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Abstract
Background Neoadjuvant immunotherapy has been shown to improve survival in patients with gastric cancer. 
This study sought to develop and validate a radiomics-based machine learning (ML) model for patients with locally 
advanced gastric cancer (LAGC), specifically to predict whether patients will achieve a major pathological response 
(MPR) following neoadjuvant immunotherapy. With its predictive capabilities, this tool shows promise for enhancing 
clinical decision-making processes in the future.

Methods This study utilized a multicenter cohort design, retrospectively gathering clinical data and computed 
tomography (CT) images from 268 patients diagnosed with advanced gastric cancer who underwent neoadjuvant 
immunotherapy between January 2019 and December 2023 from two medical centers. Radiomic features 
were extracted from CT images, and a multi-step feature selection procedure was applied to identify the top 20 
representative features. Nine ML algorithms were implemented to build prediction models, with the optimal 
algorithm selected for the final prediction model. The hyperparameters of the chosen model were fine-tuned using 
Bayesian optimization and grid search. The performance of the model was evaluated using several metrics, including 
the area under the curve (AUC), accuracy, and Cohen’s kappa coefficient.

Results Three cohorts were included in this study: the development cohort (DC, n = 86), the internal validation 
cohort (IVC, n = 59), and the external validation cohort (EVC, n = 52). Nine ML models were developed using DC 
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Introduction
Gastric cancer (GC) is the fifth most common malig-
nancy and the third leading cause of cancer-related death 
worldwide [1]. Surgical resection is the mainstay of treat-
ment for gastric cancer; nevertheless, over 30% of locally 
advanced gastric cancer (LAGC) patients experience 
recurrence despite achieving complete resection and 
receiving adjuvant therapy [2, 3]. Therefore, neoadjuvant 
chemotherapy has been gradually applied in the treat-
ment of gastric cancer and has achieved good clinical 
efficacy in recent years [4–6].

Immunotherapy, particularly immune checkpoint 
inhibitor (ICI) therapy, has markedly transformed can-
cer care for various malignancies [7, 8]. Currently, the 
application and efficacy of neoadjuvant immunotherapy 
combined with chemotherapy are becoming the focus of 
clinical studies [9, 10].The efficacy of neoadjuvant immu-
notherapy is commonly assessed using the measure of 
pathological complete response (pCR), major pathologi-
cal response (MPR), and tumor regression grading (TRG) 
[11–13]. Biomarkers such as tumor mutational burden 
(TMB) and PD-L1 expression levels have shown prom-
ising potential in predicting clinical responses [14, 15].
However, their clinical utility is limited by the complexity 
of their detection methods compared to blood tests and 
imaging techniques, as well as the spatial and temporal 
heterogeneity within tumors [16]. Currently, histopatho-
logical examination is still recognized as the clinical gold 
standard for assessing the pathological response to neo-
adjuvant treatment; however, it can only be performed 
after surgery, which may delay timely adjustments to 
treatment plans. Therefore, accurately predicting patient 
responses to neoadjuvant therapy combining PD-1 

inhibitors with chemotherapy preoperatively is crucial 
for optimizing treatment strategies.

Computed tomography (CT) scanning is commonly 
used preoperatively to assess gastric cancer, though its 
diagnostic accuracy can vary due to differences in physi-
cian experience [17, 18]. Recently, radiomics, which gen-
erates precise image quantification information from CT 
images, has provided more objective data support and 
has been extensively applied in tumor diagnosis, treat-
ment evaluation, and prognosis prediction [19, 20]. For 
instance, Gao et al. [21] analyzed contrast-enhanced CT 
images of gastric cancer patients, extracted and selected 
radiomic features, and constructed a prediction model 
that successfully forecasted lymph node metastasis in 
early-stage gastric cancer. Similarly, Sun et al. [22] uti-
lized CT radiomics and subjective CT signs to signifi-
cantly improve the accuracy and specificity of gastric 
cancer diagnosis. While some studies have explored 
radiomics-based models for predicting the efficacy of 
neoadjuvant chemotherapy in GC patients [23, 24], mod-
els predicting the response to neoadjuvant immunother-
apy have not been verified. Neoadjuvant immunotherapy 
and neoadjuvant chemotherapy exhibit significant mech-
anistic differences, which may render the direct applica-
tion of previous research findings to patients undergoing 
neoadjuvant immunotherapy inappropriate. To address 
this gap, our study constructs and validates a radiomics-
based predictive model for assessing treatment efficacy in 
patients with gastric cancer receiving neoadjuvant immu-
notherapy. Moreover, these studies often rely on single-
time-point radiomic features, which fail to capture the 
high heterogeneity of gastric cancer and do not reflect 
tumor progression or regression in real-time during neo-
adjuvant therapy. Additionally, machine learning (ML), 

cases. Among these, an optimized Bayesian-LightGBM model, demonstrated robust predictive performance for MPR 
following neoadjuvant immunotherapy in LAGC patients across all cohorts. Specifically, within DC, the LightGBM 
model attained an AUC of 0.828, an overall accuracy of 0.791, a Cohen’s kappa coefficient of 0.552, a sensitivity of 
0.742, a specificity of 0.818, a positive predictive value (PPV) of 0.586, a negative predictive value (NPV) of 0.867, a 
Matthews correlation coefficient (MCC) of 0.473, and a balanced accuracy of 0.780. Comparable performance metrics 
were validated in both the IVC and the EVC, with AUC values of 0.777 and 0.714, and overall accuracies of 0.729 
and 0.654, respectively. These results suggested good fitness and generalization of the Bayesian-LightGBM model. 
Shapley Additive Explanations (SHAP) analysis identified significant radiomic features contributing to the model’s 
predictive capability. The SHAP values of the features wavelet.LLH_gldm_SmallDependenceLowGrayLevelEmphasis, 
wavelet.HHL_glrlm_RunVariance, and wavelet.LLH_glszm_LargeAreaHighGrayLevelEmphasis were ranked among 
the top three, highlighting their significant contribution to the model’s predictive performance. In contrast to existing 
radiomic models that exclusively focus on neoadjuvant chemotherapy, our model integrates both neoadjuvant 
immunotherapy and chemotherapy, thereby offering more precise predictive capabilities.

