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Abstract
Background Gastric cancer, recognized as one of the most lethal malignancies globally, progresses through a 
complex, multi-stage development. Elucidating the pathogenic mechanisms behind gastric carcinogenesis and 
identifying early diagnostic biomarkers are pivotal for decreasing the prevalence of gastric cancer.

Methods Using datasets on gastric cancer and its transformation from gastritis, we employed machine learning to 
create an early diagnostic model, identifying key genes and evaluating accuracy. We prioritized genes in the gastritis-
to-cancer progression, identifying a central driver gene. Pathway analysis revealed its transformation role. Tissue 
microarrays and rat models validated the driver genes and networks, confirmed in cell and organoid models. We 
also identified cell types secreting CHI3L1 using single-cell RNA sequencing and multiplex immunohistochemistry, 
exploring their prognostic significance.

Results We identified 12 driver genes potentially involved in the gastritis-to-cancer transformation, with CHI3L1, 
MMP12, CXCL6, IDO1, and CCL20 emerging as the top five genes via a early gastric cancer diagnostic model. CHI3L1 
was pinpointed as the central driver across the gastritis-to-cancer spectrum, with its upregulation, along with CD44, 
β-catenin, and c-Myc, noted in gastric precancerous lesions. In vitro and organoid studies revealed CHI3L1’s role in 
activating the CD44-β-catenin pathway to induce malignancy. Furthermore, our findings indicate that fibroblasts and 
dendritic cells are the principal sources of CHI3L1 secretion, a factor that is associated with poor prognosis in gastric 
cancer.

Conclusions This study highlights CHI3L1 as a key gene driving the progression from gastritis to gastric cancer, 
primarily by activating the CD44-β-catenin pathway, which enhances malignant cell traits. CHI3L1 is mainly secreted 
by fibroblasts and dendritic cells, and its high levels are linked to poor gastric cancer prognosis.
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Introduction
Gastric cancer (GC) is recognized as one of the most 
lethal malignancies worldwide, with its pathogenesis 
following a sequential multistage process that includes 
chronic non-atrophic gastritis, chronic atrophic gastri-
tis, intestinal metaplasia, dysplasia, and ultimately carci-
noma [1]. Understanding the pathological mechanisms 
underlying gastric carcinogenesis and identifying early 
diagnostic biomarkers are crucial for reducing the inci-
dence of GC [2]. Currently, the principal driver genes and 
the fundamental pathological mechanisms involved in 
the progression from gastritis to GC are not sufficiently 
understood [3]. Therefore, it is crucial to analyze GC 
datasets in conjunction with datasets pertaining to the 
transformation from gastritis to cancer in order to iden-
tify the key driver genes implicated in this transition [4, 
5]. This analytical approach facilitates the development of 
a diagnostic model that assists in the early detection of 
GC, thereby enabling timely intervention.

The initiation and development of GC are intricately 
linked to inflammatory responses, characterized by tran-
sitions from gastritis to carcinogenesis. Chronic inflam-
mation orchestrates a variety of cellular outcomes, 
including the loss of epithelial cell polarity, disruption of 
intercellular junctions, and detachment from the base-
ment membrane [6–8]. These changes precipitate epi-
thelial-mesenchymal transition (EMT), migration, and 
invasion [9]. Gastric precancerous lesions (GPL), such 
as intestinal metaplasia and dysplasia, constitute pivotal 
stages in the malignant transformation from chronic gas-
tritis to GC [10]. Gastric epithelial cells, when stimulated 
by various cytokines, undergo transdifferentiation into 
intestinal and dysplastic phenotypes, a process that is 
accompanied by increased proliferation [11]. Elucidating 
the molecular mechanisms underlying abnormal cell pro-
liferation and differentiation in the premalignant phase 
is crucial for understanding the pathogenesis of GC and 
identifying potential therapeutic targets.

A substantial body of research has employed advanced 
sequencing technologies, including genomics and tran-
scriptome sequencing, to identify potential biomark-
ers linked to the diagnosis and prognosis of GC, such 
as COL4A1, Chitinase-3-like protein-1 (CHI3L1), and 
various miRNAs. Nonetheless, there is a relative scarcity 
of studies concentrating on the gastritis to cancer trans-
formation [12–14]. In this study, we employed datasets 
to investigate biomarkers throughout the pathological 
progression from inflammation to cancer. Utilizing bio-
informatics and machine learning techniques, we devel-
oped a diagnostic model for GC, identified key driver 
genes, and determined CHI3L1 as the central driver gene 
in the transformation. To further investigate the under-
lying mechanisms, we developed a rodent model of gas-
tric mucosal carcinogenesis and assessed the expression 

levels of key driver genes, focusing on the CHI3L1 related 
pathway. Subsequently, we generated human GPL cells 
and organoids to validate the role of CHI3L1 in regulat-
ing downstream pathway and promoting malignancy. 
Furthermore, we conducted an analysis of the specific 
cell types responsible for the secretion of CHI3L1 and 
evaluated the correlation between its expression levels 
and the prognosis of GC.

Materials and methods
Gene expression profiling data acquisition
Obtain the GPL dataset (GSE55696) [15] and GC data-
sets (GSE66229 [16], GSE79973 [17]) from the Gene 
Expression Omnibus Database (GEO). The GSE55696 
dataset contains 20 chronic gastritis (CG) samples, 19 
low-grade intraepithelial neoplasia (LGIN) samples, 20 
high-grade intraepithelial neoplasia (HGIN) samples, and 
19 early gastric cancer (EGC) samples. The GSE66229 
dataset contains 100 normal samples and 300 GC sam-
ples. The GSE79973 dataset serves as the validation set, 
consisting of 10 normal samples and 10 GC samples. Pre-
process the three datasets separately and use the “limma” 
package [18] for standardization and normalization for 
quality control. Samples were merged by “ComBat” in the 
“sva” package with the algorithm for batch correction.

