
Lin et al. Journal of Translational Medicine          (2025) 23:388  
https://doi.org/10.1186/s12967-025-06425-2

REVIEW

Machine learning and multi-omics 
integration: advancing cardiovascular 
translational research and clinical practice
Mingzhi Lin1†, Jiuqi Guo1†, Zhilin Gu1, Wenyi Tang1, Hongqian Tao1, Shilong You1, Dalin Jia1*, 
Yingxian Sun1,2* and Pengyu Jia1*   

Abstract 

The global burden of cardiovascular diseases continues to rise, making their prevention, diagnosis and treatment 
increasingly critical. With advancements and breakthroughs in omics technologies such as high-throughput sequenc-
ing, multi-omics approaches can offer a closer reflection of the complex physiological and pathological changes 
in the body from a molecular perspective, providing new microscopic insights into cardiovascular diseases research. 
However, due to the vast volume and complexity of data, accurately describing, utilising, and translating these bio-
medical data demands substantial effort. Researchers and clinicians are actively developing artificial intelligence (AI) 
methods for data-driven knowledge discovery and causal inference using various omics data. These AI approaches, 
integrated with multi-omics research, have shown promising outcomes in cardiovascular studies. In this review, we 
outline the methods for integrating machine learning, one of the most successful applications of AI, with omics data 
and summarise representative AI models developed that leverage various omics data to facilitate the exploration 
of cardiovascular diseases from underlying mechanisms to clinical practice. Particular emphasis is placed on the effec-
tiveness of using AI to extract potential molecular information to address current knowledge gaps. We discuss 
the challenges and opportunities of integrating omics with AI into routine diagnostic and therapeutic practices 
and anticipate the future development of novel AI models for wider application in the field of cardiovascular diseases.
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Introduction
Cardiovascular diseases (CVDs) are the leading cause 
of death worldwide, significantly contributing to health 
deterioration and increased healthcare cost [1]. The 
development of CVDs involves a complex interplay of 
genetic and environmental factors, resulting in a wide 
range of clinical features and outcomes among patients 
[2]. Given the limitations of traditional approaches in 
achieving precision medicine for CVDs, new methods 
need to be developed to deepen our understanding of the 
intricate regulatory mechanisms, to enhance the predic-
tion and interpretation of disease progression.

Multi-omics approaches that integrate informa-
tion from different omics provide an individualised and 
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comprehensive molecular picture of human beings from 
health to disease [3]. Current major omics technolo-
gies include genomics, epigenomics, transcriptomics, 
proteomics, metabolomics. Genomics provides innate 
inheritance and variation information of an organism. 
Epigenomics identifies genome modifications, contrib-
uting to expression regulation of genes. Transcriptom-
ics explores the functions of RNA transcripts and the 
regulation by non-coding RNAs. Proteomics explains 
post-translational changes in the executive functions of 
proteins. Metabolomics quantifies a wide range of cel-
lular metabolites, including amino acids, fatty acids, 
carbohydrates and other products of small molecule 
types [4]. Various omics technologies offer different 
perspectives for disease interpretation, and integrating 
these can reveal the complex biological processes and 
regulatory networks within organisms [5]. The volume 
of omics data for the cardiovascular system in public 
databases is growing exponentially annually, driven by 
reduced costs, updated instrumentation platforms, and 
improved technical protocols [6]. Based on the continu-
ous update of genome-wide association study (GWAS) 
data of human whole genome sequencing, genetic omics 
data has reached a huge scale. Although proteomics or 
metabolomics used to contain only a few hundred mol-
ecules, with the update of technology platforms, compa-
nies such as Olink and Somalogic have recently launched 
products that can identify up to 5,000 analytes, and the 
curse of dimensionality is becoming a problem for rel-
evant researchers [7]. Managing this explosion of data 
has become a significant challenge, requiring substan-
tial computational efforts to ensure data quality control, 
extract clear biological significance, and apply it into 
CVDs research.

Artificial Intelligence (AI) is an umbrella term encom-
passing a wide range of technologies that share the 
common goal of computationally simulating human 
intelligence. Machine learning (ML), as a subgroup of AI, 
makes predictions by identifying idiosyncratic patterns 
in data using a mathematical framework. Complex tasks 
such as pattern recognition, anomaly detection, and pre-
dictive modelling have all become targets for ML applica-
tions [8]. In recent years, ML technologies have evolved 
and now include new methods represented by deep 
learning (DL) [9]. The use of ML to analyse such huge 
and high-dimensional datasets as multi-omics signifi-
cantly improves the efficiency of mechanistic studies and 
clinical practice of CVDs. Previous reviews have empha-
sized the importance of integrating multi-omics data for 
CVDs research, summarised the platforms and processes 
for multi-omics research, and richly discussed different 
multi-omics features and technical challenges of multi-
omics research [7, 10]. However, in such an era of rapid 

iteration of AI and continuous updating of high-through-
put omics information, the cross-application of AI and 
multi-omics is growing rapidly. ML is accelerating the 
integration of omics data, making it more widely involved 
in clinical diagnosis and treatment. It is necessary to 
summarise the current applications and approaches of 
ML in multi-omics research for clinical translation. We 
discuss the potential for AI-driven omics methods to 
be widely adopted in clinical applications, which could 
inspire researchers in the fields of CVDs and AI to foster 
closer interdisciplinary collaboration, thereby accelerat-
ing the advent of an era of AI in CVDs omics.

In this review, we systematically summarise ML mod-
els used in conjunction with omics analysis, with a focus 
on their combined application in exploring the entire 
continuum of CVDs, including stages of disease pre-
vention, diagnosis, treatment, and prognosis (Fig.  1). 
We summarise and evaluate the models that have been 
representative of the research described above in recent 
years, for the benefit of scientists engaged in relevant 
research. Furthermore, we critically assess the limita-
tions of ML models for CVDs research and highlights 
the challenges related to their clinical translation. Our 
review also aims to identify knowledge gaps in this field, 
emphasizing areas that require further study to advance 
the widespread application of ML combined with omics 
technologies in CVDs.

Methods for integrating ML with omics data
Interactive analysis, visualization, and deep phenotyping 
using ML technologies can simulate and extend various 
types of omics data, which facilitates the revelation of the 
link between omics variation and disease mechanisms 
[11]. Currently, the main ML methods include super-
vised learning, unsupervised learning, and reinforcement 
learning. DL, which primarily relies on artificial neural 
networks, represents a subset of ML methods that allows 
for automatic feature extraction from raw data through 
a multi-layer architecture. While traditional ML methods 
like Random Forest (RF) require hand-engineered fea-
tures, DL leverages large-scale neural networks to learn 
these representations in an end-to-end manner. Trans-
fer learning, a concept built upon ML and DL, further 
extends the adaptability of models across related domains 
(Fig. 2).