Conclusion The radiomics-based ML model demonstrated significant efficacy in predicting the pathological 
response to neoadjuvant immunotherapy in LAGC patients, thereby providing a foundation for personalized 
treatment strategies.
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due to its ability to handle large datasets, discover com-
plex patterns, and make efficient predictions, has increas-
ingly been applied to improve the accuracy and efficiency 
of diagnosis, treatment, and prognosis in oncology [25, 
26]. However, traditional ML models are often diffi-
cult to interpret and are considered black boxes, which 
poses challenges for clinical application. Shapley Additive 
Explanations (SHAP) is a technique that employs Shapley 
values to elucidate the predictions generated by machine 
learning models, thereby enhancing the comprehension 
of each feature’s contribution to the model’s outputs [27, 
28]. In essence, a higher SHAP value signifies a more 
substantial influence of the corresponding feature on the 
prediction outcome. SHAP was used to explain the pre-
diction model from a global perspective, addressing the 
shortcomings of ML models and enhancing their trans-
parency and practicality.

In summary, this study aimed to develop and validate a 
ML model based on changes in radiomic features before 
and after neoadjuvant immunotherapy to predict the 
response of LAGC patients to neoadjuvant immunother-
apy. Our research is predicated on the hypothesis that 
utilizing radiomic features obtained from pre- and post-
treatment imaging, combined with machine learning 
techniques, can facilitate the development of an efficient 
and interpretable predictive model to inform neoadju-
vant immunotherapy strategies for patients with locally 
advanced gastric cancer. This methodology not only 
holds the potential to enhance the precision of treatment 
response predictions but also aids clinicians in formulat-
ing more personalized treatment plans.

Methods
Study design and participants
This retrospective multicenter cohort study collected 
data from 2019 to 2023 at Fujian Medical University 
Union Hospital (FMUUH) and Zhangzhou Munici-
pal Hospital (ZZMH). The study included 268 LAGC 
patients who had undergone neoadjuvant immunother-
apy followed by radical resection surgery. Among these, 
195 cases were from FMUUH and 62 from ZZMH. All 
enrolled patients met the following criteria: (1) histo-
logically confirmed gastric adenocarcinoma; (2) cT3/
T4N0/+M0 and underwent neoadjuvant immunotherapy 
prior to surgery; (3) no history of other malignancies or 
distant metastases; (4) R0 resection with complete clini-
cal and follow-up records. The exclusion criteria were: 
(1) other prior treatments, such as radiotherapy, targeted 
therapy, or chemotherapy alone; (2) remnant gastric 
cancer; (3) missing baseline CT (CT1) before neoadju-
vant therapy or preoperative CT (CT2). Ultimately, 145 
patients from FMUUH were allocated to the training set, 
which was further divided into a development cohort 
(DC, n = 86) and an internal validation cohort (IVC, 

n = 59) at a ratio of 6:4. Additionally, 52 patients from 
ZZMH were included in the external validation cohort 
(EVC). A patient selection flowchart is shown in Fig.  1. 
The study protocol was approved by the ethics commit-
tees of both hospitals and adhered to the principles of the 
Declaration of Helsinki.

Definitions
The primary outcome measure was MPR, defined as 
the presence of < 10% viable cancer cells in the pri-
mary tumor. Follow-up included physical examinations, 
laboratory tests (including carcinoembryonic antigen 
and carbohydrate antigen 19 − 9), and imaging studies 
(including chest X-ray, chest CT, abdominal ultrasound, 
or abdominal/pelvic CT). An annual endoscopic exami-
nation was also recommended.

Imaging data acquisition and processing
All participants underwent abdominal contrast-
enhanced CT scans at baseline (CT1) before neoadjuvant 
immunotherapy and within two weeks prior to surgery 
(preoperative CT, CT2). CT images were sourced from 
portal venous phase axial slices and retrieved from the 
Picture Archiving and Communication System. In this 
study, we placed a substantial emphasis on safeguarding 
patient privacy and anonymizing imaging data. To this 
end, we implemented de-identification procedures for 
each patient’s imaging data and assigned a unique anony-
mous identifier to each dataset. All data were managed 
using secure storage and access control mechanisms to 
ensure both confidentiality and integrity. During data 
processing, we employed medical image processing 
software, such as 3DSlicer and Pyradiomics, to auto-
matically remove sensitive information and conducted 
feature extraction and model training within a local 
environment. This approach minimized the risk of data 
transmission beyond the organizational boundaries. Fur-
thermore, all team members signed data use agreements, 
committing to utilizing the data exclusively for the speci-
fied research purposes and strictly adhering to privacy 
protection regulations. Any breaches of the agreement 
would result in serious consequences. Through these 
measures, we have not only effectively protected patient 
privacy but also established a reliable data foundation for 
high-quality scientific research. To ensure consistency in 
scale during the subsequent feature extraction process, 
all CT images were denoised to mitigate noise inter-
ference and resampled to standardize the voxel size to 
1 × 1 × 1 mm³. Regions of interest (ROIs) for tumor areas 
were manually segmented using the maximum cross-
sectional images from CT scans with 3D Slicer software 
(version 4.10.2, [http://www.slicer.org]). Semi-automatic 
segmentation tools, including threshold segmentation 
and active contour models, were also employed. This 

http://www.slicer.org


Page 4 of 16Huang et al. Journal of Translational Medicine          (2025) 23:362 

process was conducted by a radiologist (L.Y.F.) with seven 
years of experience in abdominal CT imaging. The radi-
ologist was aware of the gastric cancer diagnosis but not 
of other clinical details. One month later, images from 
50 randomly selected patients were re-segmented by the 
same radiologist and another surgeon (H.Z.N.) with ten 
years of experience in abdominal CT imaging to evalu-
ate inter- and intra-observer reproducibility. Radiomic 
features were extracted from ROIs using the open-source 
Pyradiomics package (version 2.12, [ h t t p  s : /  / p y r  a d  i o m  i c 
s  . r e a  d t  h e d o c s . i o / e n / 2 . 1 2 /]). Pyradiomics, a widely rec-
ognized open-source radiomics software tool, adheres 
to the guidelines set forth by the Image Biomarker Stan-
dardization Initiative (IBSI), thereby ensuring consis-
tency and comparability in feature extraction across 
different studies. Pyradiomics supports a diverse array 
of feature extraction types, including first-order statis-
tical features, texture features, shape features, and fea-
tures derived from wavelet transformation. The diverse 
types of features effectively capture the heterogeneity of 

tumors. Moreover, the Pyradiomics package provides 
flexible configuration options, enabling researchers to 
adjust various parameters during the feature extrac-
tion process to meet their specific requirements. A total 
of 832 radiomic features were extracted, comprising 18 
first-order statistical features, 86 texture features, and 
728 wavelet decomposition features. Throughout the fea-
ture extraction process, we adhered to the guidelines set 
forth by the Image Biomarker Standardisation Initiative 
to ensure consistency and standardization.

