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Abstract
Background  Sepsis is a life-threatening inflammatory condition, and its underlying genetic mechanisms are not 
yet fully elucidated. We applied methods such as Mendelian randomization (MR), genetic correlation analysis, and 
colocalization analysis to integrate multi-omics data and explore the relationship between genetically associated 
genes and sepsis, as well as sepsis-related mortality, with the goal of identifying key genetic factors and their potential 
mechanistic pathways.

Methods  To identify therapeutic targets for sepsis and sepsis-related mortality, we conducted an MR analysis 
on 11,643 sepsis cases and 1,896 cases of 28-day sepsis mortality from the UK Biobank cohort. The exposure data 
consisted of 15,944 potential druggable genes (expression quantitative trait loci, eQTL) and 4,907 plasma proteins 
(protein quantitative trait loci, pQTL). We then performed sensitivity analysis, SMR analysis, reverse MR analysis, genetic 
correlation analysis, colocalization analysis, enrichment analysis, and protein-protein interaction network analysis on 
the overlapping genes. Validation was conducted using 17,133 sepsis cases from FinnGen R12. Drug prediction and 
molecular docking were subsequently used to further assess the therapeutic potential of the identified drug targets, 
while PheWAS was used to evaluate potential side effects. Finally, mediation analysis was conducted to identify the 
mediating role of related metabolites.

Results  The MR analysis results identified a significant causal relationship between 24 genes and sepsis. The 
robustness of these causal associations was further strengthened by SMR analysis, sensitivity analysis, and reverse 
MR analysis. Genetic correlation analysis revealed that only two of these genes were genetically correlated with 
sepsis. Colocalization analysis showed that only one gene was closely associated with sepsis, while validation using 
the FinnGen dataset identified three genes. In the MR analysis of 28-day sepsis mortality, seven genes were found to 
have significant associations, with reverse MR analysis excluding one gene. The remaining genes passed sensitivity 
analysis, with no significant genes identified in genetic correlation and colocalization analyses. Molecular docking 
demonstrated excellent binding affinity between drugs and proteins with available structural data. PheWAS at the 
gene level did not reveal any potential side effects of the related drugs.
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Background
Sepsis is defined as a life-threatening organ dysfunction 
resulting from a dysregulated host response to infection 
[1]. It can be triggered by various pathogens, including 
bacteria, viruses, fungi, parasites, and others [2]. Accord-
ing to a 2017 analysis of the global burden of disease, 
sepsis-related deaths accounted for approximately 19.7% 
of all deaths worldwide [3]. Despite advancements in 
antibiotic treatments and supportive care, the mortality 
rate for sepsis remains high [4]. The underlying mecha-
nisms are still not fully understood, presenting a major 
challenge to human health and safety. This highlights the 
urgent need for further research into its pathophysiologi-
cal mechanisms and the development of new therapeutic 
interventions.

In recent years, the emergence of multi-omics research 
has enabled the integration of data from various biologi-
cal fields, such as genomics (expression quantitative trait 
loci, eQTL) [5] and proteomics (protein quantitative 
trait loci, pQTL) [6], facilitating cross-validation among 
diverse components. These approaches have provided 
compelling evidence for identifying potential biomarkers 
and therapeutic targets [7]. Additionally, metabolites, as 
the final products or intermediates of metabolism, reflect 
the intricate interplay among genomic, epigenomic, tran-
scriptomic, and proteomic processes, while also captur-
ing the system’s response to environmental influences [8]. 
Metabolomics, by uncovering the biochemical activities 
within cells, tissues, and organs, offers a critical frame-
work for understanding disease mechanisms and devis-
ing preventive strategies [9].

In this study, we combined expression eQTL and pQTL 
with genome-wide association study (GWAS) datasets to 
link gene expression and protein levels with disease risk, 
providing a powerful tool for identifying disease-related 
therapeutic targets. Traditional proteomics and genomics 
research has often been limited by high costs and ethi-
cal challenges associated with participant recruitment. 
To overcome these limitations, Mendelian randomization 
(MR) analysis has emerged as a widely adopted approach 
for drug target development and the repurposing of exist-
ing drugs [10]. As a powerful tool for investigating causal 
relationships between genetic variation and disease, MR 
uses genetic variants as instrumental variables to mini-
mize common biases in observational studies, such as 
confounding and reverse causation, thereby elucidating 
the relationship between relevant factors and disease [11]. 
Previous studies have utilized multi-omics MR analysis 

to identify therapeutic targets for genes associated with 
migraine [12] and sarcopenia [13]. However, no studies to 
date have combined eQTL and pQTL data to investigate 
sepsis and its 28-day mortality. In this study, we selected 
instrumental variables (IVs) associated with eQTLs and 
pQTLs to directly infer the causal relationship between 
gene expression and protein levels in sepsis. Additionally, 
we conducted reverse MR analysis, summary-data-based 
Mendelian randomization (SMR), genetic correlation 
analysis, colocalization analysis, and mediation analysis 
of gene-related metabolites. The objectives of this study 
are: [1] to identify genes that may influence sepsis and 
28-day sepsis mortality, and [2] to uncover potential gene 
pathways and associated metabolites that may help eluci-
date the mechanisms underlying sepsis and 28-day sepsis 
mortality. Our findings aim to use MR in a multi-omics 
context to advance our understanding of the mechanisms 
driving sepsis and ultimately contribute to the develop-
ment of new therapeutic strategies.

Methods
Study design
This MR study aims to investigate the causal relation-
ship between eQTL, pQTL, and sepsis. Figure  1 pres-
ents a schematic representation of the study design. The 
MR methodology is based on three essential conditions 
(Fig. 1): (A) The genetic variants selected as instrumen-
tal variables (IVs) must be strongly associated with eQTL 
and pQTL; (B) The genetic instruments must be unre-
lated to sepsis outcomes and independent of potential 
confounding factors; (C) The genetic variants should 
influence sepsis risk specifically through certain genes, 
rather than through other pathways.