Traditional ML methods
Supervised learning requires representative benchmark 
datasets for model training and the selection of another 
reliable validation sets to assess model performance [12]. 
For example, researchers hope to use proteomics data 
from patients with myocardial infarction (MI) to predict 
the risk of poor prognosis. This first requires the selection 
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of appropriate architectural algorithms for constructing 
the model, such as RF, Support Vector Machines (SVM), 
etc. [8]. Next, the feature labelling of the proteomic data 
is done by setting the corresponding hyperparameters in 
the first training cycle of the model. The classifier calibra-
tion is performed (e.g., Platt scaling) and results of the 
training were assessed for performance [13]. Researchers 
typically tune the resulting terms parameters to ensure 
the reliability and robustness of the obtained parameters 
until the training results meet expectations and are put 
into prediction, producing a binary or probabilistic out-
come of whether or not an infarcted patient has experi-
enced a poor prognosis in the near future. Throughout 
the supervised learning process, researchers are required 
to have cross-disciplinary knowledge to combine domain 
expertise with ML understanding, annotate results 
meaningfully, and adjust model parameters effectively. 
This is particularly important in the early stages of train-
ing, where insights into the biological or clinical context 
guide the selection and tuning of model parameters, thus 
ensuring the predictions are both accurate and contextu-
ally relevant. Care needs to be taken during training to 
reduce noise from omics data as well as the overfitting 
effect of outliers in the model and to create a balance 
with underfitting [14].

Unsupervised learning does not require pre-training to 
label the dataset and calibrate the model [15]. The main 
methods of unsupervised learning are algorithms such 
as k-means, which performs the steps of dimensionality 

reduction or clustering on omics data [16]. It is suitable 
to accomplish exploring hidden structures and directions 
in cardiovascular omics, such as discovering biological 
markers of MI, identifying unknown cellular subpopula-
tions, etc. [17]. Due to the lack of labelling of the training 
dataset, the output of unsupervised learning is usually 
unknown. This property makes unsupervised learning 
often used to explore new possibilities in existing cardio-
vascular omics. Self-supervised learning methods have 
been proposed in recent years, and the main process of 
which is to automate the process of assigning pseudo-
labels to the training dataset, saving costs through auto-
mated annotation [18].

Reinforcement learning, as a technique to improve 
models based on error feedback, achieves model per-
formance enhancement through cumulative effects [19]. 
Currently, applications of reinforcement learning in car-
diovascular research are focused on the design of drugs 
or proteins [20]. In simple terms, the model lengthens or 
bends the molecules provided by constantly correcting 
errors. In this way, researchers are making hundreds of 
AI-designed proteins and confirming feasibility of patent 
medicine in the laboratory [21].

Other ML methods
In addition to traditional ML methods, evolving DL pro-
cesses information by mimicking the neural network of 
the human brain, which usually consists of a large num-
ber of computational neurons converging into layers and 

Fig. 1 ML to integrate multi-omics data (e.g., genomic, epigenomic, transcriptomics, proteomics, metabolomics) for cardiovascular research 
from bench to bedside
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Fig. 2 Schematic of the ML pipeline in multi-omics studies
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communicating with neurons in other layers [22]. With 
the recent use of Transformer-based large language mod-
els in omics, there has been a significant increase in read 
length for omics sequence fragments to predict long-
range interactions and scarce data tasks [23]. However, 
the cost of annotating large volumes of data for DL, the 
problem of local versus extreme generalisation, the com-
plexity of the training process, and the inability of the 
process to be interpreted remain obstacles to the crea-
tion of powerful models. Due to the high cost involved 
in training advanced models, researchers have come up 
with transfer learning, which has the ability to map a 
trained model to a research model for another research 
purpose. Using technologies such as instance-based, 
parameter-based and feature-based algorithms has been 
explored for cross-platform, cross-species integration of 
transcriptomics data [24]. Since transfer learning may 
have negative transfer events contrary to expectations 
when iterating from the source region to the target task, 
there is a need to perform research-context-based quality 
control and set reasonable transfer boundaries during the 
transfer learning process [25].

ML integrates multi‑omics data
Different ML models often show great performance dif-
ferences after integrating multi-omics data during exter-
nal validation. The model construction framework, omics 
data quality, and upstream integration strategies of are 
the main factors affecting the quality of models [26]. The 
model construction framework is often selected accord-
ing to the actual purpose of the research. For example, 
semi-supervised autoencoders utilise a limited number 
of labels to enhance the learning performance of complex 
datasets, whilst generalising labelled datasets to unla-
belled examples. They depend on a small set of position-
ing labels to CVDs-related representations in an unbiased 
manner, which is essential for constructing predictive 
models for CVDs. However, it is important to acknowl-
edge that traditional unsupervised autoencoders inher-
ently avoid any biases introduced by labelling, as they do 
not rely on labels. This attribute is particularly advanta-
geous for exploratory research aimed at discovering 
potential CVD-related targets that have not previously 
been documented in the literature, especially in complex 
datasets such as multi-omics. The strategy of using ML 
models to integrate multiple omics is equally important 
[14]. This includes early integration that directly con-
nects data sets, mid-term integration that identifies com-
mon latent structures in data sets through methods such 
as joint matrix decomposition, or late integration that is 
applied to each data set separately and combined with 
predictions after analysis. In addition, there are strategies 
such as hybrid integration and hierarchical integration. 

The choice of different strategies also leads to different 
results.

Prediction and prevention of CVDs
Advancements in omics technologies have facilitated the 
identification of high-risk populations for monogenic 
diseases such as long QT syndrome [27]. However, the 
regulatory mechanisms of CVDs are often complex and 
heterogeneous due to the influence of multiple genetic 
and environmental factors [28]. Traditional risk scores 
that focus on classifying risk groups based on clinical fea-
tures (such as smoking, alcohol consumption, and diabe-
tes history) can predict relative risk to some extent, but 
their predictive accuracy at the individual level remains 
limited. By building ML models to solve the existing com-
plexity and heterogeneity of multi-omics data, research-
ers have been able to discover, with unprecedented 
efficiency, the risk ratios of gene expression combinations 
that traditional analysis methods have failed to focus on. 
So that clinicians can identify individuals at risk of devel-
oping CVDs in the future from healthy populations, and 
initiate individualised and precise preventive diagnosis 
and treatment in a timely manner (Table 1).

