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Abstract 

Background  Chronic atrophic gastritis (CAG) is related to the body’s microbial and metabolic systems. Combined 
studies of microbiome and metabolomics can clarify the mechanisms of disease occurrence and progression. We 
used 16S rRNA sequencing, metagenomics sequencing and metabolomics sequencing to depict the landscapes 
of bacterium and metabolites, construct correlation networks of different bacterium and metabolites describe poten-
tial pathogenic mechanisms of chronic atrophic gastritis.

Methods  The gastric juices of 30 non-atrophic gastritis (NAG) patients and 30 CAG patients were collected. Gastric 
microflora was analyzed by 16S rRNA sequencing and metagenomics sequencing. Gastric metabolites were analyzed 
by LC–MS analysis. Different bioinformatics methods were used to analyze the data of microbiome and metabolome, 
and to analyze the relationship between them.

Results  In atrophic gastritis, bacteria diversity decreased. The genera with a mean decrease in Gini greater than 1.5 
included peptostreptococcus, fusobacterium, prevotella, sphingomonas and bacteroides. KEGG pathway included renal 
cell carcinoma, proximal tubule bicarbonate reclamation, citrate cycle and aldosterone synthesis and secretion 
with significant enrichment of differential metabolites. Peptostreptococcus, fusobacterium, prevotella and sphingomonas 
were in pivot positions of the correlation network of differential metabolites and differential bacterium. Viral carcino-
genesis, glycine serine and threonine metabolism, RNA polymerase, galactose metabolism and retinol metabolism 
were enriched in chronic atrophic gastritis based on the metagenomic sequencing data.

Conclusion  Peptostreptococcus, fusobacterium, prevotella, sphingomonas and bacteroides were the essential features 
that distinguish atrophic gastritis from non-atrophic gastritis, and caused disease by altering various metabolic path-
ways. Viral carcinogenesis, glycine serine and threonine metabolism, RNA polymerase, galactose metabolism and reti-
nol metabolism may be related to the occurrence and progression of CAG.
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Introduction
Modern medicine believes that chronic gastritis includes 
chronic non-atrophic gastritis (NAG) and chronic 
atrophic gastritis (CAG), and the occurrence of CAG 
is usually a relatively long evolution process under the 
action of a variety of causes [1, 2]. The pathological pro-
cess progresses from normal mucosa to NAG to CAG to 
intestinal metaplasia and eventually to gastric cancer [3]. 
Most intestinal gastric cancer occurs on the basis of CAG 
[3–6]. As a kind of precancerous lesion of gastric cancer 
[7–9], CAG is a hot topic in both clinical and scientific 
research fields.

CAG is a chronic stomach disease characterized by 
atrophy and reduction of the inherent glands of the gas-
tric mucosa, with or without fibrous replacement, intes-
tinal metaplasia, and/or atypical hyperplasia [10–13]. 
Because the natural glands of the gastric mucosa will 
occur physiologically atrophy or decrease, so this dis-
ease is more common in the elderly [14–16]. However, 
with the continuous increase of living pressure, the con-
stant change of diet, as well as the continuous progress 
and popularization of electronic gastroscopy and patho-
logical diagnosis, the discovery rate of clinical chronic 
atrophic gastritis is gradually increasing, and the affected 
population is becoming younger and younger [14–16]. 
The causes and mechanisms of its pathogenesis mainly 
include [1, 6, 17–19]: (1) the incidence is generally posi-
tively correlated with age. For example, the lack of gastric 
mucosa nutrition factors such as gastrin and epidermal 
growth factor, or the insensitivity of gastric mucosa sen-
sory nerve endings to the above factors will lead to gastric 
mucosa atrophy; (2) Helicobacter pylori (HP) infection 
is the main cause, and more than 90% of patients with 
CAG suffer from HP infection; (3) Long-term drinking of 
strong tea, spirits, coffee, eating too hot and too cold and 
other physical factors can also lead to repeated damage 
of gastric mucosa; (4) Long-term oral administration of 
large amounts of non-steroidal anti-inflammatory drugs 
inhibited the synthesis of prostaglandin in gastric mucosa 
and damaged the mucosal barrier; (5) Bile reflux can 
destroy the mucosal barrier and cause chronic inflamma-
tory changes of gastric mucosa.