Screening of diagnostic biomarkers for the transformation 
of gastritis to cancer
We aimed to identify genes associated with the trans-
formation characteristics of chronic gastritis from 
inflammation to cancer. Based on the literature and pre-
vious research [19], we conducted Weighted Gene Co-
Expression Network Analysis (WGCNA) analysis on the 
GSE55696 dataset containing gastritis to cancer trans-
formation samples (CG-LGIN-HGIN-EGC) [20]. Use a 
soft threshold of 1–20 for topology calculation to deter-
mine the optimal soft threshold. Transform the relation-
ship matrix into an adjacency matrix, and then further 
transform it into a topological overlap matrix (TOM). 
To classify TOM-based modules, use the average linkage 
hierarchical clustering method, with each module con-
taining no less than 60 genes. Similar modules were sub-
sequently merged. Finally, the Pearson method was used 
to calculate the correlation between the merged module 
and the features of inflammatory cancer transformation 
disease, and the module with the strongest positive cor-
relation with the features was selected as the core mod-
ule. In addition, we define gene significance (GS) as a 
measure of the association between a single gene and a 
target trait, and module membership (MM) as a mea-
sure of the correlation between gene expression profiles 
and the principal components of a given module. Simul-
taneously, we performed differential gene expression 
(DEGs) analysis on GSE66229 data using the “limma” 
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package, comparing the differentially expressed genes 
between normal samples and GC tissue samples. The cri-
teria were defined as P.adj.value < 0.05 and logFC = 0.585. 
LogFC > 0.585 is defined as an up gene, logFC < 0.585 is 
defined as a down gene, and the remaining genes are not 
included in subsequent studies. Intersection of WGCNA 
and DEGs to obtain candidate genes for diagnostic bio-
markers of inflammatory-cancer transformation.

Gene ontology (GO) and Kyoto encyclopedia of genes and 
genomes (KEGG) enrichment analysis and gene expression
The “clusterProfiler 4.12.6” package [21] was utilized for 
enrichment analysis of diagnostic biomarkers, employ-
ing both GO and the KEGG databases. We use GO to 
annotate the biological processes, molecular functions, 
and cellular components of genes. Use KEGG to anno-
tate gene pathways. When P.adj.value < 0.05, enrichment 
has statistical significance. For candidate genes, use the 
limma package to extract expression levels for intergroup 
comparison differences.

Construct the transformation progression stage model
In order to clarify the role of gastritis-to-cancer biomark-
ers in the diagnosis of GC, we constructed a GC diag-
nostic model based on random forest (RF) [22], support 
vector machine (SVM) [23], extreme gradient boosting 
(XGBoost) [24], and generalized linear model (GLM) 
[25]. The “DALEX” package [26] was used to explain 
the model, calculate the residual reverse accumulation 
of the four methods, and compare the Receiver operat-
ing characteristic (ROC) curves of the model’s diagnos-
tic efficiency. The samples were randomly divided into 
the training and validation groups in a 7:3 ratio. We cre-
ated four classification models by 5-fold cross-validation 
using the “train” function in the “caret” package. The 
importance of each gene calculated by the four methods 
was scored and ranked. Select the top 5 genes in terms 
of importance as the key for subsequent evaluation and 
validation of model diagnostic efficiency. At the same 
time, in order to determine the role of model genes in the 
process of gastritis-to-cancer transformation, we con-
structed diagnostic models for CG, LGIN, HGIN, and 
EGC based on each stage of evolution. And drew Venn 
plots by taking the intersection of the top five genes of 
importance in all stages of CG-LGIN-HGIN-EGC-GC 
to identify the core driving genes that stably play a role 
throughout the entire stage.

Diagnostic model efficiency and validation
Use the “rms” and “ggDCA” packages to build the nomo-
gram, calibration, and decision curve analysis (DCA) 
curves of the diagnostic model to test its diagnostic effi-
ciency. In order to further evaluate the accuracy of the 
GC diagnostic model, we used the data from GSE79973 

as the validation set to validate the GC diagnostic model 
and assess its accuracy and stability in prognosis.

Enrichment analysis of core driver genes and protein-
protein interaction (PPI) network
To further investigate the gene sets that were identi-
fied as key drivers in EGC samples using the aforemen-
tioned technique, we used Gene Set Enrichment Analysis 
(GSEA) [27] to examine the pathways and processes that 
might promote the emergence of GC. And through the 
STRING website (https://string-db.org/), perform  i n t e 
r a c t i o n analysis between proteins enriched in pathways 
and driver gene proteins and construct an interaction 
network.

Prognostic and immunological analysis of target gene 
CHI3L1
The high and low expression of the CHI3L1 gene on the 
prognosis and survival of GC patients were obtained 
from the Kaplan-Meier Plotter  (   h t t p s : / / k m p l o t . c o m / a n 
a l y s i s /     ) database [28] and the BEST ( h t t p  s : /  / r o o  k i  e u t  o p i  
a . h i  p l  o t .  c o m  . c n /  a p  p _ d i r e c t / B E S T /) database [29],  r e s p e 
c t i v e l y . The single-cell resolution data analysis was con-
ducted using the GSE167297 dataset [30] integrated from 
the Single cell and Spatially resolved Cancer Resources 
(SCAR) (http://scaratlas.com/) database [31]. Cell quality 
control was performed using the “Seurat” [32] standard 
with 200 < nFeatures < 6000 and MT < 10%. Normalize the 
gene expression matrix and identify highly variable genes 
using the ‘NormalizeData’ and ‘FindVariable Features’ 
functions, respectively, and perform principal compo-
nent analysis (PCA) dimensionality reduction clustering 
and clustering. Observe the expression of CHI3L1 and 
CD44 in specific cell populations.