For the risk of future coronary heart disease and MI 
events prediction, GPS-mult, a model based on super-
vised learning, was trained by scoring genomic data from 
116,649 multiracial individuals who had not yet devel-
oped atherosclerotic cardiovascular diseases (ASCVDs), 
was shown to outperform traditional risk scoring mod-
els in predicting the risk of coronary heart disease over 
the next decade or more, which more accurately distin-
guishes between high-risk and safe individuals in healthy 
populations [29]. Compared to genomics, the use of 
plasma proteomics to complete supervised learning 
training has demonstrated greater value in the predic-
tion of short-term risk, particularly in predicting earlier 
myocardial infarction or adverse cardiovascular events 
[30]. Hoogeveen et al. used ML model and showed supe-
rior prediction of traditional clinical risk factors over 
Framingham risk scores by combining targeted pro-
teomics with clinical datasets from a large European 
cohort [13]. In the face of changing lifestyles and medi-
cal interventions over the course of life, repetitive prot-
eomic-based risk assessment as a "liquid health check" 
may help to further improve lifelong risk assessment. 
In addition, ML model training using plasma metabo-
lomics could also serve the purpose of predicting short-
term CVDs events, which still needs to be validated with 
higher quality datasets [31]. Complex multi-omics data, 
analysed using such ML models, can identify intricate 
non-linear associations and interactions among vari-
ous biological layers. These methods allow us to cap-
ture complex patterns that go beyond the conventional 
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linear interpretations typically made by human analysis, 
revealing insights that are often inaccessible through tra-
ditional approaches [7]. A Bayesian network-based ML 
model involved 50,000 participants with three levels of 
omics data: transcriptomics, proteomics and metabo-
lomics, which included six causal relationships between 
changes at the omics level and the eventual occurrence of 
ASCVDs [32]. However, the combination of multi-omics 
did not seem to significantly outperform the former sin-
gle-omics model in predicting endpoints, which may be 
due to the complexity of the dataset related to the algo-
rithms chosen, and a more advanced algorithmic frame-
work such as the much further advanced AtheroNET 
may be needed [33]. Another model developed by Núñez 
et al. based on plasma proteomics achieved prediction of 
subclinical coronary atherosclerosis stage and proposed 
APOA, IGAH2 and HPT as a new combination of risk 
proteins [34]. In addition, AI has helped researchers dis-
cover new ASCVDs risk genes or mutations that can help 
refine prediction models as new parametric indicators 
[35–37].

For people potentially at risk of heart failure (HF), the 
AI model developed by Yang et al. is able to identify sin-
gle nucleotide polymorphisms (SNPs) associated with HF 
risk in genomics for distinguishing high-risk populations 
that have not yet developed HF [38]. HFmeRisk used a 

combination of DNA methylation data and clinical char-
acteristics to predict the early risk of developing HF with 
preserved ejection fraction in the Framingham Heart 
Study cohort to help clinicians make decisions to prevent 
the disease in high-risk populations [39]. Hamilton Se-
Hwee Oh et  al. introduced a learning framework called 
Organage, which uses plasma proteomics to model organ 
health and biological ageing. In a 15-year follow-up of a 
population with no initially active disease or abnormali-
ties in clinical biomarkers, for every 4. 1 year of increas-
ing cardiac age was associated with a nearly 2.5-fold 
increase in the risk of HF and a 23% increase in the risk 
of cardiac senescence per year, and the long-term risk 
of HF could be effectively estimated by organ-specific 
age predictions [40]. At the metabolomic level, Thore 
Buergel et  al. used a multitasking residual neural net-
work to explore MRI-derived metabolomics profiles. The 
discriminative improvements of predicting the develop-
ment of HF and other cardiovascular diseases in the next 
10 years is superior to traditional clinical predictors [41].

Malignant arrhythmias are often an important cause 
of sudden death in young people. Arrhythmias are most 
often predicted using cardiac electrophysiological data. 
However, most individuals who die suddenly do not 
show abnormal electrocardiograms. Multi-omics meth-
ods based on AI can combine genetic information and 

Table 1 ML models for the risk prediction and prevention of CVDs

ASCVDs, Atherosclerotic Cardiovascular Diseases; HF, Heart Failure; AF, Atrial Fibrillation; CVDs, Cardiovascular Diseases; GCN, Graph Convolutional Network; SVM, 
Support Vector Machine; FNN, Feedforward Neural Network; RF, Random Forest; LR, Logistic Regression; BR, Bayesian ridge Regression; LASSO, Least Absolute 
Shrinkage and Selection Operator; CNN, Convolutional Neural Network; MLP, Multilayer Perceptron; XGBoost, eXtreme Gradient Boosting; RNN, Recurrent Neural 
Network; DNN, Deep Neural Network

Disease Method Data type Code availability Refs

ASCVDs Integration Multi-omics https:// github. com/ noamb ar/ ACStu dy [28]

ASCVDs Integration Genomics https://www.nature.com/articles/s41591-023–02429-x [29]

ASCVDs DNN, RF Multi-omics https:// github. com/ thbue rg/ Neura lCVD [30]

ASCVDs XGBoost Proteomics - [13]

ASCVDs BR Multi-omics https:// github. com/ xuyu- cam/ atlas_ genet ic_ scores_ omic_ traits [32]

ASCVDs RF Proteomics – [34]

ASCVDs SVM, RF, LR Transcriptomics – [35]

ASCVDs Integration Genomics https:// github. com/ Licht argeL ab/ EAML [36]

ASCVDs GCN Genomics – [37]

HF RF, SVM, LASSO Genomics – [38]

HF Integration Epigenomics – [39]

HF, Age-related Disease LASSO Multi-omics https:// github. com/ hamil tonoh/ organ age [40]

CVDs RNN Metabolomics https:// github. com/ thbue rg/ Metab olomi csCom monDi seases [41]

HF, AF, Other CVDs RF Multi-omics – [17]

Sudden Cardiac Death Integration Genomics https:// fabri cgeno mics. com/ fabric- gem/ [42]

Arrhythmia LR, MLP Multi-omics https:// github. com/ rache llea/ medge netics [44]

AF CNN Genomics – [45]

Hypertension XGBoost Multi-omics https:// github. com/ Tran0 31194/ integ rating_ omics_ BP [46]

Hypertension SVM Multi-omics https:// github. com/ Dongw on- Lee/ bph2 [47]