At present, the main treatment plan is to target the 
causes of chronic atrophic gastritis, which mainly uses 
the eradication of HP infection, proton pump inhibitors, 
gastric modynamics drugs, gastric mucosal protective 
agents and other symptomatic treatment, and regular 
electronic gastroscopy follow-up, which cannot funda-
mentally solve the precancerous lesions of gastric can-
cer, and the clinical manifestations of CAG are diverse 
[20]. The more common clinical manifestations are dull 
or burning pain in the upper abdomen, heating, gastric 
distension, nausea, etc., which are difficult to diagnose 

clinically and eradicate the precancerous state of gastric 
cancer. Therefore, it is necessary to further explore the 
pathogenesis of chronic atrophic gastritis and explore 
new diagnostic markers and therapeutic targets.

With the development of DNA sequencing technol-
ogy and bioinformatics methods, the study of human 
microbe has entered another new stage [21, 22]. Tran-
scriptomics and proteomics are widely used in the study 
of gastrointestinal diseases. However, these does not fully 
explain the pathogenesis of the disease. Diseases of the 
digestive system are closely related to the body’s micro-
bial and metabolic systems. Combined studies of micro-
biome and metabolomics can clarify the mechanisms of 
disease occurrence and progression.

In this study, a total of 30 patients with CAG and 
30 patients with NAG were included, and 16S rRNA 
sequencing, metagenomics sequencing and metabo-
lomics sequencing were performed. We first analyzed the 
diversity and abundance of bacteria in CAG samples and 
NAG samples by 16S rRNA sequencing. The key patho-
genic genera were screened by random forest algorithm, 
and the correlation network among genera was con-
structed. We also elucidated the possible pathogenetic 
pathways through the enrichment analysis of bacterium. 
In terms of metabolomics, we screened the differentially 
expressed metabolites of CAG samples and NAG sam-
ples, and selected key metabolites by random forest algo-
rithm, which can be used as potential diagnostic markers. 
We constructed a network of correlations between differ-
ential metabolites and differential bacterium. In metagen-
omics, we highlight the results of differential genera and 
functional enrichment analyses. Our study may provide 
clues to elucidate the pathogenic mechanism of chronic 
atrophic gastritis and identify potential key pathogenic 
bacteria and pathogenic metabolites.

Materials and methods
Study design
A total of 30 chronic atrophic gastritis (CAG) patients 
and 30 non-atrophic gastritis (NAG) patients attending 
Hebei provincial hospital of Traditional Chinese Medi-
cine from January 2020 to December 2022 were selected 
as subjects. This study was a case–control study. Inclu-
sion criteria: (1) patients aged between 18 and 65 years; 
(2) Patients in the CAG group met the diagnostic criteria 
for CAG, and patients in the NAG group met the diag-
nostic criteria for NAG. The diagnosis of the two dis-
eases was based on gastroscopy and pathological biopsy 
results. (3) The patients fully understood the significance 
of this study and voluntarily sign the informed consent; 
(4) The patients had reading ability and good follow-up 
compliance. Exclusion criteria: (1) with autoimmune 
gastritis; (2) with gastric and duodenal ulcers and upper 
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gastrointestinal bleeding; (3) with gastric mucosa of 
severe dysplasia and mucosal pathological diagnosis sus-
pected malignancy; (4) with serious organic diseases; (5) 
with mental illness cannot cooperate with researchers; 
(6) pregnant or lactating women; (7) have been enrolled 
in other clinical studies. Patients in the CAG group 
ranged in age from 34 to 65 years old, with an average 
age of (52.8 ± 8.29) years old, including 15 males and 15 
females, with an average BMI of (24.19 ± 3.32) Kg/m2. 
Patients in the NAG group ranged in age from 30 to 63 
years old, with an average age of (52.1 ± 7.13) years old, 
including 12 males and 18 females, with an average BMI 
of (23.69 ± 2.62)Kg/m2. There was no significant differ-
ence in baseline clinical data between the two groups (P 
> 0.05). All patients were yellow, and there was no signifi-
cant difference in dietary habits.

