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Abstract
Background  Esophageal cancer (EC) presents a significant public health challenge globally, particularly in regions 
with high alcohol consumption. Its etiology is multifactorial, involving both genetic predispositions and lifestyle 
factors.

Methods  This study aimed to develop a personalized risk prediction model for EC by integrating genetic 
polymorphisms (rs671 and rs1229984) with virtually generated alcohol consumption data, utilizing advanced artificial 
intelligence and machine learning techniques. We analyzed data from 86,845 individuals, including 763 diagnosed 
EC patients, sourced from the Taiwan Biobank. Eight machine learning models were employed: Bayesian Network, 
Decision Tree, Ensemble, Gradient Boosting, Logistic Regression, LASSO, Random Forest, and Support Vector Machines 
(SVM). A unique aspect of our approach was the virtual generation of alcohol consumption data, allowing us to 
evaluate risk profiles under both consuming and non-consuming scenarios.

Results  Our analysis revealed that individuals with the genotypes rs671 = AG and rs1229984 = CC exhibited 
the highest probabilities of developing EC, with values ranging from 0.2041 to 0.9181. Notably, abstaining from 
alcohol could decrease their risk by approximately 16.29–49.58%. The Ensemble model demonstrated exceptional 
performance, achieving an area under the curve (AUC) of 0.9577 and a sensitivity of 0.9211. This transition from 
consumption to abstinence indicated a potential risk reduction of nearly 50% for individuals with high-risk genotypes.

Conclusion  Overall, our findings highlight the importance of integrating virtually generated alcohol data for more 
precise personalized risk assessments for EC.
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Introduction
Esophageal cancer (EC) poses a significant public health 
concern globally [1], particularly in regions with high 
alcohol consumption [2]. The disease’s etiology is mul-
tifaceted, involving genetic predispositions and lifestyle 
factors. Among the genetic factors, single nucleotide 
polymorphisms (SNPs) in the alcohol dehydrogenase 
(ADH) and aldehyde dehydrogenase (ALDH) genes, spe-
cifically rs671 and rs1229984, have been shown to sig-
nificantly influence disease risk, particularly esophageal 
squamous cell carcinoma (ESCC) [3–5]. These genetic 
variants affect the metabolism of ethanol and its toxic 
byproduct, acetaldehyde, a known carcinogen linked to 
various cancers, including EC [6, 7].

The ALDH2 rs671 and ADH1B rs1229984 polymor-
phisms are recognized for their significant associations 
with alcohol metabolism and related health outcomes. 
When comparing the prevalence and impacts of these 
genetic variants across global populations, notable dif-
ferences arise, particularly between Eastern and Western 
ancestry groups. The rs671 polymorphism is especially 
prevalent in East Asian populations. A meta-analysis 
indicated that approximately 50% of East Asians carry at 
least one copy of the inactive A allele, leading to severely 
reduced enzyme function [8]. In contrast, this polymor-
phism is virtually absent in European populations, where 
the G allele is predominant, leading to a stark contrast in 
alcohol metabolism and potential alcohol-related health 
risks across these groups [9].

Conversely, the rs1229984 polymorphism in the 
ADH1B gene exhibits a different prevalence pattern. 
This variant is more commonly found in populations of 
European descent, with a frequency of about 26% among 
East Asians compared to about 40% in certain European 
populations [10]. While rs1229984 has a weaker impact 
on alcohol consumption compared to rs671, it still plays 
a significant role in modulating alcohol-related health 
risks, particularly in conjunction with other risk fac-
tors [11]. Population studies illustrate that the combined 
effects of ALDH2 rs671 and ADH1B rs1229984 vary sig-
nificantly; for instance, individuals carrying the dysfunc-
tional rs671 variant alongside the ADH1B rs1229984 
variant experience heightened risks of developing alco-
hol-related diseases, including various cancers in East 
Asian populations [10, 12].

Recent studies have emphasized the importance of 
understanding gene-environment interactions contribut-
ing to EC risk. Specifically, the presence of the ALDH2 
rs671 variant has been associated with increased suscep-
tibility to EC in East Asians, particularly when combined 
with high alcohol consumption [13, 14]. A genotype-
stratified genome-wide association study (GWAS) iden-
tified several variants, including rs671 and rs1229984, 
that significantly impact the risk of EC in Japanese 

populations, underscoring the relevance of personalized 
genetic assessments in predicting cancer risk [15]. This 
approach aligns with the growing emphasis on precision 
public health, which seeks to tailor prevention strategies 
based on individual genetic profiles, lifestyle factors, and 
clinical characteristics [16, 17].