Immunohistochemical staining
The human GC tissue microarrays were purchased 
from Shanghai Outdo Biotech, China. De-wax the tis-
sue microarray in an oven at 63℃ for one hour. Perform 
antigen retrieval, anti-CHI3L1 antibody incubation, and 
secondary antibody incubation sequentially. Use the 
automated immunohistochemistry instrument with the 
specified program from the “Autostainer Link 48 Oper-
ating Instructions” Stain with hematoxylin for 1  min, 
mount with neutral balsam, and scan the images using 
the Aperio scanner (Aperio XT, LEICA). HistoScore = 
((1×% weakly stained cells) + (2×% moderately stained 
cells) +(3×% strongly stained cells)).

The gastric mucosa of the rats was subjected to mul-
tiple immunohistochemical staining. Utilizing tyramide 
signal amplification (TSA) technology, the concurrent 
labeling of three distinct proteins within a single tis-
sue section was accomplished. The procedure involves 
the following steps: dewaxing paraffin sections to water, 

https://string-db.org/
https://kmplot.com/analysis/
https://kmplot.com/analysis/
https://rookieutopia.hiplot.com.cn/app_direct/BEST/
https://rookieutopia.hiplot.com.cn/app_direct/BEST/
http://scaratlas.com/
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performing antigen retrieval, blocking endogenous per-
oxidase activity with hydrogen peroxide, blocking non-
specific binding with serum, applying the anti-α-SMA 
antibody (Servicebio, GB111364, ) and the HRP-labeled 
goat anti-rabbit antibody, applying the appropriate 
TSA reagent, conducting microwave treatment, repeat-
ing serum blocking, repeating the above steps and 
successively applying the anti-CD11c antibody (Ser-
vicebio, GB11059), and anti-CHI3L1 antibody (Protein-
tech, 12036-1-AP). The cell nuclei were stained with 
DAPI, autofluorescence was quenched, and the slides 
were mounted. Subsequently, the scanning was con-
ducted utilizing a Pannoramic MIDI scanner (Hungary, 
3DHISTECH).

Rat model
Specific-pathogen-free (SPF) male Wistar rats, aged 4–5 
weeks and weighing between 90 and 120  g, were pro-
cured from Sibef Biotechnology Co., LTD. (Beijing). The 
experimental procedures received approval from the Ani-
mal Research Ethics Committee of Beijing University of 
Chinese Medicine. Based on our team’s prior research on 
model generation, a quadrifactorial protocol incorporat-
ing 1-Methyl-3-nitro-1-nitrosoguanidine (MNNG) was 
utilized to induce a gastric mucosal carcinogenesis model 
in the rodent subjects [33]. The control group was sup-
plied with standard SPF-grade chow and potable water, 
while the model group underwent a series of sequential 
interventions. Beginning in the first experimental week, 
the rodents in the model group were given ad libitum 
access to a 120 µg/mL MNNG potable solution and a diet 
of SPF-grade chow supplemented with 0.05% ranitidine, a 
histamine H2-receptor antagonist. In the following week, 
an irregular dietary regimen was introduced to simulate 
feast-famine cycles. In the third week, a 2% sodium salic-
ylate solution was administered intragastrically.

Cell model
Human GES-1 cells were procured from Wuhan Ser-
vicebio Technology Co., Ltd. and cultured in Dulbec-
co’s Modified Eagle Medium (DMEM; Thermo Fisher, 
USA) supplemented with 10% fetal bovine serum (FBS; 
Hyclone, USA), 100 U/mL penicillin, and 100  µg/mL 
streptomycin (Thermo Fisher). Human AGS cells were 
obtained from the Cell Bank / Stem Cell Bank of the 
Chinese Academy of Sciences and cultured in RPMI-
1640 medium (Thermo Fisher) with 10% FBS (Hyclone, 
USA), 100 U/mL penicillin, and 100 µg/mL streptomycin 
(Thermo Fisher). MC cells were established as previously 
described [34]. In brief, the GES-1 cells were cultured 
to a density of 2 × 105 cells/dish. During the logarithmic 
growth phase, the culture medium was replaced with 
DMEM complete medium containing 20 μm of MNNG. 
After 24  h of culture, the MNNG-containing medium 

was discarded, and the cells were then cultured in 
DMEM complete medium supplemented with 10% fetal 
bovine serum at 37℃ and 5% CO2. The GPL cells (MC) 
were obtained after approximately one week of culture.

Cell Counting Kit-8 and wound healing assay
Seed cells into a 96-well plate and incubate overnight 
to allow for cell adhesion. Subsequently, based on prior 
research [35], 500 ng/mL of CHI3L1 was added to the 
culture medium, and the treatment was maintained for 
72 h. Following this incubation period, add 10 µL of Cell 
Counting Kit-8 (CCK-8) solution to each well and return 
the plate to the incubator for an additional hour. Measure 
the optical density (OD) of each well at a wavelength of 
450  nm using a microplate reader. Finally, calculate cell 
viability based on the obtained absorbance values.

Cells cultured in a 6-well plate were subjected to a 
scratch assay using a 10-µL pipette tip. Subsequently, 
500 ng/mL of CHI3L1 was administered and incubated 
for 24 h at 37℃. Images were captured using a 4×objec-
tive lens on a microscope (Zeiss, Germany). The scratch 
area was quantitatively analyzed using Image J software 
(National Institutes of Health, USA), and the results were 
expressed as the percentage of wound closure. The per-
centage of wound closure was calculated using the for-
mula: ((0 h area − 12/24 h area) / 0 h area)×100%.