Sample collection
Gastroscope models used in this study were GIF-H260, 
GIF-Q260 and GIF-HQ290 (Olympus, Japan). Under the 
direct vision of the gastroscope, disposable tubes were 
inserted through the gastroscopic biopsy orifice into the 
mucous lake at the lower part of the stomach (the fundus 
junction). Gastric fluid were extracted via syringe con-
nected to the disposable tube. Gastric juices extracted 
were placed into the 20 ml sterile cryopreservation tubes 
and conserved at − 80 °C in the refrigerator.

Liquid chromatography‑mass spectrometer (LC–
MS) analysis
Sample preparation
After adding methanol to the gastric fluid sample, the 
protein was incubated and precipitated. The resulting 
supernatant was transferred to vials and kept at – 80 °C 
until UHPLC-QE Orbitrap/MS analysis. Weigh the sam-
ple and transfer it into a 1.5 mL EP tube. Add two small 
steel beads and 400 μL of methanol–water solution (4:1, 
v/v, containing 4  μg/mL L-2-chlorophenylalanine). Pre-
cool the mixture at −  40 °C for 2  min, then grind it in 
a grinding machine for 2  min (60 Hz). After grinding, 
perform ultrasonic extraction in an ice-water bath for 
10 min, followed by incubation at −  40 °C for 30 min. 
Centrifuge the mixture at 4 °C and 1200 rpm for 10 min, 
then transfer 300 μL of the supernatant to an LC–MS 
vial and air-dry. After drying, reconstitute the residue in 
the vial with 300 μL of methanol–water (1:4, v/v), vor-
tex for 30 s, ultrasonicate in an ice-water bath for 3 min, 
and incubate at − 40 °C for 2 h. Centrifuge the reconsti-
tuted extract at 4 °C and 1200 rpm for 10 min, collect 150 
μL of the supernatant, filter through a 0.22 μm organic 
phase syringe filter, transfer to an LC vial, and store at 
− 80 °C for subsequent LC–MS analysis. Quality control 

(QC) samples were prepared by mixing equal volumes of 
extracts from all samples.

Liquid chromatography‑mass spectrometry (LC–MS) 
analysis
Metabolomics data analysis was performed by Shanghai 
Luming Biotechnology Co., Ltd. The analytical system 
consisted of an ACQUITY UPLC I-Class Plus ultra-
performance liquid chromatograph coupled with a QE 
Plus high-resolution mass spectrometer (Thermo Fisher 
Scientific, Waltham, MA, USA) equipped with a heated 
electrospray ionization (HESI) source. Both positive and 
negative ion modes were analyzed using an ACQUITY 
UPLC HSS T3 column (1.8 μm, 2.1 × 100 mm). The 
mobile phase comprised (A) water (0.1% formic acid, v/v) 
and (B) acetonitrile (0.1% formic acid, v/v) with the fol-
lowing gradient: 0.01 min, 5% B; 2 min, 5% B; 4 min, 30% 
B; 8 min, 50% B; 10 min, 80% B; 14 min, 100% B; 15 min, 
100% B; 15.1 min, 5% B; 16 min, 5% B. The flow rate was 
0.35 mL/min, and the column temperature was main-
tained at 45 °C. All samples were stored at 10 °C during 
analysis. The mass scan range was m/z 100–1200. Full 
MS resolution was set to 70,000, and MS/MS resolution 
to 17,500, with collision energies of 10, 20, and 40 eV. 
Instrument parameters included: spray voltage, 3800 V 
(+) and 3200 V (−); sheath gas flow, 35 arbitrary units; 
auxiliary gas flow, 8 arbitrary units; capillary tempera-
ture, 320 °C; auxiliary gas heater temperature, 350 °C; 
S-lens RF level, 50.