The sources of eQTL and pQTL data and the selection of 
instrumental variables
The eQTL data for potential drug target genes were 
obtained from a previously published study in a European 
population [14], identifying a total of 15,944 genes. The 
pQTL data were derived from GWAS summary statistics 
of 4,907 plasma proteins in a cohort of 35,559 Icelandic 
individuals [15]. All IVs underwent a rigorous filtering 
process: (i) SNPs were required to be robustly associ-
ated with gene expression levels (P < 5 × 10⁻⁸); (ii) SNPs 
were filtered to ensure minimal linkage disequilibrium 
(LD) (R² < 0.001, distance = 10,000  kb), indicating that 
each selected SNP is largely independent of the others; 
and (iii) the R² and F-statistics were calculated to assess 

Conclusions  The identified drug targets, associated pathways, and metabolites have enhanced our understanding of 
the complex relationships between genes and sepsis. These genes and metabolites can serve as effective targets for 
sepsis treatment, paving new pathways in this field and laying a foundation for future research.
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the strength of the IVs, with F-statistics greater than 10 
selected to avoid potential bias caused by weak IVs [16].

Data sources on metabolites and IVs selection for 
Circulating metabolites
To include a more comprehensive range of metabolites, 
we selected data from two sources. One dataset included 
249 circulating metabolites measured in 121,000 par-
ticipants of European ancestry, provided by Nightingale 
Health, focusing mainly on lipids and lipoprotein parti-
cles [17]. The second dataset included 1,091 metabolites 
and 309 metabolite ratios from 8,091 individuals in the 
Canadian Longitudinal Study on Aging (CLSA) cohort, 
covering a broad spectrum of substances such as lip-
ids, amino acids, xenobiotics, nucleotides, cofactors and 
vitamins, carbohydrates, peptides, and energy-related 
metabolites [18]. In the analysis of the 249 metabolites, 
SNPs with a p-value below the genome-wide significance 
threshold (5 × 10⁻⁸) were selected as IVs. In the analy-
sis of the 1,400 metabolites, it was not possible to fully 
extract SNPs at the 5 × 10− 8 threshold. To enhance sen-
sitivity and achieve more comprehensive results, we 
selected SNPs with p-values below the genome-wide sig-
nificance thresholds of 5 × 10− 6 and 1 × 10− 5 as IVs. Sub-
sequently, all IVs underwent LD clumping (r² = 0.001; 
distance = 10,000  kb) to reduce the impact of correlated 
SNPs.

Sources of Sepsis outcome data
The primary analysis of sepsis and 28-day sepsis mor-
tality outcomes was conducted using data from the UK 
Biobank, which included 11,643 sepsis cases and 474,841 
controls of European ancestry, as well as 1,896 cases of 
28-day sepsis mortality and 484,588 controls [19]. Vali-
dation of these findings was performed using sepsis data 
from the FinnGen R12 biobank, consisting of 17,133 
cases and 439,048 controls [20]. Unfortunately, there is 
no available GWAS data on 28-day sepsis mortality in 
the FinnGen study or other studies, so we were unable to 
perform validation for this specific outcome.

MR analysis
We initially employed a two-sample MR analysis to assess 
the causal relationship between eQTL, pQTL, and sepsis, 
as well as 28-day sepsis mortality. The primary methods 
used were the inverse variance weighted (IVW) fixed-
effects method and the Wald ratio method in MR anal-
ysis. For genes with multiple SNPs, the IVW method 
was applied, while for genes with only a single SNP, the 
Wald ratio method was used. The Cochran Q test was 
employed to assess heterogeneity in causal effects, while 
the MR-Egger intercept assessed horizontal pleiotropy. 
A p-value below 0.05 in these tests generally suggests 
the existence of heterogeneity or pleiotropy [21]. Since 
MR analysis with a single SNP does not allow for het-
erogeneity testing, we performed summary data-based 

Fig. 1  A schematic representation of the study design
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Mendelian randomization (SMR) analysis (​h​t​t​p​​s​:​/​​/​c​n​s​​g​
e​​n​o​m​​i​c​s​​.​c​o​m​​/​s​​o​f​t​​w​a​r​​e​/​s​m​​r​/​​#​O​v​e​r​v​i​e​w) on genes with 
a single SNP to generate effect estimates. This approach 
provides significance levels to reinforce the evidence 
from the primary analysis. The heterogeneity in depen-
dent instrument (HEIDI) test was used to differentiate 
between pleiotropic and linkage models, with a p-value 
below 0.05 indicating potential pleiotropy. Such results 
were excluded from further analysis [22]. To identify 
additional potentially relevant genes in eQTL and pQTL, 
we did not apply multiple testing correction, instead con-
sidering a p-value of less than 0.05 as indicative of signifi-
cance. All MR analyses were performed using R software 
(version 4.4.2) with the TwoSampleMR package.

Reverse MR analysis
To prevent the influence of reverse causation, we per-
formed reverse MR analysis to explore the potential 
causal effects of sepsis and 28-day mortality on signifi-
cantly associated genes.

Genetic correlation analysis
We utilized linkage disequilibrium score regression 
(LDSC) to evaluate the shared polygenic architecture 
between genes and sepsis, using LD scores calculated 
from European ancestry samples in the 1000 Genomes 
Project as a reference panel. This approach evaluates 
genetic correlations using GWAS summary statistics, 
ensuring no bias is introduced due to sample overlap 
[23]. To pinpoint genes more strongly linked to sepsis, 
we conducted genetic correlation analysis based on the 
results of the MR analysis, considering a p-value below 
0.05 as significant.

Colocalization analysis
We further performed colocalization analysis on the 
identified positive genes using the coloc R package to 
strengthen the genetic findings by identifying shared 
genetic variants associated with sepsis. Bayesian analysis 
was employed to evaluate the support for five mutually 
exclusive hypotheses, where H4 represents the hypoth-
esis that both traits are associated and share the same 
causal variant [24]. Posterior probabilities (PP) were cal-
culated for each hypothesis, and colocalization was con-
sidered supported when the posterior probability for H4 
(PP.H4) exceeded 0.5.