Feature standardization and selection
To assess the reliability of the extracted features, we cal-
culated the intra- and inter-class correlation coefficients 
(ICCs). ICCs < 0.5 indicate poor reliability, 0.5 to 0.75 
indicate moderate reliability, 0.75 to 0.9 indicate good 
reliability, and > 0.9 indicates excellent reliability. We ran-
domly selected the radiomic features of 50 patients for 
verification. If a feature’s ICC_intra and ICC_inter were 
both greater than 0.9, it was considered to have passed 

Fig. 1 The enrollment of patients in the FJMMU cohort and ZZMH cohort
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the reproducibility and inter-observer consistency tests. 
For the features that passed these tests, deltaCT features 
were obtained by calculating the difference between 
CT2 and CT1. Furthermore, Z-score normalization 
was applied to the CT2 and deltaCT features to elimi-
nate scale differences and ensure a fair comparison. The 
minimum Redundancy Maximum Relevance (mRMR) 
method was used to select the top 30 most relevant 
features while minimizing redundancy. The least abso-
lute shrinkage and selection operator (LASSO) regres-
sion, combined with ten-fold cross-validation, was then 
applied to identify the most representative features for 
model construction.

Machine learning model construction, evaluation, and 
validation
In selecting machine learning models to assess their capa-
bility to predict major pathological response in LAGC 
patients undergoing neoadjuvant immunotherapy, we 
considered factors such as diversity and representative-
ness, historical popularity and performance, complemen-
tarity, comparative analysis, and practical applicability. 
Consequently, we selected a range of ML models, includ-
ing LightGBM, Decision Tree (DT), XGBoost, Multi-
Layer Perceptron (MLP), K-Nearest Neighbors (KNN), 
Random Forest (RF), Elastic Net (Enet), Support Vector 
Machine (SVM), and Logistic Regression. Utilizing the 
prediction endpoint of major pathological response as a 
binary outcome (yes/no) alongside radiomic features as 
predictors, we developed predictive models employing 
various machine learning algorithms. Bayesian hyper-
parameter optimization and grid search were used to 
find the optimal parameters of the model. Bayesian opti-
mization is selected for tuning the hyperparameters of 
machine learning models due to its efficiency, flexibility, 
support for mixed-type parameters, and robust black-box 
optimization capabilities [29]. By integrating these meth-
odologies, our objective is to more accurately identify the 
optimal parameter configurations, thereby enhancing the 
model’s performance. Training and parameter optimiza-
tion were performed on the DC model, with performance 
re-evaluation conducted on the IVC dataset. The per-
formance metrics included the area under curve (AUC), 
accuracy, Cohen’s kappa coefficient, sensitivity, specific-
ity, positive predictive value (PPV), negative predictive 
value (NPV), Matthews correlation coefficient (MCC), 
and balanced accuracy. We selected the best-performing 
model as our final model. External validation was con-
ducted using an independent dataset from ZZMH.

SHAP value analysis
We calculated the SHAP values for each radiomic fea-
ture in the final model, ranking all the features based 
on these values. SHAP values quantify the contribution 

of each feature to individual predictions. This process 
identified the most critical features for predicting MPR 
in LAGC patients undergoing neoadjuvant immuno-
therapy. A comprehensive understanding of the relation-
ship between features and MPR was achieved through 
the analysis of mean SHAP values, as well as SHAP 
summary and dependence plots. The mean SHAP value 
analysis provides the average contribution of each fea-
ture across samples. SHAP summary plots visually dis-
play the importance and effect of features on the model’s 
predictions across all samples. SHAP dependence plots 
illustrate the relationship between a single feature’s 
SHAP value and its actual predictive value, with points 
representing the SHAP value of that feature for a given 
sample. These analyses helped identify the most relevant 
radiomic features and provided insight into how they 
influence MPR.

Statistical methods
The overview of the study flow is presented in Fig. 2. Data 
analysis was conducted using R version 4.3.1  ( [   h t t p : / / r - p 
r o j e c t . o r g     ] ) . The mRMR method and LASSO regression 
were used to select the most effective radiomic features. 
Machine learning models were constructed using the 
‘tidymodels’ package in R, and DeLong’s test was utilized 
to compare AUC values between DC and IVC. All statis-
tical tests were two-sided, with p-values < 0.05 considered 
statistically significant.

Results
Baseline patient characteristics
A total of three cohorts were included in this study: a DC 
(n = 86), an IVC (n = 59), and an EVC (n = 52) (Table  1). 
To elucidate the distinctions among the cohorts, we 
employed circular plots to present the baseline character-
istics of the three cohorts (Figure S1). The mean ages of 
the patients in DC, IVC, and EVC were 62.5 years, 65.0 
years, and 65.0 years, respectively, with no statistically 
significant difference in age (P = 0.2097). The proportion 
of male patients in the EVC group was significantly lower 
(63.5%) compared to the DC (82.6%) and IVC (79.7%) 
groups (P = 0.0298). The proportion of tumors located in 
the middle third of the stomach was significantly higher 
in EVC (40.4%) compared to DC (12.8%) and IVC (18.6%) 
(P = 0.0023). In terms of the number of cycles of neoad-
juvant immunotherapy received, a higher proportion of 
patients in the EVC group underwent 3–4 cycles of treat-
ment (92.3%), compared to 79.1% in the DC group and 
78.0% in the IVC group (P = 0.0242). Additionally, the 
proportion of patients at the cT3 stage in the EVC group 
was notably higher (23.1% versus 7.0% in the DC group 
and 6.8% in the IVC group, P = 0.0064). No significant 
differences were observed among the cohorts regarding 
BMI, cN, ypT, ypN, TRG classification, or the proportion 

http://r-project.org
http://r-project.org
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of patients receiving adjuvant chemotherapy (all P > 0.05). 
These differences suggest that the EVC group encom-
passes a greater number of relatively early-stage lesions, 
varied gender ratios, and diverse treatment protocols 
among its patient population. These results indicate sig-
nificant differences in certain baseline characteristics 
among the cohorts, underscoring the importance of vali-
dating the model across diverse patient populations.