Data preprocessing and statistical analysis
LC–MS raw data were processed using Progenesis QI 
V2.3 (Nonlinear Dynamics, Newcastle, UK) for base-
line filtering, peak identification, integration, retention 
time correction, peak alignment, and normalization. Key 
parameters included a precursor tolerance of 5  ppm, 
product tolerance of 10 ppm, and a 5% product ion 
threshold. Metabolites were identified using the Human 
Metabolome Database (HMDB), LipidMAPS (V2.3), 
Metlin, and a custom database based on accurate m/z 
values, secondary fragments, and isotopic patterns. Peaks 
with > 50% missing values (intensity = 0) within a group 
were removed, zero values were replaced with half of the 
minimum value, and compounds with database matching 
scores below 36 (out of 80) were discarded. Positive and 
negative ion data were merged into a single matrix.

Principal component analysis (PCA) was performed 
using R packages to evaluate sample distribution and 
analytical stability. Orthogonal partial least squares-
discriminant analysis (OPLS-DA) and partial least 
squares-discriminant analysis (PLS-DA) were applied to 
distinguish metabolic differences between groups. Model 
validity was assessed via sevenfold cross-validation 
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and 200-response permutation testing (RPT). Variable 
importance in projection (VIP) values from OPLS-DA 
were used to rank metabolites contributing to group dis-
crimination. A two-tailed Student’s t-test was employed 
to validate significant differences (VIP > 1.0, p < 0.05).

High‑throughput 16S ribosomal RNA gene sequencing
Microbial DNA was extracted from gastric fluid samples 
using Mobio PowerSoil®DNAIsolationKit. A univer-
sal primer was used to amplify bacterial 16S ribosomal 
DNA (341 F: 5′ -actcctacgggaggCAG​CAG​CAG-3′;806R: 
5′ -GGA​CTA​CHVGGG​TWT​CTAAT-3′) targeting the 
v3-v4 region of 16S ribosomal DNA amplification target 
product. SolexaPCR and ImageJ were used for quantita-
tive analysis. After mixing the samples, the library was 
constructed with the recovered products of 1.8% agarose 
gel. Double-terminal sequencing was performed using 
a MiSeq sequencer. The original data was spliced, the 
spliced sequences were filtered for quality, and the chi-
mera was removed to get high-quality tags sequences. 
The sequences were clustered at the 97% similarity 
level, and 0.005% of all sequence numbers were used as 
the threshold for filtering operational taxonomic units 
(OTUs). Species annotation was performed by RDP 
Classifier software, and the reliability threshold was 0.8. 
PyNAST software was used to analyze the phylogeny of 
dominant OTUs. Microbial diversity analysis was per-
formed using Mothur software. The dilution curve was 
used to evaluate whether the sequencing volume cov-
ered all groups in the sample. Based on the R language 
platform, PCA and principal coordinate analysis (PCoA) 
were performed to show Beta diversity. LefSe linear dis-
criminant analysis was conducted. The significance of 
LefSe results was tested using metastats analysis.

Metagenomics sequencing
Very short sequences, low quality sequences, splice 
sequences and host DNA sequences generated from Raw 
Reads were filtered prior to in-depth analysis of the data. 
We used standard Microbiome Helper steps for metagen-
omic sequencing data quality control and filtering. Firstly, 
the quality of the original data was detected by Fast QC 
tool to determine the size of the data and get the basic 
information such as Q20, Q30, error rate and GC content 
of the sequencing data. Then, the low quality sequences 
were removed by KneadData tool, Trimmomatic and 
Bowtie2. Finally, high quality microbial DNA sequences 
are obtained. DIAMOND software was used to compare 
the representative sequences of the non-redundant gene 
set with the NR library of NCBI, and the annotations of 
P < 1e-5 were selected to screen the proteins with the 
highest sequence similarity, so as to obtain functional 
annotation information.

Statistical analysis
Comparisons of continuous variables were made via 
the independent sample t test or the separate variance 
estimate t test. Differences between categorical varia-
bles were assessed using the Chi-square test. Spearman 
rank correlation analysis was used for the relationship 
between metabolites or between species and metabo-
lites. False discovery rate (FDR, Benjamini-Hochberg) 
was used to adjust the original P values of multiple 
tests. SPSS version 22.0 and R version 3.5.2 were used 
to analyze the data.