GO and KEGG enrichment analysis
We performed Gene Ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) enrichment analy-
ses on the significant genes. These analyses aimed to gain 
a deeper understanding of the biological functions and 
metabolic pathways of the genes. GO analysis examines 
the shared characteristics of genes in three categories: 

biological processes (BP), cellular components (CC), and 
molecular functions (MF). It evaluates the enrichment 
of genes within each GO annotation by comparing the 
analyzed genes against a reference genome, generating 
results for enrichment analysis. KEGG enrichment analy-
sis, on the other hand, focuses primarily on the enrich-
ment of genes within metabolic pathways [25].

Protein-Protein interaction network
To better understand how a protein interacts with 
another protein within the cell, we conducted a protein-
protein interaction (PPI) network analysis. In this study, 
the PPI network was constructed using STRING ​(​​​h​t​t​p​s​:​/​
/​c​n​.​s​t​r​i​n​g​-​d​b​.​o​r​g​/​​​​​)​, with a confidence score of 0.15 set as 
the minimum interaction threshold, while other param-
eters were kept at their default settings [26]. The PPI 
results were further visualized using Cytoscape (v3.10.3) 
[27].

Validation set
We validated the 24 genes identified in the UKB sepsis 
results using the latest R12 version of the FinnGen sep-
sis dataset (17,133 cases and 439048 controls) [20]. Cur-
rently, there are no other GWAS studies on 28-day sepsis 
mortality, so we could not validate the results related to 
28-day sepsis mortality.

Drug target prediction
Evaluating protein-drug interactions is crucial for deter-
mining whether target genes can serve as practical drug 
targets. In this study, we utilized the Drug Signatures 
Database (DSigDB, ​h​t​t​p​​:​/​/​​d​s​i​g​​d​b​​.​t​a​​n​l​a​​b​.​o​r​​g​/​​D​S​i​g​D​B​v​1​.​0​
/) [28] to accomplish this task. This database links drugs 
and other chemical compounds to target genes, enabling 
the prediction of candidate drugs to assess the therapeu-
tic potential of the target genes.

Molecular Docking
To gain deeper insights into the impact of drug candi-
dates on target genes and evaluate their druggability, 
we conducted molecular docking at the atomic level to 
determine the binding energy and interaction patterns 
between drug candidates and their respective targets. 
These molecular docking simulations allowed us to assess 
the binding affinity and interaction mechanisms between 
ligands and drug targets. By identifying ligands that 
exhibit strong binding affinity and favorable interaction 
profiles, we can prioritize drug targets for subsequent 
experimental validation and refine the design of potential 
drug candidates.

Phenome‑wide association analysis
To further evaluate horizontal pleiotropy and potential 
side effects of candidate drug targets, we conducted a 

https://cnsgenomics.com/software/smr/#Overview
https://cnsgenomics.com/software/smr/#Overview
https://cn.string-db.org/
https://cn.string-db.org/
http://dsigdb.tanlab.org/DSigDBv1.0/
http://dsigdb.tanlab.org/DSigDBv1.0/
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phenome-wide association study (PheWAS) using the 
AstraZeneca PheWAS Portal (https://azphewas.com/) 
[29]. Gene expression data were used as the exposure 
variable, while outcome measures included approxi-
mately 15.5  K binary and 1.5  K continuous phenotypes 
from about 450,000 exome-sequenced participants in the 
UK Biobank cohort.

Additional mediation analysis
We conducted a two-step Mendelian randomization 
(MR) analysis to estimate the mediating role of circulat-
ing metabolites in the association between significant 
genes and sepsis. In the first step of the two-step MR, 
we assessed the effect of significant genes on circulat-
ing metabolites (β1). In the second step, we evaluated 
the effect of circulating metabolites on sepsis (β2). The 
proportion of the gene-sepsis association mediated by 
metabolites was calculated as the product of β1 and β2, 
divided by the total effect of the gene on sepsis (β3). The 
95% confidence interval (CI) of the mediation proportion 
was calculated using the coefficient product method, and 
a p-value less than 0.05 was considered significant.

Results
eQTL, pQTL and Sepsis
Our findings revealed suggestive associations (P < 0.05) 
between sepsis and 742 eQTL genes, along with 766 
pQTL genes (Table S1 and S2). To better identify genes 
more closely associated with sepsis, we examined the 
overlap between these two sets of genes and found that 
only 24 genes were strongly linked to sepsis. Among the 
24 eQTL genes, 13 were identified as protective genes, 
including: APOD (OR: 0.775, 95% CI: 0.640–0.938, 
P = 9.03 × 10− 3), DHX8 (OR: 0.815, 95% CI: 0.677–0.982, 
P = 3.15 × 10− 2), FBL (OR: 0.782, 95% CI: 0.657–0.931, 
P = 5.79 × 10− 3), HSPA6 (OR: 0.866, 95% CI: 0.784–0.957, 
P = 4.65 × 10− 3), LY9(OR: 0.808, 95% CI: 0.711–0.918, 
P = 1.03 × 10− 3), MRPL52(OR: 0.909, 95% CI: 0.840–0.984, 
P = 1.81 × 10− 2), P2RX6(OR: 0.869, 95% CI: 0.775–0.974, 
P = 1.60 × 10− 2),PDGFB (OR: 0.864, 95% CI: 0.796–0.938, 
P = 5.21 × 10− 4),