https://github.com/noambar/ACStudy
https://github.com/thbuerg/NeuralCVD
https://github.com/xuyu-cam/atlas_genetic_scores_omic_traits
https://github.com/LichtargeLab/EAML
https://github.com/hamiltonoh/organage
https://github.com/thbuerg/MetabolomicsCommonDiseases
https://fabricgenomics.com/fabric-gem/
https://github.com/rachellea/medgenetics
https://github.com/Tran031194/integrating_omics_BP
https://github.com/Dongwon-Lee/bph2
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potential disease phenotypes to provide a comprehensive 
and highly accurate prediction conclusion. Electrocardio-
graphic changes in the absence of an attack are usually 
hidden, which makes it a difficult task to prevent sudden 
death. ML is useful for identifying multi-omics features 
of people at high risk of sudden cardiac death, which can 
help to identify potentially at-risk populations and avoid 
related tragedies in time, especially for the young people 
with unexplained sudden deaths [42]. Although the cur-
rent accuracy for predicting sudden cardiac death is not 
yet at the level expected by researchers [43], genetically 
characterised ML models are able to predict arrhyth-
mia-associated genetic variants with a high degree of 
accuracy, or to identify potentially causative genes, pro-
viding ideas for the study of disease mechanisms [44]. In 
another study utilising genome-wide data from an East 
Asian population for atrial fibrillation (AF) prediction, 
a deep neural network constructed based on the cumu-
lative effect of SNPs and genetic interactions for feature 
selection also achieved AUC > 0.75 performance for pre-
diction of an external multiethnic cohort. Although not 
reaching the high level of precision required at the indi-
vidual level, this study presents another perspective on 
the primary prevention of AF by examining more stable 
genomic sequences [45]. Considering the difficulty of 
obtaining cardiac transcripts, a ML model constructed 
by performing transcriptomics on peripheral blood was 
used to assist in finding people at high risk for HF and 
atrial fibrillation (AF) [17]. Such applications can accord-
ingly be extended to other CVDs to address the individ-
ualised needs of patients. The studies by Lee et  al. and 
Louca et  al. have successfully discovered features that 
regulate hypertension in high-risk populations using ML 
models, such genetic variation or key metabolites (cis-
4-decenoyl carnitine, lactate and so on) [46, 47].

At present, from a single-omics level, DL models 
based on genomic or epigenomic data tend to predict 
CVDs risks in the longer term, while DL models trained 
by plasma proteomics and metabolomics provide ideas 
for short-term risk prediction. Long-term risk predic-
tion performance depends on the continuously updated 
GWAS data and characteristic gene tags [48]. From 
a public health perspective, the long-term benefits of 
CVDs prevention in healthy people are more worth-
while, especially some genetic information indicates 
a higher probability of sudden cardiac death in young 
people. Likewise, breakthroughs are being made in 
the genetic characterization of plasma proteomics and 
plasma metabolomics. The ability to predict the short-
term risk of CVDs in the population will also continue to 
improve [49, 50]. The choices made in terms of training 
sets for populations of CVDs highlight the need to con-
sider the costs and benefits of adding an omics layer, as 

adding data does not systematically improve model per-
formance, but increases model complexity in the train-
ing set which may reduce the reproducibility of models 
in external cohorts [51]. Some risk prediction models 
attempt to skip feature selection and use unsupervised 
prediction methods, similar to probabilistic models of 
clustering effects, at the expense of personalized accu-
racy, but doing so can significantly reduce running costs 
[52]. The researchers applied ML model in retrospective 
studies to identify novel susceptibility genes related to 
CVDs, demonstrating the strong verifiability and scala-
bility of ML in leveraging existing information. However, 
these genes identified by the model still require valida-
tion in prospective cohorts. The multi-omics informa-
tion in the human body acts like a dynamic fingerprint of 
an individual’s health status. With the assistance of ML, 
this information facilitates personalised assessment and 
prediction, which is crucial for guiding future prevention 
strategies.

Cardiovascular biomarkers and early disease 
diagnose
Classic biomarkers such as troponin and BNP can help 
clinicians diagnose MI and decompensated HF. However, 
the onset of CVDs, such as early coronary artery disease 
and preclinical symptoms of HF, is often insidious with-
out changes in BNP. Supported by AI, multi-omics tech-
nologies, can paint an individualised picture of the early 
intra-organismal landscape of disease at a much faster 
rate, helping to advance early diagnosis and further typ-
ing of CVDs (Table 2).

Nurmohamed et al. used targeted proteomics to opti-
mise existing clinical risk models such as SMART, 
Reynolds Risk Score and Framingham Risk Score. The 
AI model constructed on this basis predicted recurrent 
cardiovascular events in two large cohorts of diagnosed 
ASCVDs. This approach improved the AUC from 0.75 to 
0.81 compared with the traditional risk score, enabling 
risk stratification for secondary prevention of ASCVDs 
and highlighting the ability to predict coronary heart 
disease in the non-inflammatory manifestation phase 
[53]. Another AI-enabled prediction model developed 
by Zhang et  al. integrates peripheral blood leukocyte 
DNA methylation-regulated genes and transcriptome 
data from the Framingham Heart Study cohort, and 
constructed a coronary heart disease prediction model 
using five hub methylation-regulated genes as biomark-
ers of ASCVDs, which also proved superior to tradi-
tional phenotypic models [54]. ML model identified 
diagnostic markers associated with plaque instability in 
coronary atherosclerosis, enabling prediction of unsta-
ble plaques in both external datasets and clinical sam-
ples. This method is expected to replace invasive testing 
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as a convenient way of identifying plaque morphology to 
avoid the risk of patient-related invasive injury [55]. For 
example, the use of ML tools to predict the progression 
of subclinical calcified plaques avoids the radiation as 
well as contrast burden of repeated imaging with radia-
tion [56]. The integrated AI-driven proteomics model 
developed by McCarthy et  al., which successfully diag-
noses obstructive coronary lesions in patients with sus-
pected MI. This holds the potential to be useful in the 
diagnosis of acute MI earlier in the time window of tro-
ponin elevation, and overcomes the current limitations 
of limited serological testing capacity in the hyperacute 
phase of infarction [57].

In the early diagnosis of HF, a combination of ML 
model and untargeted metabolomics enables the predic-
tion of early HF with reduced ejection fraction (HFrEF) 
by circulating metabolites, which appears to be compa-
rable in diagnostic value to the more general BNP cur-
rently available and has particular application in specific 
clinical settings such as patients treated with BNP sup-
plementation [58]. At the single cell level, Zhu et al. iden-
tified highly correlated genes expressed in both dilated 
cardiomyopathy (DCM) and HF as reliable markers for 
diagnosing early HF in patients with DCM by testing sev-
eral ML methods and selecting the best performing RF 
model [59]. For patients with valvular heart disease, AF is 
the most common and insidious complication and a risk 
factor for future HF. Bayesian network-based ML model 
identifies biomarkers associated with AF pathogenicity 
in heart valve disease at transcriptomic and proteomic 

levels and possesses high predictive value, providing 
possible targets for the study of the mechanisms of AF 
occurrence [60].

Multi-omics-based ML is expected to not only enable 
early diagnosis of diseases, but also help clinicians to 
classify subtypes of diseases. For example, identifying dif-
ferent causes and contributing factors of hypertension 
is key to targeted management and reduction of cardio-
vascular complications. Reel et  al. used ML analysis of 
multi-omics in blood and urine to differentiate between 
primary and secondary hypertension, and further identi-
fied subtypes of secondary hypertension [61]. It can help 
clinicians to choose targeted anti-hypertensive strate-
gies to avoid cardiovascular complications. Alimadadi 
et  al. developed ML models capable of classifying types 
of human cardiomyopathy by identifying 50 highly corre-
lated genes with high accuracy, distinguishing ischaemic 
from non-ischaemic cardiomyopathy with greater accu-
racy [62]. In addition, ML models enable early diagnosis 
of different types of cardiomyopathies through multi-
omics [63–65].