Results
Diversity analysis of CAG group and NAG group
Alpha diversity analysis revealed there were significant 
differences in chao1, observed species, shannon and 
simpson index between the chronic atrophic gastritis 
(CAG) and non atrophic gastritis (NAG) groups (P < 0.05, 
Fig. 1A–D). PCoA and permutational multivariate analy-
sis of variance (PERMANOVA) test for Beta diversity 
revealed a significant difference in the composition and 
abundance of gastric juice microbiota between groups 
(Unweighted Unifrac P = 0.039 and Bray–Curtis P = 
0.028) (Fig. 1E and F). The top tenamplicon sequence vari-
ants (ASV) with the most significant differences between 
the CAG and NAG groups were prevotella (ASV6), sphin-
gomonas (ASV12), peptostreptococcus (ASV15), atopo-
bium (ASV29), leptotrichia (ASV44), dialister (ASV74), 
sphingomonas (ASV148), fusobacterium (ASV241), tan-
nerella (ASV324), catonella (ASV478) (P < 0.05, Fig. 1G). 
Linear discriminant analysis (LDA) showed the differ-
ences on taxa abundance between groups. Prevotella, 
rothia, peptostreptococcus and atopobium were more 
enriched in NAG groups, while ralstonia, sphingomonas, 
muribaculaceae and ruminococcus were more enriched 
in CAG groups (Fig. 1H).

Identification of key pathogenic bacterial genera
We selected the top 50 genera with highest abundance, 
and calculated spearman correlation coefficient based on 
the relative abundance. |Spearman cor|> 0.8 and P-value 
< 0.01 were used as the screening criterion, and a inter-
action network was established to show the relationships 
among genera in CAG group (Fig. 2A). We show correla-
tions among the top 30 abundance genera in CAG group 
(Fig.  2B). Random forest algorithm showed the impor-
tance of bacterial genera in describing the intrinsic char-
acteristics of the CAG and NAG groups. The genera with 
a mean decrease in Gini greater than 1.5 included pep-
tostreptococcus, fusobacterium, prevotella, sphingomonas 
and bacteroides (Fig. 2C).
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Fig. 1  Diversity analysis of chronic atrophic gastritis group and non atrophic gastritis group. A–D The differences of the diversity indexes 
between the two groups. E Principle coordinate analysis (PCoA) for Beta diversity. F Permutational multivariate analysis of variance (PERMANOVA) 
test for Beta diversity. G The top 10 amplicon sequence variants with the most significant differences between groups. H Linear discriminant analysis 
of the two group. C represented for chronic atrophic gastritis group, while N represented for non atrophic gastritis group
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Fig. 2  Screening of key pathogenic bacterial genera. A Bacterial genus correlation network diagram. Red lines represented positive correlation 
and green lines represented negative correlation. The thicker the line, the higher the correlation between genera. B Correlation heat map 
between genera with top 30 abundance. C Mean decrease Gini of genera. D KEGG analysis between the two groups. The left bar was the mean 
abundance of pathways in each group, and the right was the 95% confidence interval and corresponding significance P value for comparison 
of differences between groups. C represented for chronic atrophic gastritis group, while N represented for non atrophic gastritis group
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Identification of differentially expressed metabolites
Using VIP > 1, FDR < 0.05 and |log2FC|> 0 as criteria, 
we screened out metabolites that were differentially 
expressed between the CAG and NAG groups (Fig.  3A 
and B). A total of 168 metabolites with differential abun-
dance were obtained, among which 81 metabolites had 
up-regulated abundance and 87 metabolites had down-
regulated expression in chronic atrophic gastritis samples 
(Table S1). The Correlation between differential metabo-
lites and differential metabolite response strength data 
was calculated based on pearson correlation analysis, and 
the network was constructed by selecting the metabolite 
relationship pairs satisfying conditions P-value < 0.05 and 
correlation > 0.95 (Fig.  3C). Pearson correlation analy-
sis was performed for the top 20 metabolites with sig-
nificant differences ranked by VIP in chronic atrophic 
gastritis group (Fig.  3D). We performed KEGG enrich-
ment analysis of differential metabolites. KEGG pathway 
included renal cell carcinoma, proximal tubule bicarbo-
nate reclamation, citrate cycle and aldosterone synthesis 
and secretion with significant enrichment of differential 
metabolites (Fig. 3E).