PKDCC (OR: 0.745, 95% CI: 0.588–0.946, 
P = 1.55 × 10− 2), PPP2R3A (OR: 0.719, 95% CI: 0.562–
0.921, P = 8.86 × 10− 3), S100A6 (OR: 0.748, 95% CI: 0.567–
0.986, P = 3.95 × 10− 2),and UBE2D1(OR: 0.913, 95% CI: 
0.860–0.969, P = 2.62 × 10− 3),ZAP70(OR: 0.854, 95% CI: 
0.742–0.983, P = 2.79 × 10− 2). Additionally, 11 were identi-
fied as risk genes, including: ANXA3 (OR: 1.128, 95% CI: 
1.018–1.250, P = 2.21 × 10− 2), ARL2 (OR: 1.205, 95% CI: 
1.021–1.422, P = 2.71 × 10− 2),BCL2L11 (OR: 1.236, 95% 
CI: 1.028–1.485, P = 2.41 × 10− 2), GBP6 (OR: 1.298, 95% 
CI: 1.007–1.673, P = 4.37 × 10− 2),GCNT4 (OR: 1.238, 95% 
CI: 1.010–1.517, P = 3.40 × 10− 2),GOSR1 (OR: 1.592, 95% 
CI: 1.111–2.283, P = 1.13 × 10− 2),IER3(OR: 1.075, 95% CI: 

1.007–1.147, P = 2.89 × 10− 2), KIR2DL1(OR: 1.120, 95% 
CI: 1.002–1.252, P = 4.65 × 10− 2), LILRA2(OR: 1.053, 95% 
CI: 1.003–1.107, P = 3.88 × 10− 2), PLEKHA7(OR: 1.183, 
95% CI: 1.050–1.332, P = 5.68 × 10− 3), and SNRPF (OR: 
1.237, 95% CI: 1.006–1.521, P = 4.40 × 10− 2).

Among the 24 pQTL genes, 20 proteins were identi-
fied as protective, including: ANXA3 (OR: 0.735, 95% CI: 
0.592–0.914, P = 5.52 × 10− 3), APOD (OR: 0.863, 95% CI: 
0.783–0.950, P = 2.72 × 10− 3), ARL2 (OR: 0.890, 95% CI: 
0.837–0.947, P = 2.22 × 10− 4),

BCL2L11 (OR: 0.739, 95% CI: 0.556–0.982, 
P = 3.72 × 10− 2), DHX8 (OR: 0.783, 95% CI: 0.620–0.990, 
P = 4.10 × 10− 2), FBL (OR: 0.883, 95% CI: 0.798–0.976, 
P = 1.54 × 10− 2),GBP6 (OR: 0.901, 95% CI: 0.830–0.977, 
P = 1.16 × 10− 2),GCNT4 (OR: 0.716, 95% CI: 0.579–0.886, 
P = 2.10 × 10− 3),GOSR1 (OR: 0.861, 95% CI: 0.764–0.970, 
P = 1.42 × 10− 2),HSPA6 (OR: 0.856, 95% CI: 0.745–0.983, 
P = 2.79 × 10− 2),IER3(OR: 0.856, 95% CI: 0.770–0.952, 
P = 4.09 × 10− 3),KIR2DL1(OR: 0.871, 95% CI: 0.786–
0.965, P = 8.09 × 10− 3),MRPL52(OR: 0.786, 95% CI: 
0.648–0.954, P = 1.46 × 10− 2),P2RX6(OR: 0.732, 95% CI: 
0.586–0.915, P = 6.09 × 10− 3),PKDCC (OR: 0.895, 95% 
CI: 0.815–0.983, P = 2.09 × 10− 2),PPP2R3A (OR: 0.887, 
95% CI: 0.803–0.979, P = 1.76 × 10− 2),S100A6 (OR: 0.795, 
95% CI: 0.661–0.955, P = 1.45 × 10− 2),UBE2D1(OR: 
0.886, 95% CI: 0.811–0.968, P = 7.57 × 10− 3),and 
ZAP70(OR: 0.897, 95% CI: 0.828–0.972, P = 7.94 × 10− 3).
In addition, 4 proteins were identified as risk factors, 
including: LILRA2(OR: 1.072, 95% CI: 1.006–1.143, 
P = 3.09 × 10− 2),LY9 (OR: 1.082, 95% CI: 1.008–1.161, 
P = 2.89 × 10− 2), PDGFB (OR: 1.188, 95% CI: 1.006–1.402, 
P = 4.28 × 10− 2), PLEKHA7(OR: 1.099, 95% CI: 1.004–
1.203, P = 4.18 × 10− 2), and SNRPF (OR: 1.237, 95% CI: 
1.006–1.521, P = 4.40 × 10− 2). Figure 2 presents the 24 sig-
nificant associations between eQTL, pQTL, and sepsis.

MR-Egger regression did not indicate any evidence 
of horizontal pleiotropy (P > 0.05). Cochran’s Q test 
revealed no significant heterogeneity (P > 0.05) (Table 
S3). For genes with only a single SNP, heterogeneity test-
ing could not be performed. To address this limitation, 
we conducted SMR analysis, which further strengthened 
the robustness of our findings. The HEIDI test P-values 
for these genes were all greater than 0.05, indicating no 
evidence of heterogeneity (Table S4). The results of the 
reverse MR analysis did not find any association between 
sepsis and the 24 genes (Table S5). Genetic correla-
tion analysis of these 24 genes revealed that only DHX8 
(rg = 0.137, P = 4.50 × 10− 2) and LILRA2 (rg = 0.520, 
P = 4.24 × 10− 2) had significant genetic correlations with 
sepsis (Table S6 and Figure S1). Colocalization analysis of 
the 24 genes identified that only PDGFB (PP.H4 = 0.664) 
showed evidence of colocalization (Table S6 and Fig. 3).

https://azphewas.com/
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eQTL, pQTL and Sepsis (28-day mortality)
Our results showed that sepsis 28-day mortality was 
associated with 667 eQTL genes and 111 pQTL genes 
(P < 0.05) (Table S7 and S8). After overlapping these two 

sets, we found that only 7 genes were strongly associ-
ated with 28-day sepsis mortality. Among the 7 eQTL 
genes, 5 were identified as protective genes, including 
CNRIP1(OR: 0.737, 95% CI: 0.552–0.983, P = 3.80 × 10− 2), 

Fig. 2  MR analysis results of eQTL and pQTL for sepsis risk. A: Circular plot of the loci for 24 sepsis-associated genes. B: Forest plot showing the MR as-
sociations between eQTL, pQTL, and sepsis risk
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COL6A2(OR: 0.802, 95% CI: 0.663–0.970, 
P = 2.27 × 10− 2), FN1(OR: 0.624, 95% CI: 0.421–0.924, 
P = 1.87 × 10− 2),PPP3R1(OR: 0.765, 95% CI: 0.608–0.962, 
P = 2.21 × 10− 2), and IL18R1(OR: 0.785, 95% CI: 0.649–
0.950, P = 1.27 × 10− 2). The remaining 2 genes were 

associated with increased risk, namely C5 (OR: 1.246, 
95% CI: 1.024–1.515, P = 2.78 × 10− 2), and IGFLR1(OR: 
1.215, 95% CI: 1.033–1.430, P = 1.86 × 10− 2). Among 
the 7 pQTL genes, 1 was identified as a protective gene: 
CNRIP1(OR: 0.824, 95% CI: 0.699–0.972, P = 2.16 × 10− 2). 