Western blot
The protein samples of tissues and cells were fraction-
ated via SDS-PAGE and subsequently electrotransferred 
onto PVDF membranes. The membranes were initially 
incubated in TBST buffer supplemented with 5% non-
fat milk to block non-specific binding sites, followed by 
incubation with the indicated primary antibody. Western 
blot analysis was performed using anti-CHI3L1 (Protein-
tech, 12036-1-AP), anti-CD44 (Proteintech, 60224-1-Ig), 
anti-β-catenin (BD, 610154), anti-c-Myc (Proteintech, 
10828-1-AP), and anti-β-actin (Proteintech, 66009-1-
Ig). Subsequently, the membranes were probed with the 
corresponding secondary antibody. Protein bands were 
detected using a chemiluminescent substrate (Bio-Rad) 
and quantified with an Imaging System (Qingxiang, 
China).

RNA sequencing
The tissue lysates from rats were prepared using an RNA 
lysis buffer (Promega). The extracted RNA was then com-
bined with purification beads to enhance its purity. Fol-
lowing successful quality control, the subsequent steps of 
library construction and sequencing were conducted by 
Shanghai OE Biotech Co., Ltd. (China). Subsequent data 
processing and analysis were conducted on the OE cloud 
platform.
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Human gastric mucosa derived organoid culture
The human gastric mucosa samples were obtained from 
patients who underwent gastroscopy examination at 
Dongfang Hospital of the Beijing University of Chi-
nese Medicine (Beijing, China). Informed consent was 
obtained from all participants, and all procedures were 
conducted in compliance with the ethical standards and 
approval of the institutional review and ethics boards of 
Beijing University of Chinese Medicine (Approval Num-
ber: JDF-IRB-2023031702). The protocol for culturing 
organoids derived from human gastric mucosa was based 
on established methodologies as detailed in published lit-
erature [36]. The gastric mucosal tissue was precisely sec-
tioned using a scalpel and subsequently incubated in 10 
mL of chelation buffer solution containing 10 mM EDTA 
at 37 ℃ for 10–15 min. Post-incubation, the mixture was 
allowed to settle for one minute, and the supernatant was 
then discarded. Subsequently, 5 mL of pre-cooled Dul-
becco’s Phosphate-Buffered Saline (DPBS) was added, 
and the tissue was gently pipetted up and down multiple 
times. The supernatant was collected and subjected to 
centrifugation at 4 ℃ and 300 g for 3 min to isolate the 
pellet. The gastric glands were then resuspended in 50 µL 
of matrix gel. This suspension was seeded into a 24-well 
plate and incubated in a cell culture incubator for 30 min 
prior to the addition of complete culture medium.

Organoid Immunofluorescence staining
Organoids were seeded into Lab-Tek II 4-Well Sterile 
Chamber Slides and subsequently fixed with 3.7% form-
aldehyde at room temperature for 30 min. This was fol-
lowed by three washes with phosphate-buffered saline 
(PBS). Permeabilization was achieved using 0.2% Triton 
X-100 for 15 min, after which the samples were blocked 
with PBS containing 1% bovine serum albumin (BSA) 
and 0.2% Triton X-100 for 30  min. Primary antibodies, 
including anti-β-catenin (BD, 610154), anti-phospho-β-
catenin (CST, 9567  S), anti-CD44 (Proteintech, 60224-
1-Ig), and anti-c-Myc (Proteintech, 10828-1-AP), were 
incubated overnight at 4  °C, followed by washes with 
PBS. Subsequently, secondary antibodies were incubated. 
The indicated antibody was incubated overnight at 4 ℃ 
again, followed by incubation of corresponding second-
ary antibody. Finally, DAPI was incubated at room tem-
perature, and images were captured using a Nikon AX 
confocal microscope (Nikon, Japan).

Data analysis
The bioinformatics analysis from the public databases 
was implemented based on R version 4.3.0. All experi-
mental data were subjected to statistical analysis and 
visualized using GraphPad Prism 8 (GraphPad Software). 
Measurement data are presented as the mean ± standard 
error of the mean (SEM). The Student’s t-test compared 

two samples, while One-Way ANOVA compared mul-
tiple samples, followed by the Tukey test for significant 
results. Each experiment was independently replicated 
three times, and a p-value of less than 0.05 was consid-
ered to indicate statistical significance.

Results
Identification of biomarkers indicative of the progression 
from gastritis to cancer
The flowchart is shown in Fig.  1. Initially, we selected 
364 differentially expressed genes from the GC dataset 
GSE66229 (Fig. 2A) to identify key genes involved in GC 
development. Concurrently, we employed the WGCNA 
method to analyze the GSE55696 dataset, which per-
tains to the transformation from gastritis-to-cancer, in 
order to extract gene clusters associated with transforma-
tion characteristics. A threshold of 180 was determined 
in accordance with the WGCNA method, and 7 outlier 
samples (GSM1341906, GSM1341900, GSM1341913, 
GSM1341907, GSM1341908, GSM1341905, and 
GSM1341914) were excluded from the analysis (Fig-
ure S1A). The optimal soft threshold is 12 (Figure S1B). 
Based on the similarity between modules, a total of 19 
modules were obtained (Figure S1C-D). Among them, 
the cyan module gene showed the strongest correlation 
with the gastritis-to-cancer transformation (R = 0.65, 
p < 0.01, Fig.  2B). We intersected and overlapped genes 
related to the transformation of gastritis-to-cancer with 
differentially expressed genes in GC and ultimately iden-
tified 12 driver genes (PLA2G7, CXCL1, CXCL6, CHI3L1, 
SPP1, MMP12, TREM1, MMP7, CXCL5, IDO1, CCL20, 
KRT23) that ultimately lead to carcinogenesis (Fig.  2C). 
These genes are likely to play significant roles in the 
molecular mechanisms underlying gastritis-to-cancer 
transformation. GO and KEGG enrichment analyses 
revealed that 12 genes are predominantly associated with 
various immune cell chemotaxis responses, chemokine 
activity, and cancer-related pathways (Fig. 2D-E).