Construction of microbial and differential metabolite 
correlation network
We used the random forest algorithm to screen differen-
tially expressed metabolites that distinguish CAG from 
NAG gastritis, and the importance of the differentially 
expressed metabolites is shown in Fig.  4A. We con-
structed a correlation network of differential metabolites 
and differential bacterium, as shown in Fig.  4B. Peptos-
treptococcus, fusobacterium, prevotella and sphingo-
monas were in pivot positions and correlated with many 
kinds of metabolites.

Comparison of microbial diversity and abundance based 
on metagenomics sequencing
In order to further analyze the influence of microorgan-
isms on chronic atrophic gastritis, we selected samples 
for metagenomic sequencing. Metagenomic sequenc-
ingresults showed that a total of 1589 bacteria genera 
were identified in both CAG and NAG samples, and the 
top 15 bacteria genera with the highest proportion were 
shown in Fig.  5A. We have shown the top 30 bacteria 
genera with the most significant differences, including 

peptostreptococcus, fusobacterium, prevotella, and bac-
teroides, which coincided with the results of 16S rRNA 
sequencing to a certain extent (Fig. 5B). In terms of alpha 
diversity and beta diversity, there was no statistical signif-
icance between the two groups (Fig. 5C–F). We used the 
LEfSe to identify bacterium with significant differences 
in relative abundance between the two groups. Haemo-
philus was significantly enriched in non atrophic gastritis 
samples. Odoribacter, mycoplasmataceae, mycoplasma, 
tenericutes, mycoplasma, mycoplasmatales, splanchnicus, 
odoribacteraceae, CHU740, F0091 and NPS 308 were sig-
nificantly enriched in atrophic gastritis samples (Fig. 5G). 
We show the top 10 species with the most significant dif-
ferences (Fig. 5H).

Functional enrichment analysis
GO pathway enrichment analysis showed that different 
strains were significantly enriched in cellular process, 
metabolic process, biological regulation and other bio-
logical processes. The different strains were significantly 
enriched in cellular component items such as cell part, 
membrane and macromolecular complex. The different 
strains were significantly enriched in antioxidant activ-
ity, binding, catalytic activity and other molecular func-
tion items (Fig.  6A). Based on the KEGG database, we 
used the LEfSe tool to analyze the relative abundance of 
microbial metabolic pathways in each sample. A total of 7 
bacteria-specific metabolic pathways with significant rel-
ative abundance differences were identified between the 
two groups by LEfSe tool. Biotin metabolism and Olfac-
tory transduction were significantly enriched in NAG 
group. Viral carcinogenesis, glycine serine and threonine 
metabolism, RNA polymerase, galactose metabolism and 
retinol metabolism were enriched in chronic atrophic 
gastritis based on the metagenomic sequencing data 
(Fig. 6B).

Discussion
The ratio of human bacteria to human cells is close to 1:1, 
and the genes they carry are known as the second set of 
human genome [23–26]. Bacteria not only exert exten-
sive influence on human living environment, but also 
co-evolve with human beings and interact with human 
bodies almost from the fetal stage, participating in all 
aspects of human function [27–30]. Our understanding 

(See figure on next page.)
Fig. 3  Identification of differentially expressed metabolites. A and B The Volcano and heatmap of differentially expressed metabolites 
between atrophic gastritis group and non atrophic gastritis group. C Differentially expressed metabolites correlation network diagram. The 
thickness of the lines represents the degree of relevance, the red line represents positive correlation, and the blue line represents negative 
correlation. D Correlation heatmap of the top 20 metabolites with most significant differences. E KEGG analysis based on differentially expressed 
metabolites
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Fig. 3  (See legend on previous page.)
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Fig. 4  Construction of microbial and differential metabolite correlation network. A The identification of the metabolites that characterize 
the disease via random forest algorithm. B Microbial and differential metabolite correlation network. The yellow lines represented positive 
correlation and the blue lines represented negative correlation. The thickness of the line represented the level of the correlation coefficient