Fig. 3  The colocalization analysis of these genes. A: Colocalization results for the PDGFB gene (PP.H4 = 0.664), where the r² value represents the linkage 
disequilibrium (LD) between the variants and the leading SNPs. B: Colocalization analysis of the identified 24 genes
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Six genes were identified as risk genes, including C5 (OR: 
1.549, 95% CI: 1.093–2.195, P = 1.40 × 10− 2), IGFLR1(OR: 
1.247, 95% CI: 1.011–1.537, P = 3.89 × 10− 2),COL6A2(OR: 
1.720, 95% CI: 1.239–2.389, P = 1.20 × 10− 3),FN1(OR: 
1.707, 95% CI: 1.125–2.588, P = 1.19 × 10− 2),PPP3R1(OR: 
1.768, 95% CI: 1.087–2.875, P = 2.16 × 10− 2), and 
IL18R1(OR: 1.188, 95% CI: 1.013–1.392, P = 3.37 × 10− 2). 
Figure S2 presents the 7 associations between eQTL, 
pQTL, and sepsis 28-day mortality.

MR-Egger regression showed no evidence of horizon-
tal pleiotropy (P > 0.05). Additionally, Cochran’s Q test 
did not detect any significant heterogeneity (P > 0.05) 
(Table S9). Since the number of SNPs for the above genes 
exceeds 3, we did not conduct SMR analysis. Reverse 
MR analysis revealed an association between IL18R1 
and 28-day sepsis mortality (P = 2.92 × 10− 2) (Table S10). 
Therefore, IL18R1 was excluded from further analysis. 
Subsequent genetic correlation and colocalization analy-
ses on the remaining six genes found no evidence of asso-
ciation (Table S11).

GO and KEGG analysis
We performed GO and KEGG analyses on the 24 genes 
associated with sepsis and the 6 genes related to 28-day 
sepsis mortality. The GO annotation results for sepsis 
revealed that the BP category was mainly enriched in 
cell-substrate adhesion, regulation of carbohydrate meta-
bolic processes, and related pathways. The CC category 
included the U2-type catalytic step 2 spliceosome, among 
others. The MF category was primarily enriched in non-
membrane spanning protein tyrosine kinase activity, and 
other related functions. For the 28-day sepsis mortality 
analysis, the BP category was mainly enriched in mesen-
chymal cell differentiation, along with other processes. 
The CC category primarily involved the sarcolemma, 
and the MF category was enriched in collagen binding, 
among other functions (Table S12, Fig. 4 and Figure S3, 
S4).

The KEGG enrichment analysis for sepsis revealed that 
the genes were primarily involved in the Spliceosome 
pathway, the PI3K-Akt signaling pathway, and other 
related pathways. For the 28-day sepsis mortality analy-
sis, the genes were mainly associated with ECM-receptor 
interaction, focal adhesion, and other pathways (Table 
S13, and Figure S5).

PPI network analysis
The 24 drug target genes identified in sepsis, along with 
the 7 target genes identified in 28-day sepsis mortality, 
were uploaded to the STRING database to construct a 
protein-protein interaction network. The resulting file 
was then imported into Cytoscape for visualization. Fig-
ure 5 displays the interactions between the drug targets 
and other proteins.

Validation set
After validating the 24 genes in the FinnGen sepsis 
dataset, only 3 genes remained significantly associated. 
Among these, PDGFB (OR: 0.930, 95% CI: 0.868–0.997, 
P = 4.10 × 10− 2) and SNRPF (OR: 0.708, 95% CI: 0.571–
0.878, P = 1.64 × 10− 3) were identified as protective, while 
IER3 (OR: 1.113, 95% CI: 1.051–1.179, P = 2.51 × 10− 4).

was identified as a risk gene (Table S14).

Drug target prediction
This study utilized the DSigDB database to predict poten-
tial effective intervention drugs. Based on p-values, the 
top 10 potential compounds are shown for both sepsis 
and sepsis-related mortality (Table S15 and Fig. 6).

Molecular Docking
To evaluate the affinity of the aforementioned candidate 
drugs for their targets and understand the druggability 
of these targets, we assessed the interactions between 
the binding sites of proteins encoded by genes related to 
sepsis and 28-day sepsis mortality and the top 10 candi-
date drugs. In the sepsis analysis, UNII-9XX54M675G 
and Dichloromercury did not produce docking results 
with the associated genes. Similarly, in the 28-day sep-
sis mortality analysis, SILVER, TITANIUM DIOXIDE, 
and [6-[6-(butanoylamino)purin-9-yl]-2-hydroxy-2-oxo-
4a,6,7,7a-tetrahydro-4  H-furo[3,2-d][1,3,2]dioxaphos-
phinin-7-yl] butanoate did not produce docking results 
with the associated genes. For the remaining drugs, bind-
ing energies were obtained, and successful docking out-
comes were achieved (Table S15, Fig. 7 and S6).