The rationale for focusing on personalized predic-
tion of EC is underscored by the high prevalence of the 
ALDH2*2 allele among East Asians, which can lead to a 
dramatic increase in cancer risk among heavy drinkers 
[18, 19]. For instance, it has been estimated that if mod-
erate-to-heavy alcohol consumers with the ALDH2*1/*2 
genotype reduced their consumption to lower levels, 
it could potentially reduce EC cases by 53% in Japanese 
men [20]. This highlights the potential for targeted public 
health interventions that incorporate genetic screening 
to identify individuals at high risk and promote lifestyle 
modifications to mitigate their risk [11, 21].

Further, the integration of insights from recent 
research emphasizes the dynamic interplay between cel-
lular immunity and tumor cells in cancer development, 
suggesting that a comprehensive understanding of these 
interactions can inform prevention strategies. For exam-
ple, Aghapour et al. (2024) highlight the critical role of 
the immune response in modulating tumor behavior, 
suggesting that personalized interventions could leverage 
this relationship effectively [22].

So far, most of the studies assessing disease risk have 
relied on traditional research methods. The utilization of 
virtually generated data in assessing disease risk, particu-
larly in the context of EC and its association with genetic 
variants such as rs671 and rs1229984, presents several 
advantages over traditional epidemiological research that 
often relies on control data from disparate sources. One 
of the primary benefits of virtually generated data is the 
ability to create a controlled environment where variables 
can be systematically manipulated and analyzed, leading 
to more precise and reliable conclusions regarding the 
interactions between genetic predispositions and lifestyle 
factors, such as alcohol consumption.

Many previous studies have often used conventional 
methods like logistic regression. However, with advance-
ments in technology, AI and machine learning now offer 
powerful tools to analyze large datasets and uncover 
patterns, helping to improve our understanding of EC 
screening, monitoring, and treatment [23]. Their appli-
cation in the assessment and diagnosis of EC represents 
a significant advancement in the field of oncology [24]. 
Machine learning models have also been developed 
to predict the five-year survival status of EC patients 
based on clinical data [25]. These models leverage sev-
eral features, including demographic and clinical vari-
ables, to provide personalized prognostic information 
that can guide treatment decisions. In light of this, we 
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incorporated genetic, lifestyle, and virtual alcohol data 
to assess EC cancer risk among biobank participants 
with rs671 and rs1229984 polymorphisms using machine 
learning models.

Materials and methods
Study population/disease information
This study utilized data from two primary sources: the 
TWB (control data) and the National Taiwan Univer-
sity Hospital (case data). TWB participants provided 
informed consent before their data were collected. 

Overall, data were available for 89,200 individuals from 
both data sources. Exclusion criteria included 2355 indi-
viduals with incomplete data (Fig.  1). Consequently, 
the total sample size encompassed 86,845 participants, 
comprising 86,082 controls and 763 EC patients. Eth-
ics approval was obtained from the Institutional Review 
Board of Chung Shan Medical University Hospital (No. 
CS2-21160). All procedures adhered to the ethical stan-
dards established by the responsible committee on 
human experimentation, as well as the Helsinki Declara-
tion of 1964 and its later versions. Individuals from the 

Fig. 1  Data processing pipeline
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Taiwan Biobank provided written informed consent dur-
ing enrollment.

Patients diagnosed with primary EC were included as 
cases. Demographic and lifestyle factors, including sex, 
age, cigarette smoking, alcohol drinking, and betel nut 
chewing, were defined using self-reported responses to 
TWB questionnaires. Cigarette smokers were defined as 
those who had smoked or regularly smoked for at least 
six months. Alcohol consumers were defined as those 
who had consumed or regularly consumed at least 150 cc 
of alcohol per week for at least six months.