The addition of DL models based on WES to the tra-
ditional diagnostic process reduces the time spent ana-
lysing gene sequencing in the diagnostic laboratory and 
greatly improves diagnostic efficiency [66]. ML has the 
potential to drastically shorten the diagnostic time win-
dow, improve diagnostic accuracy and speed of diagnosis 
by capturing imperceptible bio-signals in the early stages 
of a disease from an AI perspective and validating multi-
ple markers against each other at multiple omics levels. 

Table 2 ML models for CVDs biomarker discovery and disease diagnosis

ASCVDs, Atherosclerotic Cardiovascular Diseases; HF, Heart Failure; DCM, Dilated Cardiomyopathy; AF, Atrial Fibrillation; HCM, Hypertrophic Cardiomyopathy; PAH, 
Pulmonary Hypertension; CVDs, Cardiovascular Diseases; LightGBM, Light Gradient Boosting Machine; XGBoost, eXtreme Gradient Boosting; RF, Random Forest; 
LASSO, Least Absolute Shrinkage and Selection Operator; LR, Logistic Regression; NN, Neural Networks; SVM, Support Vector Machine; NB, Native Bayes; SMO, 
Sequential Minimal Optimization; KNN, K-nearest Neighbors

Disease Method Data type Code availability Refs

ASCVDs XGBoost Proteomics – [53]

ASCVDs LightGBM, XGBoost, RF Multi-omics – [54]

ASCVDs Integration Transcriptomics – [55]

ASCVDs Integration Proteomics – [56]

ASCVDs LASSO, LR Proteomics – [57]

HF RF Metabolomics – [58]

HF, DCM LASSO, XGBoost, RF, NN, SVM Multi-omics https:// www. front iersin. org/ artic les/ 10. 3389/ fcell. 
2022. 10899 15/ full

[59]

AF NB, SMO, RF Multi-omics – [60]

Hypertension Integration Multi-omics https:// doi. org/ 10. 5281/ zenodo. 70330 87 [61]

Cardiomyopathy Integration Transcriptomics https:// doi. org/ 10. 5281/ zenodo. 39413 31 [62]

DCM LASSO, SVM Transcriptomics https:// doi. org/ s41598- 022- 19027-5 [63]

HCM SVM, RF, KNN Transcriptomics https:// doi. org/ 10. 6084/ m9. figsh are. 14650 536 [64]

HCM RF Metabolomics – [65]

CVDs Integration Genomics https:// github. com/ exomi ser/ Exomi ser/ [66]

https://www.frontiersin.org/articles/10.3389/fcell.2022.1089915/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1089915/full
https://doi.org/10.5281/zenodo.7033087
https://doi.org/10.5281/zenodo.3941331
https://doi.org/s41598-022-19027-5
https://doi.org/10.6084/m9.figshare.14650536
https://github.com/exomiser/Exomiser/


Page 9 of 17Lin et al. Journal of Translational Medicine          (2025) 23:388  

Therefore, omics data at multiple levels are important, 
whether it is genetics or metabolomics, and their integra-
tion is expected to further improve the accuracy of diag-
nosis. ML in a multi-omics paradigm should move away 
from binary yes-or-no conclusions and focus on refin-
ing disease typing, staging, and disease identification in 
CVDs. Taking the change in the diagnostic paradigm of 
hypertension as an example, the highly complex relation-
ship between hypertension and multi-omics discovered 
by integrating multiple data sets in a DL framework tran-
scends the traditional threshold and risk stratification 
blood pressure model, and provides multi-omics insights 
for the exploration of biological mechanisms of blood 
pressure values   as continuous variables [5, 61]. Through 
multi-omics comprehensive analysis, the GWAS results 
of human blood pressure are converted into biological 
insights, and then high-priority blood pressure-related 
genes are mined and sorted to crack the code of differ-
ences in blood pressure values   among the population 
[67, 68]. This reflects the trend of the future multi-omics 
hypertension landscape under the AI framework.

Cardiovascular therapy
The inefficiency of traditional experimental methods in 
identifying drug targets has consistently limited the pro-
gress of disease treatment. The integration of multi-omics 
research with (ML facilitates the discovery of previously 
unknown therapeutic targets and drugs. Additionally, 

it enables the testing of proposed drug targets’ effects 
through gene-protein regulatory networks (Table 3).

Drug and target discovery
Yang et  al. used BAG3-deficient cardiomyocyte-derived 
pluripotent stem cells to construct an in vitro expanded 
cardiomyopathy model, and identified cardioprotective 
drugs from thousands of biological compounds through 
phenotypic screening as well as DL modelling, and dem-
onstrated the possibility of accelerating drug discovery 
by incorporating DL in an in vivo experiment [69]. Gen-
eformer was able to make predictions of downstream 
targets versus indirect targets with an extremely limited 
external queues dataset after extensive pre-training on 
large-scale corpus of nearly 30 million single cell tran-
scriptomics data. And candidate drugs for cardiomyo-
pathy predicted by this model were shown to improve 
myocardial function [70]. The multi-omics-based DL 
model developed by Iborra-Egea et al. started with pre-
viously identified genes mediating adverse remodelling 
to map the evolution of in vivo markers at different time 
points after MI, ultimately identifying IGF1R, RAF1, 
KPCA, JUN and PTN11 as regulators of cardiac remod-
elling, which identify potential targets for drug develop-
ment [71]. A DL model with a new feature representation 
was used to identify bioactive peptides for the treatment 
of hypertension, using a new feature representation cor-
responding to dipeptides as binary numbers and then 
re-inputs it into the model for validation, achieving 99% 

Table 3 ML models for treatment strategies in CVDs

ANN, Artificial Neural Network; CNN, Convolutional Neural Network; GRU, Gated Recurrent Unit; KNN, K-nearest Neighbors; LASSO, Least Absolute Shrinkage and 
Selection Operator; RF, Random Forest; DNN, Deep Neural Network; FNN, Feedforward Neural Network; SVM, Support Vector Machine; GNN, Graph Neural Network; 
MLP, Multilayer Perceptron

Category Function Method Data type Code availability Refs

Drug & Target Discovery Candidate Target Discovery Integration Transcriptomics https:// huggi ngface. co/ ctheo doris/ Genef ormer [70]

Candidate Target Discovery ANN Multi-omics https:// www. mdpi. com/ artic le/ 10. 3390/ cells 10123 
268/ s1

[71]

Finding Drugs CNN, GRU Proteomics http:// ahtps. zhang lab. site/ [72]