PheWAS analysis
To further evaluate whether the successful molecu-
lar docking of drug target genes could have beneficial 
or adverse effects on other traits, and to determine the 
potential pleiotropy that may not have been captured by 
the MR-Egger intercept test, we conducted a PheWAS 
analysis at the genetic level. The PheWAS results indi-
cate associations between protein expression determined 
by genetics and specific diseases or traits, as illustrated 
in Figures S7-S30. None of the 12 drug targets identified 
for sepsis and sepsis-related mortality showed signifi-
cant associations with other traits at the genetic level at 
genome-wide significance with P < 5 × 10⁻⁸. This indicates 
that the potential side effects and horizontal pleiotropy 
of drugs targeting these genes are minimal, thereby sup-
porting the robustness of the study’s findings.

Additional mediation analysis
We initially conducted an MR analysis between 
1400 metabolites and sepsis. For metabolites with 
IVs at a threshold of 5 × 10⁻⁶, we identified 83 
associations(P < 0.05). For metabolites with IVs at a 
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Fig. 4  GO enrichment analysis for sepsis and sepsis (28-day mortality). A: Bar plot representing the GO analysis results for sepsis. B: Bar plot representing 
the GO analysis results for sepsis (28-day mortality)
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Fig. 5  PPI network analysis. A: PPI network constructed using STRING for sepsis. B: PPI network constructed using STRING for sepsis (28-day mortality)
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Fig. 6  Candidate drug prediction. A: Enrichment analysis of the top 10 candidate drugs for sepsis. B: Enrichment analysis of the top 10 candidate drugs 
for sepsis (28-day mortality)
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Fig. 7 (See legend on next page.)
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threshold of 1 × 10⁻⁵, we found 82 associations. By taking 
the intersection of these two results, we identified a total 
of 40 metabolites (Table S16, S17). In the MR analysis 
of 249 metabolites, we identified 37 associations (Table 
S18).

We then conducted an MR analysis between the 
24 genes and the previously identified metabolites. 
Through mediation analysis, we ultimately identified 
an indirect effect of MRPL52 on sepsis mediated by 
Hypotaurine levels (OR: 0.900, 95% CI: 0.837–0.967, 
P = 4.10 × 10− 3). The mediation proportion was 14.95% 
(95% CI: 4.97 × 10− 3–0.294, P = 4.26 × 10− 2) of the total 
effect (Fig. 8, Table S19, S20). Similarly, we conducted the 
same analysis for 28-day sepsis mortality, but no mediat-
ing metabolites were identified (Table S21-24).

Discussion
With the rapid advancement of multi-omics research in 
recent years, better approaches for developing new drugs 
to treat sepsis have emerged. Currently, there are rela-
tively few multi-omics studies on sepsis, and those that 
exist are mostly observational, indicating associations 
without establishing causality. In this study, we used MR 
to combine eQTL and pQTL data, identifying 24 genes 
associated with sepsis and 6 genes linked to 28-day sep-
sis mortality. Subsequently, we conducted reverse MR 
analysis to mitigate the effects of confounding factors, 
followed by genetic correlation and colocalization analy-
ses, which offered robust evidence supporting these as 
potential drug targets. To further understand the bio-
logical roles of these drug targets, we carried out enrich-
ment analysis, PPI network analysis, and drug prediction. 
We also performed molecular docking for the predicted 
drugs targeting these genes, providing additional support 
for the druggability of these targets. To evaluate poten-
tial pleiotropic effects and side effects of the drugs, we 
conducted phenome-wide association studies. Media-
tion analysis revealed specific metabolites mediating the 
effects of certain genes on sepsis. These comprehensive 
analyses enhance our understanding of the molecular 
mechanisms underlying sepsis, paving the way for future 
advancements in sepsis treatment and the development 
of new biomarkers for monitoring, ultimately aiming to 
improve outcomes for sepsis patients.

In our colocalization analysis of sepsis, we identified 
platelet-derived growth factor B (PDGFB) with support-
ive evidence for colocalization; however, the directions of 
effect in eQTL and pQTL analyses were not consistent. 

PDGFB is a member of the PDGF family, which includes 
four isoforms: A, B, C, and D. PDGF must form homodi-
mers or heterodimers to exhibit activity, including 
PDGF-AA, BB [30]. Furthermore, a study has reported 
that PDGF-BB exerts a protective effect in sepsis by 
reducing the production of pro-inflammatory cytokines 
and chemokines [31]. In our study, PDGFB was found to 
be strongly associated with sepsis, but further investiga-
tion is required to understand its precise role in sepsis 
pathogenesis.

In the genetic correlation analysis of sepsis, DHX8 
and LILRA2 were found to be significantly associated. 
DHX8 is an ATP-dependent RNA helicase, functioning 
as a molecular winch capable of displacing distal periph-
eral RNA within the spliceosome, making it a potentially 
underexplored druggable target in the future [32]. Previ-
ous studies have shown a significant association between 
DHX8 and antidepressant response [33]. Currently, there 
is no research establishing a relationship between DHX8 
and sepsis, indicating a need for further investigation in 
the future. The leukocyte immunoglobulin-like receptor 
(LILR) family is a group of specific immune receptors 
that are widely expressed on most immune cells. LILRA2 
recognizes fibrinogen, which is found under certain 
physiological conditions. Fibrinogen is associated with 
various diseases, including inflammatory diseases, infec-
tions, cancer, thrombotic disorders, and vascular wall 
diseases [34]. Therefore, blocking the LILRA2-fibrinogen 
interaction could be a promising therapeutic strategy for 
treating sepsis. In our study, we found that LILRA2 is 
associated with an increased risk of sepsis, suggesting its 
potential involvement in inflammatory responses. How-
ever, no direct studies have yet established a link between 
LILRA2 and sepsis, highlighting the need for further 
investigation.