Constructing a EGC diagnosis model through four types of 
machine learning
We compared the expression levels of 12 driver genes in 
the GSE55696 dataset at four stages of gastritis-to-cancer 
transformation. Besides the MMP7, CCL20, CXCL1, and 
KRT23 genes, the results showed that the mRNA expres-
sion levels of the other 8 genes generally went up as the 
disease got worse (Fig. 3A). To further screen genes that 
play a key role in GC diagnosis, we constructed a GC 
diagnosis model based on machine learning algorithms to 
identify 12 genes. We used four analysis methods, includ-
ing RF, SVM, XGBoost, and GLM, among the 12 candi-
date genes. The findings indicated that the SVM method 
employed in the construction of the GC diagnostic model 
exhibited the lowest residual and reverse cumulative 
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values (Fig.  3B-C), and the ROC curve demonstrated 
that the SVM diagnostic model had the highest accuracy 
(AUC = 0.98, Fig. 3D). Simultaneously, we evaluated and 
quantified the significance of the feature genes identified 
by the SVM model (Fig.  3E). Subsequently, we selected 
the top five genes with the highest importance scores for 
further investigation (CHI3L1, MMP12, CXCL6, IDO1, 
and CCL20).

Validation of diagnostic models
Based on the 5 key genes extracted earlier, we reevalu-
ated the diagnostic efficacy, and the results showed that 
the accuracy of the GC diagnostic model was excellent 
(AUC = 0.941, Fig. 4A). The diagnostic efficacy of CXCL6 

and CHI3L1 was excellent (AUC = 0.913, AUC = 0.896, 
Fig. 4B) in evaluating the value of 5 key genes. We used 
these 5 genes to construct a column chart to evaluate 
individual gene factors (Fig.  4C). The predicted values 
in the column chart and the actual observed values are 
pretty close to each other, as shown by the calibration 
curve. The DCA curve also shows that the model has 
good net clinical benefits (Fig. 4D-E).

To determine the expression levels of 5 genes in GC, 
we compared the mRNA expression differences between 
normal samples and GC tissue samples using the 
GSE66229 dataset. The results indicated that, relative to 
normal samples, the expression levels of 5 genes were sig-
nificantly elevated in GC samples (Fig.  4F). Meanwhile, 

Fig. 1 Flowchart illustrating the analysis and verification strategy
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Fig. 2 Identification of biomarkers associated with the progression from gastritis to cancer. (A) Volcanic map of differentially expressed genes in the 
GC dataset GSE66229. (B) Identification of transformation feature modules in the progression from gastritis to cancer within dataset GSE55696 utilizing 
WGCNA. (C) Based on the feature module of the gastritis to cancer transformation dataset and the intersection Venn diagram of differentially expressed 
genes in GC. (D) GO enrichment analysis of intersecting driving genes. (E) KEGG enrichment analysis of intersecting driving genes
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Fig. 3 Constructing a EGC diagnosis model through four types of machine learning. (A) Comparison of expression levels of twelve driver genes during 
the progression from gastritis to GC. *p < 0.05, **p < 0.01, ***p < 0.001. (B) Residual plot of GC diagnostic model. (C) Reverse cumulative plot of GC diag-
nostic model. (D) Comparison curve of ROC accuracy for diagnostic models. (E) Comparative analysis of the significance of model genes across different 
diagnostic frameworks

 



Page 9 of 20Li et al. Journal of Translational Medicine          (2025) 23:349 

Fig. 4 Validation of diagnostic models. (A) ROC curve illustrating the comprehensive diagnostic efficacy of the top five key genes within the model. (B) 
ROC plots illustrating the diagnostic efficacy of five key genes within the model. (C) A column chart constructed based on key genes. (D) Calibration curve 
of column chart. (E) DCA curve chart evaluates the accuracy and clinical benefits of column chart predictions. (F) Comparison of key genes in normal 
and GC tissues. ***p < 0.001
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we evaluated the accuracy of the GC diagnostic model 
in the validation set GSE79973, and the ROC curve 
showed that the accuracy of the model diagnosis was 
relatively stable (AUC = 0.778, Figure S2A). The diagnos-
tic performance of 5 key genes in the model showed that 
CHI3L1 and IDO1 had excellent diagnostic performance 
(AUC = 0.77, AUC = 0.73, Figure S2B). The nomogram 
constructed from key genes shows relatively stable pre-
dictive ability in the column chart (Figure S2C). At the 
same time, the calibration, based on the results from the 
nomogram and the DCA, demonstrates robust predictive 
performance. Furthermore, its application holds signifi-
cant value for practical clinical decision-making (Figures 
S2D-E).