Drug & Target Validation Drug Repurposing Predictions Integration Multi-omics https:// github. com/ NCATS Trans lator/ Trans lator- All/ 
wiki/ Molec ular- Data- Provi der

[73]

Drug-target Interaction Validation LASSO, RF Proteomics https:// github. com/ QUST- AIBBD RC/ LRF- DTIs/ [74]

Drug-target Interaction Validation Integration Multi-omics http:// 120. 77. 11. 78/ DeepM PF/ [75]

Efficacy & Side Effects Efficacy Verification Integration Genomic – [76]

Efficacy Verification FNN, SVM Transcriptomics – [77]

Efficacy Verification Integration Genomic https:// www. hgsc. bcm. edu/ softw are [78]

Prediction of Drug Side Effects Integration Transcriptomics https:// github. com/ vauye ung38/ sct- trans cript 
omics- wavef orms

[79]

Prediction of Drug Side Effects Integration Proteomics http:// github. com/ yuliyi/ MSDSE [81]

Prediction of Drug Side Effects CNN, MLP Multi-omics http:// github. com/ OnurU ner/ DeepS ide [82]

Drug Sensitivity Prediction GNN Multi-omics https:// github. com/ kkkay le/ GCFMCL [83]

Optimization of Drugs Integration Multi-omics https:// github. com/ dahjan/ DMS_ opt [84]

https://huggingface.co/ctheodoris/Geneformer
https://www.mdpi.com/article/10.3390/cells10123268/s1
https://www.mdpi.com/article/10.3390/cells10123268/s1
http://ahtps.zhanglab.site/
https://github.com/NCATSTranslator/Translator-All/wiki/Molecular-Data-Provider
https://github.com/NCATSTranslator/Translator-All/wiki/Molecular-Data-Provider
https://github.com/QUST-AIBBDRC/LRF-DTIs/
http://120.77.11.78/DeepMPF/
https://www.hgsc.bcm.edu/software
https://github.com/vauyeung38/sct-transcriptomics-waveforms
https://github.com/vauyeung38/sct-transcriptomics-waveforms
http://github.com/yuliyi/MSDSE
http://github.com/OnurUner/DeepSide
https://github.com/kkkayle/GCFMCL
https://github.com/dahjan/DMS_opt
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accuracy when validated against external data [72]. In 
addition, ML is utilised for indications for drugs that are 
already in use [73].

Drug and target validation
To validate the effects of drugs on the acting target, the 
method called LRF-DTI through the integration of mul-
tiple ML algorithms achieved an overall correct rate of 
94.88% in predicting the effects of drug-target interac-
tions of different types of receptors, including enzymes, 
ion channels, G protein-coupled receptors and nuclear 
receptors [74]. DL model called DEEPMPF constructed 
a protein-drug-disease heterogeneous network consisting 
of three entities. By calculating drug-target interaction 
probabilities through joint learning, the model demon-
strated competitive predictive performance in screening 
proteins as bioactive compounds [75]. Although this type 
of research is not a substitute for in vivo experiments at 
this time, its cost-effectiveness represents a promising 
prospect for a wide range of applications.

Efficacy and side effects
In the translation of AI into clinical applications, a new 
framework is being used to predict drug efficacy in phase 
3 clinical trials. The ML performed drug efficacy pre-
dictions for 24 HF drugs from 266 phase 3 clinical tri-
als used to assess the efficacy of repurposing drugs to 
treat targeted CVDs [76]. For drugs or genes known to 
be potentially available, SVM neural networks have been 
used to predict the efficacy of three novel biomarkers, 
HBG1, SNCA and GYPB, for AF associated with stroke 
[77]. The Mayo-Baylor RIGHT 10  K study combined 
genomics with a DL approach to identify deleterious gene 
variants at the individual level for specific clopidogrel-
resistant patients with ASCVDs using pharmacogenomic 
AI prediction, potentially improving patient care through 
dose adjustment or alternative treatments [78]. The mod-
els described above facilitate the conduct of large-scale 
cohort clinical trials of drugs, saving hundreds of millions 
of dollars in research and development.

Several studies have been conducted to develop cor-
responding ML models for adverse drug reactions. Phe-
notypic and transcriptomic data from physiologically 
relevant cardiac models of multiple cardiotoxic com-
pounds through the application of ML approaches in the 
treatment of oncology drugs for improved guidance of 
structured cardiac toxicity of chemotherapeutic agents 
and the ability to identify potential target gene markers 
to aid subsequent targeted drug development [79, 80]. 
MSDSE learns and integrates multimodal features from 
local to global perspectives to cope with possible drug 
side effects in clinical trials [81]. The same pharmacog-
enomics-based DL has enabled the prediction of possible 

adverse reactions to multiple drugs acting simultane-
ously in the human body, particularly those reported in 
the literature but missing in the ground truth side effect 
dataset [82]. In order to predict the sensitivity between 
miRNAs and drugs, a multi-view contrast learning model 
for graph collaborative filtering called GCFMCL is the 
first attempt to for predicting sensitivity between miR-
NAs and drugs, which may be promising for applications 
in overcoming drug resistance in humans [83]. In addi-
tion, DL from human omics data can enable optimisation 
of existing drugs, as demonstrated in antibody engineer-
ing [84].

De novo sequence design and drug validation through 
AI are in full swing. Interaction and docking models have 
contributed well to drug development. However, the cur-
rent situation is that prediction models for phase II and 
III clinical trials are still relatively limited. In addition, the 
in-vivo multi-omics information after drug intervention 
used to describe the treatment response is still waiting to 
be improved. The ML model based on the integration of 
such multi-omics data (especially transcriptomics, pro-
teomics and metabolomics) is expected to simulate the 
human body picture after specific drug treatment. In this 
way, it is expected to increase a round of AI drug screen-
ing experiments, thereby saving huge economic costs.

Prognostic prediction of CVDs
Individual prognosis is a crucial component of a clini-
cian’s assessment of treatment efficacy and strategic plan-
ning. Multi-omics can comprehensively and accurately 
reflect changes in the body in response to therapeutic 
interventions, allowing for timely adjustments to thera-
peutic strategies. The integration of ML with multi-omics 
allows for the projection of CVDs trajectories, antici-
pated adverse events, and survival outcomes (Table 4).