SNP genotyping and imputation
Whole-genome genotyping was performed using the 
Axiom Genome-Wide Array Plate chip system (Affyme-
trix Inc., Santa Clara, CA, USA) TWB (V2.0) chip. 
Candidate SNPs, including ALDH2 rs671, HECTD4 
rs2074356, ADH1B rs1042026 and rs1229984, GSTP1 
rs1695, ERCC5 rs17655, PTGS2 rs20417, XRCC1 
rs25487, MTHFR rs1801133, ADH4 rs3805322, PLCE1 
rs2274223 and rs3765524, rs11066015, and rs11066280, 
PDE4D rs10052657, RUNX1 rs2014300, and SLC39A6 
rs1050631, were genotyped. Some SNPs, including 
CYP1A1 rs1048943, CISH rs2239751, SOCS1 rs243324, 
ERCC2 rs238406, and PLCE1 rs7922612, were imputed 
using TWB’s genotype imputation process [11, 26–36].

Statistical analyses and machine learning models
Demographic data distributions were assessed using chi-
square tests for categorical variables, with results pre-
sented as counts and percentages. Data management and 
analysis were conducted using SAS 9.4 (SAS Institute, 
Cary, NC, USA) and PLINK 1.90 beta (Shaun Purcell & 
Christopher Chang). A significance threshold was set at 
P < 0.05.

To develop the machine learning models, we utilized 
SAS® Viya® (version 3.5, SAS Institute Inc., Cary, NC, 
USA). Our approach incorporated various supervised 
learning models, including Bayesian Networks, Decision 
Trees, Ensemble methods, Gradient Boosting, Logis-
tic Regression (including LASSO), Random Forest, and 
Support Vector Machines (SVM). The dataset of 86,845 
participants was randomly divided into training (60%), 
validation (30%), and testing (10%) subsets, with the tar-
get variable being EC. Input features comprised the 22 
SNPs along with demographic covariates. Model perfor-
mance was evaluated using the area under the curve of 
the receiver operating characteristic (AUC-ROC), sensi-
tivity, and specificity. The KS (Youden) index, generated 
by SAS Viya, was employed to select the best predictive 
model among the candidates.

In the subsequent phase of this research, the methodol-
ogy was adapted to incorporate virtually generated data, 
while maintaining the same sample size from both data 

sources. We created a virtual dataset that mirrored the 
original sample size while altering the drinking status of 
participants. The process involved the following steps:

Identification of drinking status  We categorized par-
ticipants into two groups based on their reported alcohol 
consumption: consumers and non-consumers.

Modification of drinking status  To create the virtual 
dataset, we systematically altered the consumption status 
of each participant: For instance, participants classified as 
consumers were reclassified as abstainers (non-consum-
ers). Conversely, those classified as abstainers were reclas-
sified as consumers.
Importantly, all other demographic and health-related 
variables in the dataset remained unchanged. This 
allowed us to isolate the effect of altered alcohol con-
sumption patterns while controlling for confounding fac-
tors that could influence EC risk. Based on the 10% test 
data performance, and using the champion model, we 
conducted personalized predictions on both the original 
and virtually generated data, enabling the assessment of 
individual probabilities for developing EC under varying 
conditions. This approach facilitated the calculation of 
increased risk associated with alcohol consumption for 
each participant.

Results
The distribution of genotypes and alcohol consump-
tion patterns among EC cases and controls is detailed in 
Table  1. Significant differences were observed between 
the two groups (p < 0.001). Notably, the highest percent-
age of EC patients (35.87%) was found in the subgroup 
carrying the rs671 = AG and rs1229984 = CC geno-
types, along with a history of alcohol consumption. This 
was followed by the subgroup with the rs671 = AG and 
rs1229984 = CT genotypes, which accounted for 18.88% 
of EC patients. Another subgroup with a relatively high 
percentage of EC patients (6.84%) was identified as hav-
ing the rs671 = GG and rs1229984 = CC genotypes, along 
with a consumption history.

Across various genotype combinations, subgroups with 
a history of alcohol consumption generally demonstrated 
higher percentages of EC patients compared to those who 
abstained. Conversely, groups with the rs671 = AA geno-
type had fewer alcohol consumers in both EC cases and 
controls, regardless of the rs1229984 genotype, suggest-
ing a potential self-protective mechanism in the body.