Feature selection and model Building
A total of 832 features were extracted from the ROIs in 
the baseline CT (CT1) and preoperative CT (CT2) scans. 
Among these, 606 features had ICCs greater than 0.9 for 
both intra- and inter-observer reliability (Figure S2). By 
calculating the differences between CT2 and CT1, we 
derived an additional 606 delta CT features that reflect 
tumor changes over time. Combining deltaCT features 
with CT2 features resulted in a total of 1,212 imaging 
features for analysis. Dimension reduction was subse-
quently applied. The mRMR algorithm was used to fur-
ther simplify the radiomic features, retaining 30 features, 
which included 11 CT2 features and 19 deltaCT features 
for subsequent analysis. Finally, LASSO regression with 
cross-validation was employed to select the 20 most valu-
able radiomic features, which comprised 9 CT2 features 
and 11 deltaCT features (Figure S3 and Table S1). These 
20 features were used to construct the radiomics model.

Model performance
The MPR was used as the predictive endpoint in 
this study. Nine ML models were constructed using 
20 radiomic features as predictors: LightGBM, DT, 
XGBoost, MLP, KNN, RF, Enet, SVM, and Logistic 
Regression. These models were optimized using either 
Bayesian hyperparameter optimization or grid search. 
Table  2 and Figure S4 demonstrate the performance of 
various machine learning models under different hyper-
parameter optimization settings. Figure S5 shows P val-
ues derived from the DeLong test comparing AUC values 
between different prediction models in the development 
cohort. In DC, the Bayesian-optimized LightGBM model 
performed exceptionally well, achieving an AUC of 0.828. 
In the IVC, it achieved an AUC of 0.777 (DeLong test 
p = 0.518, which is greater than 0.05), indicating no signs 
of overfitting. The model demonstrated good predictive 
performance with an overall accuracy of 0.791, a Cohen’s 
kappa value of 0.552, sensitivity of 0.742, specificity of 
0.818, a PPV of 0.586, an NPV of 0.867, an MCC of 0.473, 
and a balanced accuracy of 0.780 (Table  2). Confusion 
matrices displayed good consistency between predicted 
and actual outcomes in both DC and IVC (Fig. 3). Other 
models, even when optimized with Bayesian methods, 
performed worse in IVC (Table  2). Given its superior 
comprehensive performance, the Bayesian-optimized 
LightGBM model was selected as the optimal prediction 
model.

Fig. 2 Workflow of the study. Workflow of machine learning modeling for MPR prediction in patients with locally advanced gastric cancer. CT, com-
puted tomography; GLCM, gray level co-occurrence matrix; GLRLM, gray level run length matrix; GLSZM, gray level size zone matrix; GLDM, gray level 
dependence matrix; NGTDM, neighboring gray-tone difference matrix; SVM, support vector machine; RF, random forest; DT, decision tree; KNN, K nearest 
neighbor; MLP, multilayer perceptron; Enet, elastic net
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External validation
In EVC, the LightGBM model demonstrated stable pre-
dictive capability. Confusion matrices indicated good 
consistency between predicted and actual outcomes 

in EVC (Fig.  4A). The AUC was 0.714 (Fig.  4B), with 
an overall accuracy of 0.654, a Cohen’s kappa value of 
0.300, sensitivity of 0.684, specificity of 0.636, a PPV of 
0.520, an NPV of 0.778, an MCC of 0.309, and a balanced 

Table 1 Baseline, surgical, and pathological information of the patients
Developing cohort
(n = 86)

Internal validation cohort
(n = 59)

External validation cohort
(n = 52)

P value

Age (median [IQR]) 62.50 [56.0, 68.0] 65.00 [58.5, 68.5] 65.00 [59.0, 69.0] 0.2097
Sex (%) 0.0298
 Male 71 (82.6) 47 (79.7) 33 (63.5)
 Female 15 (17.4) 12 (20.3) 19 (36.5)
BMI (median [IQR]) 21.56 [19.8, 23.6] 22.20 [20.8, 23.5] 22.10 [19.6, 23.2] 0.4661
Site (%) 0.0023
 Upper 37 (43.0) 28 (47.5) 21 (40.4)
 Middle 11 (12.8) 11 (18.6) 21 (40.4)
 Lower 22 (25.6) 11 (18.6) 9 (17.3)
 Overlapping 16 (18.6) 9 (15.3) 1 ( 1.9)
Cycle of NICT (%) 0.0242
 1–2 10 (11.6) 2 (3.4) 2 ( 3.8)
 3–4 68 (79.1) 46 (78.0) 48 (92.3)
 ≥ 5 8 (9.3) 11 (18.6) 2 ( 3.8)
cT category (%) 0.0064
 T3 6 (7.0) 4 (6.8) 12 (23.1)
 T4 80 (93.0) 55 (93.2) 40 (76.9)
cN category (%) 0.9588
 N0 4 (4.6) 3 (5.1) 3 (5.8)
 N+ 82 (95.4) 56 (94.9) 49 (94.2)
ypT category (%) 0.9760
 T0 14 (16.3) 9 (15.3) 8 (15.4)
 T1-2 16 (18.6) 13 (22.0) 12 (23.1)
 T3-4 56 (65.1) 37 (62.7) 32 (61.5)
ypN category (%) 0.4685
 N0 41 (47.7) 29 (49.2) 20 (38.5)
 N+ 45 (52.3) 30 (50.8) 32 (61.5)
Grade (%) 0.0044
 Well-differentiated 0 (0.0) 0 (0.0) 2 ( 3.8)
 Moderately differentiated 26 (30.2) 18 (30.5) 16 (30.8)
 Poorly differentiated 42 (48.8) 28 (47.5) 34 (65.4)
 Unknown 18 (20.9) 13 (22.0) 0 (0.0)
Lymphovascular invasion (%) 0.0367
 Absent 54 (62.8) 33 (55.9) 21 (40.4)
 Present 32 (37.2) 26 (44.1) 31 (59.6)
Perineural invasion (%) 0.1420
 Absent 48 (55.8) 29 (49.2) 20 (38.5)
 Present 38 (44.2) 30 (50.8) 32 (61.5)
TRG (%) 0.0945
 1a 14 (16.3) 9 (15.3) 8 (15.4)
 1b 17 (19.8) 12 (20.3) 11 (21.2)
 2 26 (30.2) 13 (22.0) 24 (46.2)
 3 29 (33.7) 25 (42.4) 9 (17.3)
Adjuvant chemotherapy (%) 0.8529
 No 8 (9.3) 5 (8.5) 6 (11.5)
 Yes 78 (90.7) 54 (91.5) 46 (88.5)
Abbreviations: IQR, interquartile range; BMI: body mass index; NICT: neoadjuvant immuno-chemotherapy; TRG: tumor regression grade
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accuracy of 0.660 (Table S2), confirming the model’s 
good generalizability.