Page 10 of 14Ma et al. Journal of Translational Medicine          (2025) 23:537 

Fig. 5  Comparison of microbial diversity and abundance based on metagenomics sequencing. A Genus composition ratio of samples. B 
Heatmap of the top 30 genera with the most significant differences. C–F The differences of the diversity indexes between the two groups. G Linear 
discriminant analysis of the two group. H The top 10 species with the most significant differences
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of microorganisms relevant to human survival and dis-
ease is very limited, often limited to the exploration of a 
particular species and its function. Human beings needed 
to rely on the culture of a single microorganism, so as 
to realize the systematic and in-depth study of human 
microorganisms. However, such research is a huge work-
load and progress is slow. Advances in sequencing tech-
nology and the development of molecular biology have 
freed human beings from this dependence, giving human 

beings the ability to fully describe the microbial land-
scape and explore the functions of microorganisms on 
the human body. Human digestive tract is colonized by 
trillions of microorganisms, which constitute a complex 
and huge microbial ecosystem and play an important role 
in maintaining human homeostasis. These microorgan-
isms are very finely balanced, and the imbalance in their 
composition and function can lead to a variety of dis-
eases, including gastrointestinal, neurological, respira-
tory, metabolic, cardiovascular, and malignant tumors.

Fig. 6  Functional enrichment analysis of different microbial between groups. A Functional enrichment analysis based on KEGG. B Functional 
enrichment analysis based on GO
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16 s RNA sequencing and metagenomics sequenc-
ing sequencing are two different methods for studying 
microbiome. The former has advantages in genera iden-
tification, while the latter has advantages in species func-
tion. Both methods have been widely used in gastritis and 
gastric cancer to explore the role of human digestive tract 
microorganisms in stomach diseases. The structure of 
gastric microflora is complex, and there are many other 
microorganisms besides HP, and the imbalance of gastric 
microflora is closely related to gastric cancer [31, 32]. A 
comparative study was conducted on the gastric mucosal 
flora of all subjects by 16S rRNA sequencing. It was found 
that intestinal metaplasia and gastric cancer patients had 
obvious imbalance of gastric mucosal flora. At the same 
time, the study also found that, compared with patients 
with superficial gastritis, 21 bacterial categories were sig-
nificantly enriched in the stomach of patients with gastric 
cancer, and the relative abundance of another 10 bacte-
rial categories was significantly reduced in the stomach 
of patients with gastric cancer, and 5 core dominant spe-
cies were enriched in the stomach of patients with gas-
tric cancer. These include Peptostreptococcus stomatis, 
Streptococcus anginosus, Parvimonas micra, Slackia exi-
gua and Dialister pneumosintes comprises a community 
that well classifies gastric cancer patients from gastritis 
patients (ROC, AUC = 0.82), and this result is validated 
in another area subject [33, 34]. Ferreira et  al. studied 
the gastric mucosal flora and found that compared with 
patients with chronic gastritis, the diversity of gastric 
flora Alpha and the relative abundance of HP decreased 
in patients with gastric cancer [35]. Some symbiotic 
bacteria, which usually colonize the gut, were enriched 
in the stomach of gastric cancer patients. In addition, 
the microecological imbalance index calculated by the 
relative abundance of differentially distributed bacteria 
between the two groups can effectively distinguish gas-
tric cancer from chronic gastritis [35].

These studies on the relationship between gastric 
microbes and gastric cancer were conducted using 
marker gene analysis, namely 16S rRNA gene amplicon 
analysis. By designing PCR primers in the evolutionarily 
conserved region of bacterial 16S rRNA gene to amplify 
the highly variable region of the gene, high-throughput 
sequencing was used to reconstruct the structural com-
position of a specific microbiota, and bioinformatics 
was used to predict the functional characteristics of the 
biota. However, the identification of bacterial taxa by this 
method is mostly at the genus level, and the information 
of a large number of genes except 16S rRNA gene will 
be lost. Meanwhile, the bias of PCR primers and mul-
tiple PCR cycles may also bring large errors to the final 
results. Compared with marker gene analysis, metagen-
omics analysis of all the genomes in the sample has a 

higher resolution in the identification of the taxonomic 
structure and functional characteristics of the micro-
flora, which can be accurate to the level of strains or 
even strains, and the annotation of microbial functional 
characteristics is more accurate and comprehensive. Park 
et al. confirmed by metagenomics that high expression of 
type IV secretion system gene may promote the occur-
rence and progression of gastric cancer [36]. Metagen-
omics studies confirmed that the abundance of HP 
decreased in atrophic gastritis samples, intestinal meta-
plasia samples and gastric cancer samples, whereas the 
abundance of other microorganisms increased. HP infec-
tion may inhibit colonization of carcinogenic intestinal 
flora [36].