Table  2 presents a comparison of the performance of 
various machine learning algorithms evaluated on the 
testing dataset, which comprised 10% of the original 
data. The Ensemble model achieved the highest Youden’s 
J statistic (KS) of 0.8560, indicating excellent discrimina-
tion ability between positive and negative cases. It also 
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attained the highest AUC of 0.9577, suggesting outstand-
ing classification performance. Furthermore, the Ensem-
ble classifier demonstrated high sensitivity (0.9211) and 
specificity (0.9349), reflecting its excellent ability to cor-
rectly identify positive and negative cases, respectively. 
The overall accuracy of the Ensemble model was 0.9348, 
indicating a high percentage of correct predictions.

The Bayesian Network algorithm also exhibited strong 
performance, with a KS of 0.8014 and an AUC of 0.9119. 
It achieved a high specificity of 0.9593, indicating a low 
false-positive rate, and an overall accuracy of 0.9583. The 
Support Vector Machine (SVM) algorithm attained a KS 
of 0.7793 and an AUC of 0.9374, demonstrating equal 
sensitivity and specificity of 0.8421, with an overall accu-
racy of 0.9363. Other algorithms, such as Random Forest, 
Decision Tree, and Logistic Regression, exhibited decent 
performance, with varying trade-offs between sensitivity, 

specificity, and overall accuracy. The Gradient Boosting 
algorithm had the lowest performance among the evalu-
ated models, with a KS of 0.5700, an AUC of 0.7850, and 
a sensitivity of 0.5789; however, it achieved the highest 
specificity of 0.9911.

Table  3 displays the predictive probabilities for vari-
ous genotype combinations and alcohol consump-
tion statuses. As the champion model in this study, the 
Ensemble model’s predictive probabilities were utilized 
for the analysis of the original data. We categorized all 
participants into 18 groups based on the ADH1B rs671 
and ALDH2 rs1229984 SNPs and alcohol consumption 
statuses. The predictive probabilities were presented 
as minimum (Min), lower quartile (Q1), median, mean, 
upper quartile (Q3), and maximum (Max) values. Among 
these groups, alcohol consumers with the rs671 = AG 
and rs1229984 = CC genotypes exhibited the highest 

Table 1  Descriptive data of the study participants based on the original dataset
Variables Controls

(a)
EC patients
(b)

[b / (a + b)]
*100

rs671 = GG, rs1229984 = TT, abstinence 21,367 25 0.12
rs671 = GG, rs1229984 = TT, consumption 2682 80 2.90
rs671 = GG, rs1229984 = CT, abstinence 15,294 18 0.12
rs671 = GG, rs1229984 = CT, consumption 2017 61 2.94
rs671 = GG, rs1229984 = CC, abstinence 2803 8 0.28
rs671 = GG, rs1229984 = CC, consumption 422 31 6.84
rs671 = AG, rs1229984 = TT, abstinence 18,069 55 0.30
rs671 = AG, rs1229984 = TT, consumption 872 138 13.66
rs671 = AG, rs1229984 = CT, abstinence 12,649 32 0.25
rs671 = AG, rs1229984 = CT, consumption 666 155 18.88
rs671 = AG, rs1229984 = CC, abstinence 2252 27 1.18
rs671 = AG, rs1229984 = CC, consumption 211 118 35.87
rs671 = AA, rs1229984 = TT, abstinence 3549 4 0.11
rs671 = AA, rs1229984 = TT, consumption 22 3 12.00
rs671 = AA, rs1229984 = CT, abstinence 2689 4 0.15
rs671 = AA, rs1229984 = CT, consumption 12 3 20.00
rs671 = AA, rs1229984 = CC, abstinence 504 1 0.20
rs671 = AA, rs1229984 = CC, drinking 2 0 0
p-value < 0.001
EC = esophageal cancer

Note: Abstinence refers to individuals who refrained from consuming alcohol, whereas consumption pertains to those who consumed alcohol