SHAP value analysis
Mean SHAP value analysis revealed the impor-
tance of each feature in contributing to the model’s 

predictions (Fig.  5A). Larger mean SHAP values indi-
cate a greater impact on the model’s output. SHAP 
summary plots further revealed the impact direction 
of different feature values on the model’s predictions 
(Fig.  5B). When SHAP values exceed zero, the model’s 
prediction tends toward the ‘MPR’ category. The nine 

Fig. 5 Feature importance SHAP summary chart and bar chart. (A) The bars represent the importance of the variables and their overall contribution to 
the model predictions. (B) The dot plot represents the direction of contribution of each value of each variable, with blue representing larger values and 
red representing lower values of each variable

 

Fig. 4 Performance evaluation of the lightGBM model in the external validation cohort (EVC). (A) The confusion matrix in the EVC. (B) Area under the 
curve of the lightGBM model in the EVC

 

Fig. 3 Performance evaluation of the optimal machine learning model. The confusion matrix of lightGBM in the (A) developing cohort and (B) internal 
validation cohort
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features with the highest SHAP values were: wavelet.
LLH_gldm_SmallDependenceLowGrayLevelEmpha-
sis; wavelet.HHL_glrlm_RunVariance; wavelet.LLH_
glszm_LargeAreaHighGrayLevelEmphasis; deltawavelet.
HLH_glszm_SmallAreaEmphasis; wavelet.LLL_
firstorder_10Percentile; original_shape_SurfaceVolumeR-
atio; wavelet.HHH_gldm_LargeDependenceEmphasis; 
deltawavelet.LHL_glcm_Imc1; wavelet.HLL_firstorder_
Median. Notably, deltawavelet.HLH_glszm_SmallAre-
aEmphasis and deltawavelet.LHL_glcm_Imc1 were 
derived from deltaCT features, indicating the impor-
tance of dynamic data in the model’s predictions. SHAP 
dependence plots demonstrated how individual fea-
tures affected model output, with each point represent-
ing a patient sample. The x-axis represents the variable 
size, while the y-axis indicates the SHAP value (Figure 
S6). Through the analysis of SHAP dependence plots, 
we identified that the values of specific key features are 
significantly associated with the probability of a MPR. 
For example, elevated values of the feature wavelet.
LLH_gldm_SmallDependenceLowGrayLevelEmphasis 
are generally associated with more positive SHAP values, 
indicating an increased probability of achieving MPR in 
patients. In contrast, higher values of the wavelet HHL_
glrlm_RunVariance feature tend to correspond with more 
negative SHAP values, suggesting a reduced likelihood 
of achieving MPR. These results suggest that by quanti-
fying dynamic changes in textural radiological attributes 
between baseline and post-treatment CT scans (i.e., del-
taCT features), we can assess tumor response to therapy 
more precisely. These features played a crucial role in the 
model’s predictions, further highlighting the significance 
and advancement of dynamic data within the model. 
Through SHAP value analysis, we can intuitively see how 
specific features influence the model’s predictions, aid-
ing clinicians in understanding and interpreting the logic 
behind these predictions, thus enhancing the credibility 
and practicality of the model in clinical applications.

Discussion
In this study, we successfully developed and validated a 
ML model based on the radiomic features aimed at pre-
dicting the efficacy of neoadjuvant immunotherapy in 
LAGC patients. The results demonstrate that the con-
structed LightGBM model exhibited significant predic-
tive performance in DC, IVC, and an independent EVC. 
The effectiveness of this model supports personalized 
treatment planning for patients with gastric cancer, dem-
onstrating substantial clinical applicability.

Currently, histopathological examination remains the 
gold standard for evaluating the efficacy of neoadjuvant 
therapy. However, its limitation lies in the necessity for 
post-surgical evaluation, which could potentially delay 
timely adjustments to treatment plans. In our study, we 

chose MPR as the predictive endpoint. Achieving MPR 
is associated with better clinical outcomes, including 
higher survival rates and lower recurrence risks [30]. The 
significance of our study lies in providing key preopera-
tive information through a non-invasive CT-based pre-
diction model, enabling clinicians to adjust treatment 
strategies earlier. In the context of predicting a negative 
MPR to neoadjuvant immunotherapy—which suggests 
that the patient may not respond favorably to the current 
treatment regimen—it is advisable to consider adjust-
ments to the treatment plan. This approach may involve 
the combination of targeted pharmacological agents or 
the transition to alternative immunotherapy options. The 
primary objective is to formulate a personalized treat-
ment strategy that enhances therapeutic efficacy and 
improves patient quality of life. Conversely, if the predic-
tive model indicates a favorable response to neoadjuvant 
therapy, such as predicting a MPR, surgical intervention 
can be pursued without unnecessary delay, thereby mini-
mizing the physical, psychological, and financial burdens 
on the patient. These scenarios underscore the direct 
utility of predictive models in optimizing treatment strat-
egies and improving patient outcomes, offering substan-
tial clinical guidance.