Prognosis of CVDs
A ML model developed by Wallentin et  al. based on 
plasma proteomics newly identified 13 proteins associ-
ated with cardiovascular-related mortality in chronic 
coronary artery disease. The c-statistic of 0.71 and 0.79 
was achieved in the prediction of two large cohorts [85]. 
Another model focusing on patients with chronic coro-
nary artery disease undergoing secondary prevention or 
haemodialysis combined plasma proteomics to ultimately 
identify 8 biomarkers associated with cardiovascular 
mortality that could assist in the prediction of CVDs 
prognosis. However, the predictive ability for nonfatal 
cardiovascular events requires further research due to 
the lack of data on related events [86]. Some ML models 
have failed to achieve effective prediction of the occur-
rence of adverse events in patients with acute coronary 
syndromes, possibly owing to the fact that these models 
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have selected partial combinations of protein markers 
rather than the whole proteome data for modelling [87, 
88]. Current omics prognostic models for patients with 
acute coronary syndromes are still limited, and the main 
reason for this may be the lack of high-quality omics data 
and sufficient number of accepted prognostics markers 
[89]. In the future, researchers need to further explore 
more biomarkers that are highly correlated with recovery 
and survival in patients with infarction, and can also try 
to combine other parameters for model iteration, such as 
combining electrocardiography with omics data [90, 91].

A large proportion of patients with CVDs may progress 
to irreversible end-stage HF. Predicting the risk of sur-
vival from HF has a significant impact on the assessment 
of patient readmission rates, the planning of rehabilita-
tion training and the advancement of heart transplant 
programmes. Ouwerkerk et  al. used ML to integrate 
genomics, transcriptomics, proteomics and clinical data, 
predicted risk of all-cause mortality in a cross-validation 
cohort of patients with central decline with an AUC of 
0.81, and it also identified four pathways that influence 
the progression of HF [92]. Another DL model devel-
oped by Unterhuber et  al. enables improved prediction 
of all-cause mortality in patients with CVDs using high-
throughput proteomics only compared to traditional 
clinical scoring and regression models, the single-omics 
approach sacrifices some performance, it reduces the 
difficulty of training and still manages to outperform 
traditional models  (C-statistic increase 0.17–0.19) [93]. 
However, due to the lack of heart failure proteomics 
data, no significant improvement in the prediction of 

HF outcomes was found in another performance valida-
tion of the proteomics multiple ML models [94]. In addi-
tion to predicting all-cause mortality in patients, the use 
of ML also allows the assessment of possible non-fatal 
events in patients. For example, Shimada et al. developed 
a proteomics-based model to predict possible future 
adverse cardiovascular events in patients with hyper-
trophic cardiomyopathy, In the predictive performance 
test of this model, its AUC reached 0.81 [95].

Complications prediction
For postoperative anti-rejection in cardiac transplant 
patients, the identification of specific genes associated 
with different subtypes of cardiac transplant rejection 
using ML models trained in multi-omics (e.g., Allomap 
and the EMB) outperforms traditional methods of moni-
toring cardiac transplant rejection in terms of predic-
tive ability for acute transplant rejection [96, 97]. Song 
et  al. construct a metabolomics model to predict the 
risk of recurrent angina in patients after PCI [98]. And it 
achieved over 89% accuracy in the prediction of all three 
large external prospective cohorts. In another study com-
bining proteomics with clinical information, ML models 
were able to directly predict procedural kidney injury in 
coronary angiography patients, despite a limitation of 
only 79% cross-validation accuracy due to ignoring con-
trast dose [99]. However, limitations of the study such as 
failure to consider contrast dosage resulted in a cross-
validation accuracy of only 79%. In addition, Li et al. used 
a gene co-expression network constructed with ML to 
interpret neurological damage in cardiac arrest patients 

Table 4 ML models for predicting prognosis in CVDs

CVDs, Cardiovascular Diseases; ASCVDs, Atherosclerotic Cardiovascular Diseases; HCM, Hypertrophic Cardiomyopathy; HF, Heart Failure; RF, Random Forest; SVM, 
Support Vector Machine; LightGBM, Light Gradient Boosting Machine; XGBoost, eXtreme Gradient Boosting; LASSO, Least Absolute Shrinkage and Selection Operator; 
CNN, Convolutional Neural Network; LR, Logistic Regression; NN, Neural Network; DNN, Deep Neural Network

Category Disease Method Data type Code availability Refs

Prognosis of CVDs ASCVDs RF Proteomics http:// www. clini calst udyda tareq uest. com/ [85]

ASCVDs SVM,LightGBM,XGBoost Multi-omics https://doi.org/10.1038/s41397-021 [86]

ASCVDs LASSO Proteomics – [87]

ASCVDs LASSO Proteomics – [88]

CVDs LR, XGBoost, NN Proteomics https:// doi. org/ 10. 1016/j. jacc. 2021. 08. 018 [93]

HF LASSO,DeepHit,XGBoost,RF Proteomics – [94]

HCM RF Proteomics – [95]

CVDs LASSO Proteomics – [89]

CVDs DNN Multi-omics https://doi.org/10.1186/s12874 [91]

Complications prediction Heart transplant Integration Multi-omics – [96]

Heart transplant Integration LASSO, SVM-RFE – [97]

ASCVDs RF, LASSO Metabolomics – [98]

ASCVDs LASSO Proteomics – [99]

Cardiac arrest SVM, RF, LASSO Multi-omics https:// github. com/ johnc olby/ SVM- RFE [100]

http://www.clinicalstudydatarequest.com/
https://doi.org/10.1016/j.jacc.2021.08.018
https://github.com/johncolby/SVM-RFE
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from a molecular perspective rather than clinical repre-
sentations [100]. Although the researchers used microar-
ray data with missing values and the correlation factors 
identified require further experimental validation, which 
reduces the model’s credibility. Increasing the data vol-
ume could inspire new strategies for brain resuscitation 
following cardiopulmonary resuscitation.

For now, the performance of prognostic models has 
not met expectations for widespread use, and model 
construction remains a significant challenge. Variations 
in patient function, treatment strategies, dosage selec-
tion, and treatment response complicate the integration 
and attribution of multi-genomic data, limiting the mod-
els’ generalizability to diverse patient populations. To 
address this issue, some studies have focused on a select 
few specific proteomics for prediction, which inevitably 
decreases prediction accuracy and can lead to negative 
conclusions. For the prediction of disease prognosis, due 
to the difficulty in obtaining transcriptomics of cardiac 
samples, it is more common to use plasma proteomics 
and metabolomics for ML modelling. However, the lack 
of data is still a problem that constrains the prognostic 
model [94]. For current omics research, even the multi-
omics data of patients with CVDs who have received 
the most classical treatments are still incomplete, which 
makes it difficult to depict the prognostic picture after 
treatment. At this stage, ML is better suited to serve as an 
adjunct rather than a substitute for clinicians.

Challenges and prospects
Omics technologies are increasingly being integrated 
into various comprehensive CVDs studies, significantly 
impacting clinical decision-making and prediction. ML-
based integrative algorithms have rapidly enhanced 
analytical efficiency and outperformed traditional risk 
prediction models. However, to achieve the widespread 
application of ML-based omics research in clinical prac-
tice, several challenges and limitations persist.