Table 2  A comparison of the models evaluated on the testing dataset, which constituted 10% of the original data
Algorithm KS (Youden) AUC Sen Spe Accuracy
Ensemble 0.8560 0.9577 0.9211 0.9349 0.9348
Bayesian Network 0.8014 0.9119 0.8421 0.9593 0.9583
SVM 0.7793 0.9374 0.8421 0.9372 0.9363
Random Forest 0.7345 0.8729 0.7632 0.9713 0.9695
Decision Tree 0.7247 0.8664 0.8026 0.9220 0.9210
Logistic Regression 0.7246 0.8623 0.8026 0.9219 0.9209
Logistic Regression (LASSO) 0.7035 0.8550 0.7368 0.9667 0.9646
Gradient Boosting 0.5700 0.7850 0.5789 0.9911 0.9874
Abbreviation: Sen = sensitivity, Spe = specificity, AUC = area under the curve, SVM = support vector machine, LASSO = Least Absolute Shrinkage and Selection 
Operator
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predictive probability of EC. This group comprised 329 
individuals, including 211 controls and 118 EC patients. 
In this group, the predictive probabilities of EC ranged 
from 0.2041 to 0.9181, with a median of 0.4751.

Table  4 (models comprising the original and virtual 
alcohol data) illustrates that if the 329 participants with 
rs671 = AG, rs1229984 = CC, and who currently consume 
alcohol were to abstain, their highest risk for EC could 
be reduced from 0.9181 to 0.4629, and their lowest risk 
could decrease from 0.2041 to 0.1227. If these individuals 
had never consumed alcohol, the probability of develop-
ing EC could decrease by as much as 0.4552 and as lit-
tle as 0.0814. This indicates that if these individuals had 
never consumed alcohol, the percentage reduction in EC 
risk would range from 16.29 to 49.58%.

Discussion
This study is pioneering in its application of artificial 
intelligence (AI) and machine learning tools for the per-
sonalized prediction of EC risk. It integrates genetic 
factors related to alcohol metabolism with virtually 
generated alcohol consumption data. The results indi-
cate significant predictive probabilities across various 
genotype and alcohol consumption status combinations. 
Notably, participants with the genotype combination of 
rs671 = AG, rs1229984 = CC, and alcohol consumption 
exhibited the highest predicted risk of developing EC.

The incorporation of virtually generated alcohol data 
is particularly crucial in this research. By simulating 
changes in consumption status, we assessed the poten-
tial impact of alcohol abstinence on EC risk, enhancing 
our understanding of how lifestyle modifications can 

Table 3  The AI/ML predictive probabilities of EC in the ensemble model based on rs671 and rs1229984 genotypes and alcohol 
consumption data derived from the original dataset
Variables Controls (n) EC

patients (n)
Predictive probability
Min Q1 Median Mean Q3 Max

Combination of SNPs and consumption pattern
rs671 = GG, rs1229984 = TT, abstinence 21,367 25 0.0324 0.1026 0.1252 0.1676 0.2720 0.4239
rs671 = GG, rs1229984 = TT, consumption 2682 80 0.1356 0.3497 0.4128 0.3704 0.4401 0.5438
rs671 = GG, rs1229984 = CT, abstinence 15,294 18 0.0417 0.1058 0.1282 0.1706 0.2740 0.4109
rs671 = GG, rs1229984 = CT, consumption 2017 61 0.1310 0.3535 0.4149 0.3727 0.4416 0.5328
rs671 = GG, rs1229984 = CC, abstinence 2803 8 0.0526 0.1221 0.1445 0.1838 0.1919 0.4239
rs671 = GG, rs1229984 = CC, consumption 422 31 0.1500 0.2545 0.4319 0.3811 0.4595 0.6339
rs671 = AG, rs1229984 = TT, abstinence 18,069 55 0.0623 0.1334 0.1569 0.2064 0.3187 0.4502
rs671 = AG, rs1229984 = TT, consumption 872 138 0.1753 0.4180 0.4525 0.4213 0.4728 0.7589
rs671 = AG, rs1229984 = CT, abstinence 12,649 32 0.0701 0.1367 0.1594 0.2071 0.3174 0.4389
rs671 = AG, rs1229984 = CT, consumption 666 155 0.1842 0.4209 0.4560 0.4268 0.4771 1.0000
rs671 = AG, rs1229984 = CC, abstinence 2252 27 0.1003 0.1525 0.1748 0.2172 0.3176 0.4494
rs671 = AG, rs1229984 = CC, consumption 211 118 0.2041 0.4482 0.4751 0.4738 0.4971 0.9181
rs671 = AA, rs1229984 = TT, abstinence 3549 4 0.0000 0.0661 0.0905 0.1414 0.2552 0.3661
rs671 = AA, rs1229984 = TT, consumption 22 3 0.1482 0.3214 0.3813 0.3476 0.4091 0.4515
rs671 = AA, rs1229984 = CT, abstinence 2689 4 0.0048 0.0702 0.0942 0.1463 0.2621 0.3845
rs671 = AA, rs1229984 = CT, consumption 12 3 0.1667 0.2173 0.3841 0.3305 0.4166 0.4477
rs671 = AA, rs1229984 = CC, abstinence 504 1 0.0352 0.0893 0.1155 0.1705 0.2882 0.4142
rs671 = AA, rs1229984 = CC, consumption 2 0 0.1483 0.1483 0.2860 0.2860 0.4237 0.4237
Adjusted for sex, age, cigarette smoking, betel nut chewing, and additive model of 20 SNPs, including rs1042026, rs1695, rs17655, rs20417, rs25487, rs1801133, 
rs3805322, rs2274223, rs3765524, rs2074356, rs11066015, rs11066280, rs10052657, rs2014300, rs1050631, rs1048943, rs2239751, rs243324, rs238406, rs7922612