Previous studies have shown that a prediction model 
based on radiomic and deep learning features from CT 
images taken before neoadjuvant chemotherapy, per-
formed well in predicting TRG 0–1, achieving an AUC 
of 0.848 in the training set [31]. Shen et al. predicted 
patients’ three-year overall survival using deltaCT fea-
tures, achieving an AUC of 0.827 [32]. In Wang et al.‘s 
study, a model using pre-treatment and pre-surgery 
radiomic features performed excellently in predicting 
three-year survival, with an AUC of 0.769 [33]. However, 
these models primarily focused on patients undergo-
ing neoadjuvant chemotherapy and did not differentiate 
between those receiving neoadjuvant immunotherapy 
combined with chemotherapy. It is recognized that the 
tumor microenvironment (TME) plays a crucial role in 
influencing treatment outcomes. Different TMEs not 
only affect treatment efficacy but also undergo dynamic 
changes and adaptations during therapy, involving com-
plex interactions. For example, chemotherapeutic agents 
such as fluorouracil, oxaliplatin, and pemetrexed can 
enhance the activation of anti-tumor immune cell sub-
sets, including dendritic cells and tumor-infiltrating 
lymphocytes [34–36]. Additionally, monocytes and mac-
rophages, which can constitute up to 50% of tumor mass 
in certain cases, play a pivotal role in the tumor micro-
environment [37]. Macrophages are not only integral 
to cancer-immune interactions but also have potential 
applications as diagnostic imaging tools and as vehicles 
for targeted chemotherapeutic delivery to cancer cells 
[38, 39]. Conversely, immune checkpoint blockade (ICB) 
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therapies primarily act on T cells to restore their anti-
tumor activity and function [40]. ICB also has significant 
regulatory effects on other immune cells within the TME 
[41, 42]. Studies have shown that radiomic features are 
closely related to the composition and characteristics of 
the TME [43]. Therefore, the mechanisms by which che-
motherapy and immunotherapy affect the TME differ, 
leading to variations in radiomic feature representation. 
Thus, radiomic models that were previously used to pre-
dict the efficacy of neoadjuvant chemotherapy in gastric 
cancer cannot be directly applied to patients receiving 
neoadjuvant immunotherapy in combination with che-
motherapy. Constructing a specific model to predict the 
response of patients undergoing neoadjuvant immuno-
therapy is essential.

CT radiomics offers a non-invasive method to evaluate 
tumor characteristics without the need for direct tissue 
sampling, thereby avoiding the risks and discomfort asso-
ciated with biopsies. Furthermore, CT radiomics extracts 
multidimensional features from tumors, comprehensively 
reflecting tumor heterogeneity, including morphologi-
cal, textural, and density information [44, 45]. Addition-
ally, CT imaging can be performed pre-treatment, during 
treatment, and post-treatment, providing continuous, 
dynamic information about tumor changes and allow-
ing the model to capture the overall features of the 
tumor longitudinally. In this study, we applied radiomics 
approaches to extract numerous radiomic features from 
CT images and used various feature selection techniques, 
including the mRMR algorithm and LASSO regression, 
to identify the most representative features. This feature 
selection process effectively reduced data dimensional-
ity, removed redundant features, and retained variables 
most relevant to treatment response prediction. Through 
Bayesian optimization and grid search, we selected the 
best-performing LightGBM model from among several 
ML models. Furthermore, we conducted SHAP analy-
sis to identify key decision factors in the model, thereby 
enhancing its transparency and interpretability. These 
steps not only increased the model’s credibility but also 
laid a solid data foundation for its application in clinical 
practice. Previous radiomic investigations into neoad-
juvant treatment for gastric cancer have predominantly 
utilized traditional radiomics methodologies [46–48], 
which generally concentrate on single-time-point analy-
ses and fail to adequately account for the temporal evo-
lution of radiomic features [44]. This limitation impedes 
the effective capture of dynamic tumor changes during 
treatment, potentially leading to the exclusion of critical 
information. Delta radiomics, a branch of radiomics, dif-
fers from traditional radiomics, which focuses on imag-
ing data at a single-time-point, by acquiring imaging data 
repeatedly and extracting quantitative features to reveal 
changes over time. Studies have shown that this method 

is more sensitive and specific than traditional methods, 
capable of detecting changes in treatment effects earlier 
[49, 50]. Our study utilized deltaCT radiomic features 
of patients with gastric cancer before and after neoadju-
vant immunotherapy, reflecting post-treatment imaging 
attributes and quantifying dynamic changes in textural 
radiological properties between baseline and post-treat-
ment CT scans, allowing for dynamic monitoring of 
changes during treatment and demonstrating advanced 
precision in assessing treatment effects. Our multi-time-
point radiomics approach utilizes the planned CT scans 
that patients undergo during their treatment, thereby 
avoiding additional exposure to ionizing radiation. This 
method not only mitigates the risks associated with addi-
tional radiation but also enhances clinical decision-mak-
ing by providing more dynamic information, all without 
incurring additional costs. Our strategy increases the 
informational value of radiological assessments without 
compromising patient safety or budgetary constraints, 
offering a pragmatic solution for improving personalized 
therapeutic strategies.

Moreover, the ML model adopted in this study demon-
strates significant advancements. By employing Bayesian 
optimization techniques to optimize the hyperparam-
eters of the LightGBM model, we achieved high accu-
racy and stability in predicting pathological responses. 
Compared to traditional statistical methods, ML models 
can handle more complex nonlinear relationships and 
effectively reduce redundant features, thereby enhanc-
ing the model’s generalizability. Thus, this study not only 
innovates in the field of radiomics but also demonstrates 
significant potential for the application of ML models, 
providing robust support for clinical decision-making. 
It is imperative to highlight that, in the process of select-
ing the optimal model, we initially ensured the absence 
of statistically significant differences in the AUC between 
the training and validation datasets to mitigate the risk 
of overfitting. Subsequently, we evaluated a compre-
hensive array of performance metrics for both datasets, 
including AUC, accuracy, sensitivity, specificity, Cohen’s 
kappa coefficient, and Matthews correlation coefficient. 
The final model selected was the one that exhibited the 
most consistent performance across all metrics following 
a thorough evaluation. Although the LightGBM model 
demonstrated suboptimal performance on certain met-
rics relative to other models, the selection process pri-
oritized stability over merely selecting the model with the 
highest performance in a single metric.