Development of diagnostic models and identification of 
key targets in the progression from gastritis-to-cancer
Identifying the key driving genes that facilitate the pro-
gression from gastritis-to-cancer is crucial for eluci-
dating the mechanisms underlying carcinogenesis. 
Consequently, employing the same methodology utilized 
for the construction of a GC diagnostic model, we devel-
oped a diagnostic model for each stage of the gastritis-
to-cancer transformation continuum, specifically based 
on CG-LGIN-HGIN-EGC. And by observing the residu-
als and reverse accumulation plot, appropriate machine 
learning methods are determined to rank the importance 
of genes in the model, and ROC curves are used to evalu-
ate the accuracy of the model and the role of each gene in 
the model. The ROC curve serves as a crucial instrument 
for assessing the performance of dichotomous models, 
particularly due to its capacity to directly illustrate the 
model’s generalization ability across varying classification 
thresholds. The Area Under the Curve (AUC) is quanti-
fied as the area beneath the ROC curve and functions 
as a metric for evaluating the learner’s performance. A 
higher AUC value indicates superior model performance.

The results showed that in the construction of the 
LGIN diagnostic model, the residual and reverse cumula-
tive values of the SVM method were the lowest (Figures 
S3A-B), and the ROC curve demonstrated that the SVM 
diagnostic model had the highest accuracy (AUC = 0.72, 
Figure S3C-D). The top five genes CHI3L1, IDO1, MMP7, 
SPP1, and KRT23 overall had good diagnostic accuracy in 
the model (AUC = 0.687, Figure S3E), among which the 
IDO1, MMP7, and CHI3L1 genes had excellent diagnos-
tic performance (AUC = 0.634, AUC = 0.619, AUC = 0.596; 
Figure S3F).

The XGBoost method has the lowest residual and 
reverse cumulative values according to the HGIN diag-
nostic model’s construction findings (Figures S4A-B). The 
SVM diagnosis model also exhibited the best accuracy, 
as seen by the ROC curve (AUC = 0.9, Figures S4C-D). 
In the model, the top five genes—KRT23, CXCL1, SPP1, 

CXCL6, and CHI3L1—had strong diagnostic accuracy 
(AUC = 0.821, Figures S4E). CHI3L1 and KRT23 genes, 
in particular, showed great diagnostic performance 
(AUC = 0.788, AUC = 0.734; Figure S4F).

The SVM method demonstrated the lowest residual 
and reverse cumulative values (Figures S5A-B) and 
exhibited superior accuracy (AUC = 0.833, Figure S5C-D) 
in the construction of the EGC diagnostic model. In the 
model, the top five genes—TMP12, PLA2G7, KRT23, and 
CHI3L1—had high diagnostic accuracy (AUC = 0.718, 
Figure S5E). Among these genes, CHI3L1 and PLA2G7 
had particularly strong diagnostic performance 
(AUC = 0.605, AUC = 0.605; Figure S5F). Figure  5  A 
shows the top 5 key genes from the diagnostic models of 
gastritis-to-cancer transformation. CHI3L1 was obtained 
as the core driver gene in the whole process of disease 
evolution (CG-LGIN-HGIN-EGC-GC) throughout the 
transformation (Fig. 5B).

To assess the significance of CHI3L1 in the progres-
sion from gastritis-to-cancer, we employed a human gas-
tric mucosal tissue microarray to evaluate the expression 
levels of CHI3L1 across various pathological stages. As 
illustrated in Fig. 5C-D, both GPL and GC mucosa dem-
onstrate elevated expression levels in comparison to nor-
mal mucosal tissue (p < 0.05).

Enrichment analysis of CHI3L1 gene, PPI network 
construction, and validation in rat model for gastric 
precancerous lesions
EGC development is influenced by the Wnt/β-Catenin, 
cell cycle, DNA replication, and stomach acid secretion 
pathways, as shown by the single gene GSEA enrichment 
study of CHI3L1 in early carcinogenesis (Fig. 6A). The PPI 
analysis between the CHI3L1 and pivotal genes within 
the Wnt/β-catenin signaling pathway revealed a direct 
interaction involving CHI3L1, CTNNB1 (β-catenin), 
and MYC(Fig. 6B). These findings indicate that CH13L1 
potentially facilitate the development of GC by modulat-
ing β-catenin and its downstream effector MYC within 
the Wnt/β-catenin signaling pathway. To further sub-
stantiate the role of the core gene CHI3L1 and associated 
pathway proteins, we developed a rat model of GPL, as 
illustrated in Figure S6A. Histological examination using 
Hematoxylin and Eosin (HE) staining and Alcian Blue-
Periodic Acid-Schiff (AB-PAS) staining confirmed that 
the pathological characteristics of the rat gastric mucosa 
were consistent with those observed in GPL. In com-
parison to the control group, the gastric mucosa of the 
GPL rats exhibited distorted and crowded glands, char-
acterized by cellular atypia, including enlarged, hyper-
chromatic nuclei, an elevated nuclear-cytoplasmic ratio, 
and a loss of cellular polarity(Fig.  6C). Subsequently, 
transcriptome sequencing was conducted on rat gastric 
mucosal tissue (Fig. 6D-E), followed by the validation of 
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Fig. 5 Development of diagnostic models and identification of key targets in the progression from gastritis-to-cancer. (A) Diagnostic biomarker profiles 
along the gastritis-to-cancer transformation. (B) The intersection of CG-LGIN-HGIN-EGC-GC diagnostic models at each stage generates the Venn map of 
the core driver gene. (C) Immunohistochemical analysis of CHI3L1 expression in human gastric tissue microarrays, including normal, GPL, and GC mucosa. 
(D) Quantitative analyses are described in (C). Data are given as the Average ± SEM. *p < 0.05
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Fig. 6 Enrichment analysis of CHI3L1 gene, PPI network construction, and validation in rat model for gastric precancerous lesions. (A) Single gene GSEA 
enrichment analysis of CHI3L1. (B) PPI interaction network based on CHI3L1 protein and key proteins of Wnt/β-catenin pathway. (C) Hematoxylin and 
Eosin (HE) staining and Alcian Blue-Periodic Acid-Schiff (AB-PAS) staining of rat gastric mucosa (scale bar, 400 μm). (D) PCA was performed on transcrip-
tome sequencing data derived from rat gastric mucosal tissue. (E) Histogram analysis of differential gene expression counts. (F) Heatmap analysis of 
CHI3L1, CD44, and Wnt/β-catenin pathway protein expression levels. (G) Western blot analysis of CHI3L1, CD44, β-catenin, and c-Myc protein levels. (H) 
The protein expression depicted in figure G was quantified relative to β-actin by utilizing integrated density values. All experiments were performed on 
three independent occasions, and data are given as the Average ± SEM. *p < 0.05
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key genes that had been previously identified and ranked 
among the top 5 for diagnostic models at the gastritis-to-
cancer transformation process. The results demonstrated 
that CHI3L1 exhibited the most significant differential 
expression (Figure S6B).