Note: Abstinence refers to individuals who refrained from consuming alcohol, whereas consumption pertains to those who consumed alcohol

Table 4  Personalized predictions of EC risk in the ensemble model based on the original and virtual alcohol data, in conjunction with 
the genotypes rs671 = AG and rs1229984 = CC

Predictive probability
Min Q1 Median Mean Q3 Max

rs671 = AG, rs1229984 = CC, consumption (original data, n = 329) 0.2041 0.4482 0.4751 0.4738 0.4971 0.9181
rs671 = AG, rs1229984 = CC, abstinence (virtual data, n = 329) 0.1227 0.3668 0.3937 0.3654 0.4157 0.4629
P (consumption– abstinence) (n = 329) 0.0814 0.0814 0.0814 0.1084 0.0814 0.4552
[P (consumption– abstinence)/ P consumption] *100 (n = 329) 16.2870 17.0006 17.8696 22.5879 28.8007 49.5790
Adjusted for sex, age, cigarette smoking, betel nut chewing, and additive model of 20 SNPs, including rs1042026, rs1695, rs17655, rs20417, rs25487, rs1801133, 
rs3805322, rs2274223, rs3765524, rs2074356, rs11066015, rs11066280, rs10052657, rs2014300, rs1050631, rs1048943, rs2239751, rs243324, rs238406, rs7922612

The analysis included data from a control group of 211 individuals and 118 patients diagnosed with EC, utilizing both original data and virtually generated alcohol 
data
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influence health outcomes. This approach aligns with the 
growing recognition of the importance of virtual data 
in precision public health, which emphasizes personal-
ized interventions based on individual risk factors [37, 
38]. The ability to manipulate consumption status in our 
model allowed us to demonstrate that changing from 
“consumption” to “abstinence” could lead to a substantial 
reduction in predictive probabilities for individuals with 
high-risk genotypes. This highlights the significant role of 
alcohol consumption in modulating EC risk.

Considering the hypothesis proposed by previous 
research [3], which suggests that the A allele of rs671 
and the T allele of rs1229984 are associated with reduced 
alcohol consumption, participants with rs671 = GG, 
rs1229984 = CC, and alcohol consumption were expected 
to have a higher predicted risk. However, our study’s pre-
dictive results differed somewhat from this hypothesis. 
Our findings revealed that participants with rs671 = AG, 
rs1229984 = CC, with a history of alcohol consumption, 
had the highest predicted risk, ranging from 0.2041 to 
0.9181, with a median of 0.4751. In contrast, partici-
pants with rs671 = GG, rs1229984 = CC, and a history of 
alcohol consumption had a risk ranging from 0.1500 to 
0.6339, with a median of 0.4319. Although this group did 
not have the highest risk of EC, they still represented a 
cohort with elevated risk. Among alcohol consumers, 
those with rs671 = AG exhibited higher counts and pro-
portions of EC cases compared to the other six groups, 
regardless of their rs1229984 genotypes.