In the development cohort, the models achieved a sen-
sitivity of 0.742 and a specificity of 0.818, reflecting a high 
degree of accuracy in distinguishing patients with favor-
able versus unfavorable treatment responses. Such high 
sensitivity and specificity are vital for clinical decision-
making, as they enable clinicians to accurately evaluate 



Page 12 of 16Huang et al. Journal of Translational Medicine          (2025) 23:362 

patient responses and tailor treatment plans accordingly. 
Furthermore, the positive predictive value was 0.697, and 
the negative predictive value was 0.849, underscoring the 
model’s reliability in predicting both MPR and non-MPR 
patients. The Cohen’s kappa coefficient was 0.552 in the 
development cohort and 0.455 in the internal validation 
cohort, suggesting moderate to good consistency in MPR 
prediction. Overall, our model demonstrated robust 
predictive performance across both the development 
and internal validation cohorts, and exhibited signifi-
cant generalization capability in the external validation 
cohort. The findings of this study indicate that our model, 
which leverages radiomic features, is capable of accu-
rately predicting the responses of patients with locally 
advanced gastric cancer to neoadjuvant immunotherapy. 
This capability provides clinicians with a valuable tool for 
optimizing treatment strategies. Nevertheless, despite 
the model’s demonstrated predictive capacity, further 
research is necessary to validate its long-term efficacy 
and to explore the translation of these findings into prac-
tical applications for routine clinical practice. Given the 
increasing volume of data and advancements in technol-
ogy, continuous optimization of the model will be crucial 
for enhancing predictive accuracy.

In the external validation cohort, we observed that 
metrics such as sensitivity and specificity were some-
what lower compared to those in the development cohort 
and internal validation cohort. Nonetheless, the model 
exhibited satisfactory overall performance, with an AUC 
of 0.714, demonstrating robust predictive capability. The 
decline in performance metrics may be attributed to sev-
eral factors. Primarily, the relatively small sample size in 
the external validation cohort could result in greater vari-
ability in model performance and insufficient represen-
tation of certain features due to limited data, potentially 
affecting predictive accuracy. Furthermore, the data from 
the external validation cohort were sourced from various 
medical centers, resulting in variations in patient char-
acteristics, treatment protocols, and imaging equipment 
when compared to the development cohort and internal 
validation cohort datasets. These discrepancies further 
influence the predictive efficacy of the model. Despite 
the application of the efficient LightGBM algorithm, the 
optimization of hyperparameters through Bayesian opti-
mization, and the reduction of model complexity via fea-
ture selection with LASSO regression, the model remains 
susceptible to overfitting. This vulnerability is primarily 
attributed to the small and highly heterogeneous sample 
size of the external validation cohort, which poses chal-
lenges in generalizing the model to new datasets. In 
summary, the observed decline in the machine learn-
ing model’s performance within the external validation 
cohort can be attributed to multiple contributing factors. 
This indicates that, although the model has undergone 

extensive training and optimization, there is still poten-
tial for enhancement, particularly when applied to 
diverse real-world data.

Through SHAP analysis, we identified key radiomic fea-
tures, some of which are associated with tumor biology. 
For example, the features SmallDependenceLowGray-
LevelEmphasis and DependenceNonUniformityNor-
malized show a strong association with CD8-positive 
cell infiltration [51], which plays a crucial role in the 
tumor immune response. Additionally, the LargeArea-
HighGrayLevelEmphasis feature is correlated with ter-
tiary lymphoid structures, particularly mature tertiary 
lymphoid tissues, which are significant components of 
the tumor microenvironment [52]. The Elongation and 
firstorder_90 Percentile features are linked to a T-cell 
inflamed tumor microenvironment [53], often associated 
with improved responses to immunotherapy. Further-
more, the firstorder_Median feature can identify immune 
phenotypes [54]. These analyses suggest that radiomic 
features not only capture the macroscopic and micro-
scopic structural characteristics of tumors but also offer 
a non-invasive means of understanding tumor biological 
behavior. Importantly, while some radiomic features have 
demonstrated potential biological significance in other 
studies, the biological context underlying most features 
remains largely unclear. In future research endeavors, we 
intend to incorporate foundational research methodolo-
gies to further explore the biological mechanisms under-
lying these features.

In this study, MPR was selected as the predictive end-
point instead of pCR due to several considerations. 
Firstly, evidence suggests that patients achieving MPR 
generally demonstrate higher survival rates and lower 
recurrence risks compared to those who do not achieve 
MPR [30]. Secondly, in clinical practice, pCR is an 
exceedingly stringent criterion, with only a small propor-
tion of patients meeting this standard [55]. Conversely, 
MPR serves as a more attainable yet highly relevant 
metric, more frequently observed in real-world treat-
ment settings, thereby enhancing its suitability for guid-
ing clinical decisions. For patients who do not achieve 
pCR but exhibit significant pathological responses, MPR 
provides a more realistic and achievable target, enabling 
clinicians to adjust or optimize treatment strategies to 
improve therapeutic outcomes. In summary, MPR is 
not only a robust indicator closely associated with long-
term patient prognosis but also offers a more flexible and 
practical alternative compared to pCR. This study assists 
clinicians in developing more personalized treatment 
strategies tailored to individual patient circumstances, 
thereby improving overall therapeutic efficacy.