According to prior literature, CD44 serves as the recep-
tor for CHI3L1 and is implicated in the progression of 
GC [35]. Consequently, we employed a heatmap to ana-
lyze the expression levels of CHI3L1, CD44, and proteins 
associated with the Wnt/β-catenin signaling pathway. 
The findings are presented in Fig. 6F. Additional valida-
tion of these findings was performed utilizing Western 
blot analysis, which demonstrated a markedly elevated 
expression of CHI3L1, CD44, β-catenin, and c-Myc in 
GPL rats (Fig. 6G-H).

CHI3L1 activates the CD44-β-catenin pathway, promoting 
malignancy in GPL cells
To elucidate the underlying molecular mechanisms by 
which CHI3L1 influences the modulation of CD44 and 
β-catenin in the carcinogenic process, we initially gen-
erated a cell line model for GPL, termed MC cells, in 
accordance with the methodology previously reported 
[34]. Western blot analysis was employed to assess the 
protein expression levels of CD44, β-catenin, phosphory-
lated β-catenin (p-β-catenin), and c-Myc in human gas-
tric epithelial GES-1 cells, MC cells, and AGS cells. The 
results indicated that the expression levels of CD44, 
β-catenin, p-β-catenin, and c-Myc were significantly ele-
vated in both MC and AGS cells compared to GES-1 cells 
(Fig. 7A-B).

Subsequently, we supplemented the MC cell culture 
medium with 500 ng/mL of CHI3L1 and collected cell 
samples at various time points for western blot analy-
sis. The findings indicated an upregulation in the pro-
tein levels of CD44, β-catenin, p-β-catenin, and c-Myc 
commencing from the second day of CHI3L1 treat-
ment (Fig.  7C-D). To further substantiate the impact of 
CHI3L1 stimulation on the malignant phenotype of the 
cells, we employed the CCK8 assay to assess cell viability 
after CHI3L1 treatment. The findings demonstrated that 
a 48-hour treatment with CHI3L1 at a concentration of 
500 ng/mL significantly enhanced cellular proliferation 
(p < 0.01, Fig.  7E). Furthermore, in wound healing assay, 
CHI3L1 was observed to increase cellular migration 
capabilities (p < 0.01, Fig. 7F-G).

The CD44-β-catenin-c-Myc signaling pathway is highly 
active in GPL organoids
To further verify the activation of CD44-β-catenin-c-Myc 
signaling pathway in GPL,

gastric mucosal samples were collected from patients 
undergoing gastroscopy, and organoids were sub-
sequently constructed from the gastric mucosa of 

individuals diagnosed with chronic non-atrophic gas-
tritis (CNAG) and GPL. The comprehensive procedure 
for the establishment of organoids is thoroughly docu-
mented in the literature [36]. Figure  8A shows the con-
struction process and morphology of isolated glands and 
organoids under the light microscope. Organoids derived 
from the gastric mucosa of CNAG patients demonstrated 
well-polarized cellular cavities and spheroid structures. 
In contrast, organoids derived from GPL exhibited 
solid structures, a loss of cellular polarity, and irregu-
larly layered formations. Immunofluorescence stain-
ing of cultured organoids revealed that, in comparison 
to organoids derived from CNAG, there was a marked 
upregulation in the fluorescence intensity of CD44, 
β-catenin, p-β-catenin, and c-Myc protein expression in 
organoids from GPL (p < 0.01, Fig. 8B-E). These findings 
further corroborate the pronounced activation of the 
CD44-β-catenin-c-Myc signaling pathway in GPL.

CHI3L1, mainly secreted by fibroblasts and dendritic cells, 
is linked to poor prognosis in gastric cancer
Gene expression profiling at the single-cell resolution 
is instrumental in elucidating cell type-specific gene 
expression patterns. To analyze the cell types responsi-
ble for CHI3L1 secretion, we obtained 9 cell subpopula-
tions based on the GSE167297 dataset (Fig. 9A). CHI3L1 
was mainly concentrated in fibroblasts and dendritic 
cells (Fig.  9B), while CD44 was abundantly expressed 
in various cell subpopulations, with the highest expres-
sion levels in CD8 + T cells, dendritic cells, and Macro/
Mono cells (Fig. 9C). The results of single gene coexpres-
sion showed a positive correlation between the expres-
sion levels of CHI3L1 and CD44 at single-cell resolution 
(Fig. 9D).