Conversely, case and control groups with rs671 = AA 
had fewer alcohol consumers, irrespective of the 
rs1229984 genotype. This is likely due to flushing reac-
tions experienced by individuals with the rs671-A allele, 
caused by the accumulation of acetaldehyde, which influ-
ences drinking behaviors and decreases the likelihood 
of alcohol dependence [39]. Therefore, this genotype’s 
avoidance of the carcinogen acetaldehyde can be consid-
ered a self-protective mechanism.

Furthermore, we predicted the status of the 329 indi-
viduals with the highest predictive probabilities by 
changing their original “consumption” status to “absti-
nence”. Results showed that, while holding genotype and 
other factors constant, this change caused a decrease in 
the predictive probabilities for individuals with the gen-
otype rs671 = GA and rs1229984 = CC from 0.1127 to 
0.4629, with a median of 0.3937. This represents a sub-
stantial decrease, with the highest reduction of nearly 
50%. This underscores the significant impact of alcohol 
consumption on EC risk, particularly for those with the 
genotype combination rs671 = GA and rs1229984 = CC.

Considering the median values, alcohol drinkers with 
the rs671-GG or AG genotype exhibited higher predicted 
risks of EC, regardless of their rs1229984 genotype, with 
all medians exceeding 0.4. In contrast, alcohol drinkers 

with rs671-AA, had lower risks of EC, with all medi-
ans below 0.4. This suggests that the A allele of rs671 
has a greater impact on disease risk than the T allele 
of rs1229984. Individuals with the rs671-AA genotype 
showed a significant reduction in EC risk, aligning with a 
previous meta-analysis [40].

In our study, we analyzed the impact of alcohol con-
sumption on EC risk by creating a virtual dataset that 
mirrored the original sample size while altering par-
ticipants’ alcohol consumption statuses. This approach 
maintains the same sample size and demographic charac-
teristics, ensuring robust comparisons between consum-
ers and abstainers. It also allows for simulating a range 
of scenarios regarding alcohol consumption, providing 
insights into how variations in drinking behavior could 
influence cancer risk.

However, while the utilization of virtual data presents 
unique advantages, it also introduces potential biases due 
to design assumptions. For instance, reclassifying con-
sumers to non-consumers and vice versa is based on the 
assumption that these classifications accurately capture 
diverse patterns of alcohol consumption. This simplifica-
tion may overlook important nuances, such as variations 
in drinking frequency, quantity, and context, which can 
significantly influence health outcomes. Moreover, the 
assumptions underlying our virtual data generation raise 
critical considerations for real-world applications. One 
key assumption is that the effects of alcohol on EC risk 
are consistent across different populations and contexts, 
which may not hold true due to cultural, genetic, and 
environmental factors.

The implications of these assumptions for real-world 
applications are substantial. While our approach provides 
a valuable framework for exploring hypothetical sce-
narios of alcohol consumption, it is essential to interpret 
the results with caution. The findings derived from vir-
tually generated data should be validated against empiri-
cal data and considered as part of a broader context that 
includes diverse population characteristics and behav-
iors. A concerted effort towards inclusive and represen-
tative research practices is essential to leverage the true 
potential of virtual data in improving public health and 
scientific understanding.

Conclusions
In conclusion, our study establishes that individuals with 
the combination of rs671 = AG, rs1229984 = CC, and 
alcohol consumption face a heightened probability of 
developing EC. If these individuals were to abstain from 
drinking, their risk could be reduced by nearly 50%. The 
integration of virtually generated alcohol data into our 
predictive model significantly enhances personalized 
risk assessments for EC, demonstrating the transforma-
tive potential of AI and machine learning in advancing 
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precision public health initiatives. While the virtual 
data generation method may appear unconventional, it 
serves as a valuable tool for understanding the complex 
relationship between alcohol consumption and EC risk. 
Our model is designed to be adaptable for use in various 
populations and health systems through effective strate-
gies such as data integration, systematic calibration and 
validation, and cultural sensitivity. Collaborating with 
local health authorities and incorporating relevant demo-
graphic and consumption data will ensure the model’s 
applicability and predictive accuracy. These efforts will 
enhance the model’s scalability, making it a valuable 
tool for addressing the health implications of alcohol 
consumption across diverse contexts. We believe this 
approach enriches our study’s contributions to the field 
and provides a foundation for future research.
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