In addition to microbiome, metabolomics can be used 
to assist clinical diagnosis, pre-diagnosis and efficacy 
evaluation by analyzing the changes of metabolites in 
response to pathological changes of the body, and pro-
vide ideas for the study of the pathogenesis of diseases. 
Therefore, some scholars also began to try to use metab-
olomics technology to further analyze and study stom-
ach diseases. Zu et al. showed the metabolic differential 
profile in urine of rats with CAG. d-glutamine and d-glu-
tamic acid metabolism may be involved in the occurrence 
and progression of diseases [37]. Tong et al. believed that 
before and after berberine treatment, metabolic path-
ways were changed and metabolic phenotypes were sig-
nificantly different in rats with atrophic gastritis. Their 
study identified 15 metabolic markers associated with 
berberine treatment that may be key nodes in berberine’s 
mechanism for treating chronic atrophic gastritis [38]. 
Of these, 17 metabolites returned to normal levels after 
treatment. Their study concluded that the possible mech-
anism of action of Shidan granule is related to tricarbox-
ylic acid cycle and amino acid metabolism pathway [39].

In our study, 16S rRNA sequencing and metagenomics 
sequencing were used for the first time to demonstrate 
the microbiome landscape of gastric fluid samples from 
patients with CAG, and metabolomics analysis was com-
bined to explore the correlation between microorgan-
isms and metabolites. Our study found that compared 
with NAG, the diversity of bacterial Alpha and Beta in 
atrophic gastritis samples decreased. According to the 
random forest algorithm, peptostreptococcus, fusobac-
terium, prevotella, sphingomonas and bacteroides are 
the five most important bacteria genera to distinguish 
between CAG and NAG. Compared with NAG sam-
ples, 168 different metabolites in CAG samples were 
screened. These differential metabolites were signifi-
cantly enriched in citrate cycle (TCA cycle), renal cell 
carcinoma, proximal tubule bicarbonate reclamation and 
aldosterone synthesis and secretion. We constructed a 
network of correlations between microbes with different 
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abundance and differentially expressed metabolites. 
We found that peptostreptococcus, prevotella, sphingo-
monas and fusobacterium are at the hub of the network 
and are associated with a variety of metabolites. This is 
highly consistent with the results of the previous random 
forest algorithm. This indicates that these four bacteria 
genera can characterize the essential characteristics of 
disease and lead to the occurrence of disease by chang-
ing the expression of multiple metabolites and metabolic 
pathways. In metagenomics studies, we focus on spe-
cies differences and functional enrichment analysis. The 
results showed that different bacterium were significantly 
enriched in viral carcinogenesis, glycine serine and thre-
onine metabolism, RNA polymerase, galactose metabo-
lism and retinol metabolism.

There are some shortcomings in this study.First of 
all, the sample size of this study is small, and it is still 
necessary to further expand the sample size. Secondly, 
this study did not stratify the samples according to age 
and sex, which are all factors affecting the composition 
of microbiota and metabolic profile. Finally, this study 
did not carry out basic experiments to further explore 
the biological significance of specific strains and their 
related metabolites.

Conclusion
Peptostreptococcus, fusobacterium, prevotella, sphingo-
monas and bacteroides were the essential features that 
distinguish atrophic gastritis from non-atrophic gastritis, 
and caused disease by altering various metabolic path-
ways. Viral carcinogenesis, glycine serine and threonine 
metabolism, RNA polymerase, galactose metabolism and 
retinol metabolism may be related to the occurrence and 
progression of chronic atrophic gastritis.
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