possible parallel 
mechanism in allergic diseases. Intriguingly, several 
other identified genes, while not directly implicated in 
allergic diseases in previous reports, have demonstrated 
roles in the pathogenesis of glioma, including  SUFU 
[46], RBM17 [47], FAM114 A1 [48], CHP1 [49], CUEDC2 
[50],  RFC1 [51],  RANBP6 [52],  PRKCQ-AS1 [53], 
and  FARP2 [54]. Given the emerging concept of glioma 
as a marker AllergoOncology disease, these findings 
may shed light on the complex genetic underpinnings 
of AllergoOncology. The enrichment of genes associated 
with Th2 polarization, T-cell receptor signaling, and 
other immune regulatory processes in this analysis aligns 
seamlessly with previous research. Han et  al. identified 
genetic variants in these immune pathways as significant 
contributors to asthma susceptibility, demonstrating 
that asthma-associated variants are enriched in open 
chromatin regions of immune cells, particularly CD4⁺ 
and CD8⁺ T lymphocytes. Their findings also revealed 
an overrepresentation of T-cell receptor signaling 
pathways among asthma risk loci [55]. Recent studies 
have further highlighted the role of key genes, such as 
CD52—encoding a membrane glycoprotein expressed on 
various leukocytes—in linking T-cell-related pathways 
to asthma phenotypes [55–57]. Furthermore, the 
PRS analysis underscores the variability and intricate 
genetic architecture underlying allergic disorders. This 
observation highlights the distinct roles of specific 
chromosomes in the pathogenesis of these conditions.

Our novel SEM analysis explored the shared genetic 
architecture and its correlation with external traits, iden-
tifying strong comorbidities, primarily neuropsychiat-
ric disorders. These included bipolar disorder, manic 
episode, migraine, and attention deficit hyperactivity 
disorder (ADHD). This finding aligns with prior clini-
cal observations and post-GWAS research on allergic 
traits like asthma, atopic dermatitis, allergic rhinitis, and 
mental disorders [58–62]. It suggests that the complex 
comorbidity of allergic traits is driven by a shared genetic 
and environmental etiology, with our research indicating 
that the link between allergic disorders and neuropsy-
chiatric conditions may stem from this shared genetic 

architecture. This further underscores the importance of 
investigating causal loci.

Our MR findings highlight four plasma proteins—
MANF, GLB1, ICAM4, and LAYN—exhibiting robust 
associations indicative of a potential causal role in allergic 
disorders. This finding addresses limitations of prior 
retrospective studies [63–65], providing genetic evidence 
of causal effects. These proteins, collectively implicated 
in regulating immune homeostasis and inflammation, 
offer novel mechanistic targets in allergy. The replicated 
associations and suggestive causal evidence underscore 
their translational value as potential therapeutic 
interventions or diagnostic biomarkers, urgently 
necessitating functional studies to elucidate their precise 
regulatory networks in allergic inflammation.

Our study has several limitations. First, the 
shared genetic architecture of allergic disorders was 
investigated primarily in individuals of European 
ancestry. Since genomic-SEM relies on LDSC—a 
method sensitive to ancestry-specific LD patterns—our 
analysis was confined to a genetically homogeneous 
population. Consequently, validation of this model 
across diverse ethnic populations is imperative to 
establish its generalizability in future studies. Second, 
the susceptibility loci identified in this study require 
experimental validation, particularly functional 
studies at the protein level, to elucidate their 
translational relevance and mechanistic roles in allergic 
pathophysiology. Third, while Cochran’s Q-test was 
applied to assess heterogeneity  (QSNP), this approach 
prioritizes the detection of SNPs with pleiotropic effects 
across multiple traits rather than those exhibiting 
heterogeneous effects on specific allergic phenotypes. 
This methodological focus may have obscured SNPs 
with trait-specific associations critical to individual 
allergic disorders. Finally, the scarcity of GWAS 
data for allergic disorders in East Asian populations 
precluded validation of our European ancestry-derived 
genetic model in other ancestries. Addressing this gap 
through expanded sample sizes in underrepresented 
populations remains a critical priority to enhance the 
robustness and global applicability of our findings. 
Targeting pleiotropic loci identified in future research 
holds significant promise for drug development, as 
these loci could enable simultaneous therapeutic 
intervention across multiple allergic diseases. However, 
given the intricate relationship between allergy and 
immunity, it is equally crucial to actively investigate 
the role of these genes in immune regulation. In this 
study, we identified a genetic correlation between 
allergic disorders and other traits, notably psychiatric 
disorders. However, integrating biological experiments 
such as functional validation of these loci through gene 
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expression analysis or CRISPR-based gene editing can 
substantiate the biological significance of these genetic 
findings and elucidate their underlying mechanisms 
[66, 67]. Moreover, given the recent successes of 
clustering and non-clustering machine learning 
algorithms, as well as artificial intelligence, developing 
additional computational methods represents a 
viable and promising strategy to further elucidate the 
mechanisms underlying allergic disorders [68–71].

Conclusion
Leveraging genomic SEM, our novel GWAS elucidated 
the shared genetic architecture of allergic traits. Employ-
ing a suite of post-GWAS methodologies, we robustly 
identified 2038 genome-wide significant SNP loci, 
including 31 previously unreported loci. Furthermore, 
integrating sCCA with FOCUS, we precisely pinpointed 
31 candidate causal genes. Genetic correlation analy-
ses further illuminated the shared genetic architecture 
underlying multiple traits, notably psychiatric disorders. 
Moreover, we identified four putative causal plasma pro-
tein biomarkers: MANF, GLB1, ICAM4, and LAYN.
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