This study aims to develop a predictive model specifi-
cally tailored to evaluate the response to neoadjuvant 
immunotherapy in patients with gastric cancer. The 
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biological characteristics of tumors and their radiomic 
features in patients who have previously undergone 
targeted therapy, radiotherapy, or only chemotherapy 
may have been modified by these prior treatments. For 
example, radiotherapy can induce local tissue fibrosis 
[56], while targeted therapies may alter the metabolic 
and angiogenic properties of tumors [57]. Such altera-
tions could affect the extraction and analysis of radiomic 
features, thereby complicating the accurate assessment 
of responses to neoadjuvant immunotherapy. By exclud-
ing patients who have received prior treatments or only 
chemotherapy, we aim to more accurately assess the effi-
cacy of neoadjuvant immunotherapy without confound-
ing factors. The predictive model developed in this study 
offers robust support for clinical decision-making. Nev-
ertheless, extrapolating this model to other cancer types 
may present challenges due to the distinct biological 
characteristics and radiological manifestations inherent 
to different cancers. For example, gastric, colorectal, and 
pancreatic cancers exhibit significant variations in their 
tumor microenvironments (TMEs) and radiomic features 
[58–60], which may influence the model’s applicability. 
Consequently, directly applying the gastric cancer model 
to other cancer types may not adequately capture these 
distinctions, potentially affecting the model’s predictive 
performance. Future research should incorporate more 
fundamental metrics and multimodal data to enhance 
the model’s generalization capability across various can-
cers, thereby improving its clinical applicability.

Current radiomic models predominantly depend on 
features derived from single-time-point data, which 
inadequately capture the dynamic changes occurring 
within tumors. Furthermore, these models often exhibit 
limitations in feature selection and model optimization 
[46–48], frequently relying on basic statistical or texture 
features while overlooking the potential of more complex 
features, such as those derived from wavelet decomposi-
tion [61]. Additionally, these models are often criticized 
as ‘black boxes’ due to their lack of interpretability in 
predictive outcomes and their limited generalization 
capabilities. The strength of our research lies in address-
ing these limitations by incorporating dynamic data, 
implementing rigorous feature selection and model opti-
mization, enhancing model interpretability, and utiliz-
ing multi-center datasets. These advancements not only 
improve the predictive performance of the models but 
also provide more reliable and practical tools for clinical 
application. The strengths of this study include the use 
of data from a multicenter cohort, which increases the 
model’s generalizability. Strict radiomic feature selection 
and model optimization processes ensured the scien-
tific rigor and reliability of the model, contributing to its 
robustness in clinical applications. Additionally, the use 
of SHAP analysis enhanced the model’s interpretability, 

allowing clinicians to better understand the results and 
effectively apply the prediction model.

Despite the advances presented in this study, our 
approaches had some limitations that should be acknowl-
edged. Although the model’s generalization capability 
and the robustness of external validation are enhanced 
through a multi-center design, variations in CT imaging 
acquisition protocols across different medical institu-
tions may influence the extraction of radiomic features 
and, consequently, affect model performance [62]. Differ-
ent centers may employ diverse scan parameter settings, 
such as tube voltage, tube current, slice thickness, and 
reconstruction algorithms, which can affect the consis-
tency and reproducibility of radiomic features, thereby 
influencing model performance [63]. Furthermore, the 
models and technical specifications of CT equipment 
utilized by various centers directly impact image quality 
and resolution [64]. Completely eliminating biases aris-
ing from differences in CT acquisition protocols remains 
a significant challenge. Future research should focus on 
addressing this issue by enhancing data collection meth-
ods or developing more robust feature extraction tech-
niques, ensuring that radiomic models maintain stable 
and reliable performance across diverse clinical settings.

Despite the evaluation of model performance through 
multi-cohort validation, it is crucial to remain vigilant 
regarding potential overfitting issues. The limited sample 
size in the external validation dataset may affect the sta-
bility of the validation results, potentially impacting the 
accurate assessment of the model’s generalization capa-
bility. During the feature selection phase, we employed 
techniques such as minimum Redundancy Maximum 
Relevance and Least Absolute Shrinkage and Selection 
Operator regression to identify the 20 most representa-
tive features from a plethora of radiomic features. How-
ever, the limited sample size may have led to an excessive 
number of selected features, thereby heightening the risk 
of overfitting. Additionally, while Bayesian optimization 
and grid search enhanced the model’s performance on 
the training dataset during model optimization, they may 
have also intensified the risk of overfitting. Despite vali-
dating the model’s performance using both the internal 
validation cohort and the external validation cohort, the 
model’s robustness remains potentially compromised by 
the small sample sizes of these cohorts.

By employing a radiomic approach, we incorporated 
a comprehensive set of characteristics to thoroughly 
characterize tumor attributes, including shape metrics, 
first-order statistical measures, and texture descriptors, 
among others. Through feature selection and machine 
learning techniques, we meticulously identified the most 
representative radiomic variables for predicting major 
pathological response. These features effectively capture 
tumor heterogeneity and biological behavior, thereby 
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significantly enhancing the model’s predictive perfor-
mance. Nevertheless, the Pyradiomics package has cer-
tain limitations that prevented us from directly extracting 
information regarding tumor location. Consequently, 
future research will aim to further optimize the model 
to encompass a wider array of tumor characteristics. In 
addition, we intend to investigate a broader spectrum 
of biomarkers to elucidate the mechanisms underlying 
tumor response to treatment from multiple perspectives, 
thereby offering more precise criteria for clinical treat-
ment decisions.

Although various measures were taken to minimize 
overfitting during model construction, the generalizabil-
ity of the model to a broader population still requires fur-
ther validation due to limitations in sample size. Future 
research should expand the sample size and validate the 
model using data from multicenter, large-scale clinical 
trials. Moreover, while radiomics can provide a wealth 
of information on tumor heterogeneity, issues of con-
sistency across different scanning devices, protocols, 
and data processing workflows need to be addressed. 
Integrating other biomarkers, such as genomic data, 
tumor mutation burden, and TME characteristics, 
with radiomics for multimodal data fusion may further 
enhance the predictive accuracy and clinical value of the 
model.

Conclusion
In conclusion, this study demonstrates the potential of 
CT-based radiomic models in predicting the response of 
LAGC patients to neoadjuvant immunotherapy, provid-
ing new insights into advancing precision medicine in 
gastric cancer treatment.
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