In the validation cohort of FinnGen sepsis patients, 
we identified significant associations for the genes IER3, 
SNRPF, and PDGFB. Immediate Early Response 3 (IER3) 
is a stress-inducible gene that plays a crucial role in cell 
survival under stress conditions, including proliferation, 
DNA repair, apoptosis, and differentiation. Its response 
varies depending on the cellular environment. It has been 
reported that IER3 promotes autophagy and induces the 
development of acute myeloid leukemia [35]. SNRPF is a 
protein-coding gene that plays a crucial role in alterna-
tive splicing by forming a core component of the spliceo-
somal small nuclear ribonucleoproteins (snRNP) [36]. 
In our study, we did not observe consistent directions 

(See figure on previous page.)
Fig. 7  Molecular docking results of available proteins in sepsis. A: APOD docking 1,9-Pyrazoloanthrone; B: BCL2L11 docking 1,9-Pyrazoloanthrone; C: 
HSPA6 docking 1,9-Pyrazoloanthrone; D:APOD docking PARAQUAT; E: ARL2 docking PARAQUAT; F: BCL2L11 docking PARAQUAT; G: BCL2L11 docking 
gossypol; H: HSPA6 2L11 docking gossypol; I: BCL2L11 docking 5,224,221;J: HSPA6 docking 5,224,221;K: BCL2L11 docking Imatinib; L:PDGFB docking 
Imatinib; M: ANXA3 docking Simvastatin; N: PDGFB docking Simvastatin; O:HSPA6 docking Oxazolone; P: APOD docking Medroxyprogesterone acetate; 
Q: BCL2L11 docking Medroxyprogesterone acetate; R: PDGFB docking Medroxyprogesterone acetate;
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of effect for these two genes, indicating that further 
research is needed to explore their roles. Existing lit-
erature offers some related insights. A study on sepsis-
associated cardiomyopathy found that IER3 is involved 
in the pathogenesis of cardiovascular and inflammatory 
diseases, with its expression significantly upregulated 
in the myocardial tissue of mice under pressure over-
load. IER3 influences inflammatory responses through 
the regulation of pathways such as NF-κB and Nrf2 [37]. 
Another study reported a significant upregulation of 
IER3 in the peripheral blood of sepsis patients [38]. For 
SNRPF, no direct link to sepsis has yet been established. 
However, SNRPF has been identified as being associated 
with drug sensitivity/resistance in pulmonary squamous 
cell carcinoma [39]. Among the genes most significantly 
predicting drugs for sepsis are APOD, ARL2, BCL2L11, 
and others. Currently predicted drugs include 1,9-Pyr-
azoloanthrone and gossypol, among others. 1,9-Pyrazo-
loanthrone, a selective c-Jun N-terminal kinase (JNK) 
inhibitor, has been shown to slow the progression of 
osteoarthritis by inhibiting the JNK-related axis [40]. 
Additionally, gossypol has been reported to improve 
myocardial dysfunction and increase survival rates in 
septic mice. This animal study confirmed the anti-inflam-
matory and antioxidant activities of gossypol, suggesting 
that it could be a potential therapeutic agent for sepsis 
[41]. However, research on these genes and drugs in the 
context of sepsis remains limited, which may pose a chal-
lenge for future drug development.

In our mediation MR analysis, we found that MRPL52 
influences sepsis through its effect on hypotaurine levels. 

Specifically, MRPL52 was shown to reduce the risk of sep-
sis, with consistent directions of effect observed in both 
eQTL and pQTL analyses. However, no literature cur-
rently establishes a direct relationship between MRPL52 
and sepsis. MRPL52 is a component of the mitochondrial 
ribosomal large subunit, and experiments have demon-
strated its role in inhibiting apoptosis and promoting 
migration and invasion in hypoxic breast cancer cells 
[42]. Hypotaurine is a sulfur-containing amino acid that 
serves as a precursor in taurine biosynthesis. It possesses 
antioxidant properties, scavenging free radicals and pro-
tecting cells from oxidative stress [43].Upon uptake, 
hypotaurine is oxidized to taurine by hypotaurine dehy-
drogenase. Studies have reported that disturbances in 
the metabolism of taurine, pantothenic acid, and phenyl-
alanine in the renal cortex are linked to the development 
of sepsis-induced acute kidney injury (AKI). Correcting 
these metabolic disturbances could potentially prevent 
and treat sepsis-induced AKI [44]. In addition, our medi-
ation analysis revealed metabolites such as polyunsatu-
rated fatty acids, omega-3, and DHA with p-values close 
to 0.05. Given the complexity of metabolic changes in the 
human body, these metabolites may still play a role in 
sepsis-related pathways, even though they did not reach 
strict statistical significance. Furthermore, animal studies 
have shown that omega-3 PUFAs reduce the incidence 
of sepsis by activating relevant pathways [45]. Addition-
ally, DHA-derived lipid mediator Resolvin D1 has been 
reported to improve sepsis-related coagulopathy by regu-
lating associated pyroptosis pathways [46]. These findings 
suggest a potential biological relevance, which may offer 

Fig. 8  A schematic diagram of mediation analysis
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new insights into sepsis treatment. However, due to the 
limited evidence, future studies with larger sample sizes 
are needed to further clarify their role.

In the study of 28-day mortality in sepsis, we identified 
a total of six genes. Although no significant associations 
were found in the genetic correlation or colocalization 
analyses, all six genes passed the sensitivity analysis and 
successfully predicted drugs and molecular docking 
interactions. Among these, C5, FN1 and PPP3R1 had 
the highest number of drug interactions in the molecu-
lar docking analysis. According to existing literature, 
C5 is a component of the complement system, which is 
part of the innate immune response involved in regulat-
ing immunity and inflammation [47]. Previous studies 
have shown that C5 levels are decreased in both sep-
sis patients and animal models. In a prospective cohort 
study, it was found that C5 levels decrease within 48  h 
after sepsis onset, and following cell injury, C5 levels were 
significantly correlated with the Sequential Organ Failure 
Assessment score in sepsis patients [48]. These findings 
provide strong support for our research results. FN1 is 
a major component of the extracellular matrix, involved 
in physiological processes such as cell adhesion, growth, 
differentiation, migration, and host defense [49]. FN1 has 
also been implicated in various pathological processes, 
including cancer, infection, and rheumatoid arthritis 
[50]. Studies have shown elevated plasma levels of FN1 
in sepsis patients [51]. FN1 is also highly expressed in 
the lungs and actively participates in the pathogenesis of 
SARS-CoV-2, making it a potential therapeutic target for 
mitigating infection [52]. Additionally, PPP3R1 has been 
associated with promoting gastric epithelial-mesenchy-
mal transition, tumor invasion, and drug resistance [53]. 
In our study, FN1 and PPP3R1 were found to be closely 
related to sepsis-associated mortality, although their 
directions of effect were inconsistent. Berberine, the drug 
predicted by these two genes, is a naturally occurring iso-
quinoline alkaloid found in various medicinal plants. It 
has been shown to preserve mitochondrial integrity and 
inhibit TLR4/NF-κB signaling and NLRP3 inflammasome 
activation, alleviating sepsis-associated acute kidney 
injury in aged rats, highlighting its potential therapeu-
tic value [54]. Currently, the relationship between these 
genes and the predicted drugs with sepsis remains largely 
unexplored, but they may provide new insights into the 
potential mechanisms of sepsis for future research.