The first challenge is data collection and standardi-
sation. Conventional blood samples do not accurately 
reflect regulatory activity in the heart due to the lack 
of tissue specificity and the ease of RNA degradation 
[101, 102]. Multi-omics studies often require cardiac 
samples to accurately map the regulatory networks 
within the system. In the process of extracting car-
diomyocytes, due to the highly developed intercel-
lular connections in myocardial tissue, the large size 
and myofibril structure of adult cardiomyocytes make 
them easily broken by mechanical shear force or enzy-
matic hydrolysis, resulting in low recovery rates [103]. 
This not only prevents the omics results from reflecting 
the real situation in  vivo, but also leads to differences 
in the depth of sequencing and quality of data obtained 

between different studies. Several technologies have 
been developed to address this challenge, such as using 
reversible hydrogels for sample preparation or the addi-
tion of (-)-blebbistatin and myosin II ATPase inhibitor 
to maximise the preservation of cardiomyocyte activ-
ity [104, 105]. In addition, Live-seq avoids transcrip-
tional changes during cardiomyocyte inactivation and 
maximises the preservation of temporal cardiomyo-
cyte transcriptional activity [106]. Effective and stand-
ardised experimental conditions and processes need 
to be established in the future to provide more widely 
accepted omics benchmark data for AI model training. 
Especially when using related technologies to transfer 
models (such as transfer learning) or replicate results, 
inconsistencies in protocols may lead to misinterpre-
tation of conclusions. Since different platforms do not 
provide the same systematic analysis, even overlapping 
detections between different platforms may lead to dif-
ferent results, such as Olink and Somalogic proteomic 
datasets [7]. This variability can lead to differing associ-
ations with CVDs outcomes depending on the platform 
used. Such inconsistencies underscore the need for 
standardised protocols or, at a minimum, a thorough 
understanding of platform-specific differences within 
the scientific community. In addition, most of the cur-
rent open-source omics data are retrospective, and it 
is challenging to repeatedly obtain cardiac samples for 
prospective prediction of disease progression in large 
populations. In recent years, several large cardiovas-
cular cohorts, such as the Framingham Cardiovascular 
Study, have progressively incorporated omics data over 
several years of follow-up [48, 107]. Although current 
studies are not yet at an ideal scale, the iterative evo-
lution of models across generations with the release of 
more open-access omics datasets is foreseeable.

The second challenge is the integration of multimodal 
data. With the application of ML, research in clinical 
electronic health records, electrophysiology, imaging and 
cardiac ultrasound is rapidly evolving. Integrating omics 
research with everyday multimodal medical information 
is essential for overall improvement in clinical practice 
[108]. In clinical environment, the integration of patient 
cardiac ultrasound and medical history with omics data 
requires not only consideration of the effects of platform 
noise, but also the use of autoencoders or deep generative 
models for feature extraction and dimensionality reduc-
tion of high-dimensional omics data [109]. Multimodal 
medical fusion networks have been developed to pro-
cess multimodal medical information jointly [110]. How-
ever, there are still key challenges, such as exacerbating 
research disparities and overemphasizing outcomes when 
new predictive indicators are added to existing training 
models with low-weight key indicators. Researchers need 
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to balance the cost of retraining or re-evaluating perfor-
mance for newly added information layers.

Furthermore, ethical considerations are critical when 
building AI integrated models. Unethical collection 
or use of omics data, such as involving race or gender-
biased input subjects, can lead to biased model outputs 
[111]. AI predictions based on omics data for unauthor-
ised genetic editing experiments also pose serious ethi-
cal issues. Therefore, strict oversight and registration 
of AI projects are urgently needed. As training datasets 
consist of large amounts of human genomic data, any 
research organisation must take data security seriously. 
When publishing research models online, appropriate 
privacy protocols must be included to protect omics data 
from the theft of important omics information by related 
criminals [112, 113]. To this end, we call on the industry 
to form internationalised standards or regulations, and 
future efforts should aim to fill this knowledge gap and 
ensure the proper development of AI.

There are also challenges in the AI development pro-
cess. AI is often described as a "black box", wherein the 
underlying decision-making processes remain opaque. 
This opacity impedes distinguishing the impacts of differ-
ent new parameters added to the model, such as age and 
gender, on the resulting predictions. It is unclear how the 
parameter weights associated with different features have 
changed, especially as the model complexity increases. 
Consequently, it is difficult to ascertain whether the addi-
tion of parameters has positive or negative consequences, 
often undermining confidence in the model’s predictive 
accuracy [114]. To address the issue of indecipherability, 
researchers have proposed technologies such as neurali-
sation propagation, hidden state analysis, variable impor-
tance measures, and feature visualisation to explain the 
operating mechanisms of models, or strategies that com-
bine multiple model frameworks to enhance credibility 
[115–118].

Lastly, the issue of generalisation in ML models emerge 
as a pivotal concern. In the context of CVDs research, due 
to the heterogeneity of patient data (including variations 
in genetics, lifestyle, and comorbidities) and the current 
insufficiency of open-source omics data, model training 
is more prone to capture noise in the training dataset, 
leading to overfitting and diminished predictive perfor-
mance on external cohorts [119, 120]. One solution is to 
expand the dataset size for parameter training to avoid 
overfitting, which requires comprehensive consideration 
of patient data diversity and disease pattern complexity. 
Incorporating manual biological insights can significantly 
enhance feature selection within existing datasets. For 
instance, alongside potential biomarkers identified by the 
AI model, experimentally validated CVDs biomarkers 
from the literature can be integrated to construct more 

robust and biologically informed models. Furthermore, 
regularization techniques can be applied during model 
training to mitigate overfitting by penalising excessive 
model complexity, thereby reducing the likelihood of 
learning noise. However, too many constraints may result 
in the performance degradation [121]. Another approach 
is the cross-validation technique, which divides various 
datasets into subsets for training and evaluation. The aim 
is to determine the optimal hyper-parameters for most 
generalised models [122]. Furthermore, transfer learning 
and domain adaptation approaches are also candidates 
to improve predictive potential across multiple datasets 
[123]. Future research should focus on developing mod-
els that are predictive, adaptable, and interpretable in 
different medical settings, possibly involving the integra-
tion of multi-omics data, longitudinal patient records, 
and environmental factors to create comprehensive inte-
grated models.

In conclusion, despite those challenges, the joint 
application of ML and omics in CVDs research holds 
promising prospects. With the advent of the era of pre-
cision medicine, harnessing the efficient management 
capabilities of AI can effectively alleviate the heavy 
burden of CVDs research and management around the 
world. The convergence of ML and multi-omics tech-
nologies is an evolving field that is rapidly advancing 
the understanding of CVDs from a molecular perspec-
tive. A staged summary of what has been achieved in 
the collision of two rapidly evolving fields is conducive 
to new inspiration, while researchers and clinicians 
must weigh the uncertainties of AI results to avoid the 
potential pitfalls of overreliance on AI in clinical envi-
ronments and care services.
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