Molecular docking is a powerful tool for predicting 
drug-target interactions, offering insights into binding 
mechanisms. Molecular dynamics simulations can com-
plement this approach by revealing the dynamic interac-
tions between drugs and their targets, providing a deeper 
understanding of the stability and interaction patterns 
of these complexes [55]. Despite these advantages, their 
clinical relevance and predictive accuracy remain limited. 

One key limitation is that these methods cannot fully 
replicate the complex human environment, including the 
pharmacokinetics of drugs, intricate biological interac-
tions (such as protein dynamics), and the possibility that 
docking predictions may not always align with actual 
drug effects. Moreover, clinical outcomes are influenced 
by a variety of factors, such as the drug’s properties, the 
patient’s physiological and pathological conditions, indi-
vidual differences, route of administration, and envi-
ronmental factors. Consequently, docking alone cannot 
provide a comprehensive evaluation of a drug’s potential. 
To overcome these limitations, further testing through 
cell culture experiments and animal models is essential 
to assess the drug’s therapeutic efficacy and safety. We 
plan to assess the effects of candidate drugs on inflam-
matory responses and other key biomarkers in the future, 
while conducting thorough pharmacokinetic and safety 
evaluations to ensure their feasibility for future clinical 
applications.

Current treatments for sepsis still lack specific anti-
inflammatory strategies. The primary approach involves 
intravenous antibiotics, along with supportive therapies 
such as anti-inflammatory and immune-modulating 
treatments. However, the increasing prevalence of anti-
microbial resistance has further exacerbated the clini-
cal burden of sepsis [56]. The pathological progression 
of sepsis exhibits a biphasic immune response. In the 
early stages, uncontrolled infectious pathogens can trig-
ger excessive activation of innate immune cells, leading 
to a systemic cytokine storm. As the disease progresses 
to later stages, immune cell dysfunction, depletion, and 
programmed cell death occur, ultimately resulting in per-
sistent immune suppression and dysfunction [57].In our 
study, we identified novel drug targets such as PDGFB, 
IER3, and FN1, which are closely linked to sepsis and 
28-day mortality. These genes may play a role in regulat-
ing inflammatory pathways and cellular stress responses, 
potentially improving immune regulation and patient 
prognosis. Drugs targeting these genes could offer ther-
apeutic strategies to prevent or alleviate the systemic 
inflammation and organ dysfunction observed in sepsis. 
While these findings are preliminary, we believe they 
pave the way for more targeted and personalized thera-
pies for sepsis.

A key strength of this study is that we are the first to 
combine eQTL and pQTL data through MR analysis to 
identify novel drug targets for sepsis and 28-day sepsis 
mortality. We employed multiple analytical approaches 
to uncover direct gene-sepsis relationships. Furthermore, 
we validated our findings using the FinnGen sepsis data-
set to ensure reproducibility in future research. Another 
strength of our study is that we focused our analysis on 
individuals of European ancestry, which helps to mini-
mize population stratification bias.
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Our study has several limitations. First, our study 
population is primarily composed of individuals of Euro-
pean ancestry, which results in population homogeneity, 
meaning genetic consistency within the study group. This 
could impact the generalizability of our findings to other, 
more diverse populations. Therefore, further cohort stud-
ies are needed to determine whether these findings are 
applicable to other populations, such as those of Asian 
ancestry. Second, due to the lack of multiple testing cor-
rection methods in our analysis, there is a possibility of 
false-positive results. However, the overlap between 
eQTL and pQTL enhances the credibility of our findings. 
Third, different tissues may have distinct genetic regula-
tory mechanisms, and relying solely on blood eQTL and 
pQTL may not provide a comprehensive understanding 
of the disease and its underlying mechanisms. Fourth, 
the drug target genes identified through various analyti-
cal methods are numerous and not completely overlap-
ping, which presents challenges for future experimental 
validation. Fifth, MR analysis is still susceptible to poten-
tial biases or pleiotropy that could influence the results. 
Sixth, the reliability of molecular docking is highly 
dependent on the quality of the protein structures and 
ligands employed. Although this technique is valuable 
for identifying potential drug targets, it cannot fully pre-
dict their clinical efficacy. Lastly, we only identified one 
mediating metabolite in our study, but some metabolites 
had mediation P-values very close to 0.05, suggesting 
that they may also be potential biomarkers. Therefore, 
emphasizing the importance of experimental validation 
and clinical trials in future research is crucial to confirm 
our findings.

Conclusions
In conclusion, this study utilized a multi-omics approach 
to identify potential drug targets and mediating metab-
olites associated with sepsis risk and 28-day sepsis 
mortality. We identified 24 drug targets and 1 mediat-
ing metabolite for sepsis, as well as 6 drug targets for 
28-day sepsis mortality, enhancing our understanding of 
their complex relationships. These genes and metabo-
lites could serve as effective targets for sepsis treatment. 
Drug prediction and molecular docking provided prom-
ising insights for discovering more effective treatments 
for sepsis and potentially reducing drug development 
costs. This research paves a new path in the field and lays 
the groundwork for future studies, although these find-
ings still require further research and clinical trials for 
validation.
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