To verify that CHI3L1 is predominantly secreted by 
fibroblasts and dendritic cells, we performed multiple 
immunohistochemical analyses on rat gastric mucosa. 
We employed anti-α-SMA antibody to label fibroblasts, 
anti-CD11c antibody to identify dendritic cells, and con-
currently stained for CHI3L1 to examine the distribu-
tion of fibroblasts, dendritic cells, and CHI3L1 within 
the gastric mucosa. The findings revealed that fibroblasts 
were ubiquitously distributed across the mucosal layer, 
dendritic cells were predominantly localized in the lam-
ina propria of the mucosa, and CHI3L1 expression was 
markedly observed throughout the entire mucosal layer 
(Fig. 9E).

To elucidate the prognostic implications of varying 
CHI3L1 expression levels in GC patients, we analyzed 
survival outcomes using the GSE22377 dataset available 
from the Kaplan-Meier Plotter database. The Kaplan-
Meier curve of survival results showed that the overall 
survival rate (OS) of patients with low CHI3L1 expres-
sion was higher than that of patients with high expression 
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(p < 0.05, Fig. 9F). Supplementary analysis was conducted 
on the Disease − free survival (DFS) and Disease − specific 
survival (DSS) results of GC patients obtained from the 
BEST database and TCGA database. The patients exhib-
iting low CHI3L1 expression demonstrated superior DFS 
and DSS outcomes compared to those with high CHI3L1 
expression (p < 0.05, Fig. 9G-H).

Discussion
In recent years, despite a decline in the incidence of 
GC, the prevalence of the disease remains considerable, 
contributing significantly to the global disease burden. 
Consequently, the pursuit of early prediction and diag-
nosis of GC continues to be a critical strategy for reduc-
ing its incidence. GC, a common digestive malignancy, 

Fig. 7 CHI3L1 activates the CD44-β-catenin pathway, promoting malignancy in GPL cells. (A) Western blot analysis of CD44, β-catenin, p-β-catenin, and 
c-Myc protein levels in GES-1, MC, and AGS cell lines. (B) Quantitative analyses are described in (A), and data are given as the Average ± SEM. nsp>0.05, 
*p < 0.05, **p < 0.01. (C) Western blot analysis of CD44, β-catenin, p-β-catenin, and c-Myc in MC cells treated with CHI3L1 (500 ng/mL) for 0, 2, 4, and 6 
days. (D) Quantitative analyses are described in (C). Data are given as the Average ± SEM. nsp>0.05, *p < 0.05. (E) CCK8 analysis of cell viability after CHI3L1 
(500 ng/mL) treatment for 72 h. Data are given as the Average ± SEM, **p < 0.01. (F) Wound healing assay of MC cells with or without CHI3L1 (500 ng/
mL) stimulation (scale bar, 100 μm). (G) Quantitative analyses of the wound healing assay are described in (F). All experiments were performed on three 
independent occasions, and data are given as the Average ± SEM, *p < 0.05, **p < 0.01
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evolves from gastritis to carcinoma, with GPL being the 
last stage and independent risk factors for GC develop-
ment [37, 38]. Studying this phase can reveal the mecha-
nisms behind this transformation and help identify early 
intervention targets for GC [39]. Our study integrated 
machine learning techniques with dataset analyses per-
taining to GC and gastritis-to-cancer transformation, 
ultimately identifying CHI3L1 as the pivotal driver gene 
throughout the gastritis-to-cancer continuum. Sub-
sequently, we conducted an in-depth analysis of the 
CHI3L1-related pathway and verified its downstream 
signaling, and associated malignant cell phenotypes. Fur-
thermore, we characterized the cell types responsible for 

CHI3L1 secretion and found CHI3L1 is associated with 
poor prognosis in GC.

The progression from chronic gastritis to GC adheres 
to a multi-step, multi-factorial cascade reaction model 
[40, 41]. As this cascade progresses, the risk of develop-
ing GC incrementally increases. Strategies of primary 
prevention focus on improving the detection and eradi-
cation of the Helicobacter pylori [42]. Although the wide-
spread use of endoscopic screening enables the early 
detection of GC, its invasive nature limits its broader 
adoption and application [43]. Numerous researchers are 
investigating biomarkers that could potentially replace or 
complement gastroscopy, with the objective of facilitating 

Fig. 8 The CD44-β-catenin-c-Myc signaling pathway is highly active in GPL organoids. (A) Human gastric mucosa derived organoid construction process 
and morphology of isolated glands and organoids under the light microscope. (B) Immunofluorescence staining of β-catenin, and p-β-catenin in cul-
tured organoids (scale bar, 50 μm). (C) Quantitative analyses are described in (B), data are given as the Average ± SEM. **p < 0.01. (D) Immunofluorescence 
staining of CD44, and c-Myc in cultured organoids (scale bar, 50 μm). (E) Quantitative analyses are described in (D). All experiments were performed on 
three independent occasions, and data are given as the Average ± SEM, **p < 0.01
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Fig. 9 (See legend on next page.)
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the early detection of GC [39, 44, 45]. Our study identi-
fied 12 driver genes (PLA2G7, CXCL1, CXCL6, CHI3L1, 
SPP1, MMP12, TREM1, MMP7, CXCL5, IDO1, CCL20, 
KRT23) that contribute to carcinogenesis during the pro-
gression of chronic gastritis-to-cancer transformation. 
Additionally, we developed an EGC diagnostic model 
utilizing 4 types of machine learning algorithms. Among 
these models, the SVM method demonstrated the low-
est residual and reverse cumulative values, as well as the 
highest accuracy. Notably, the genes of CHI3L1, MMP12, 
CXCL6, IDO1, and CCL20 exhibited the highest impor-
tance scores in the model. This indicates their potential 
utility in constructing a more precise early diagnostic 
model for GC, thereby facilitating the timely detection of 
the disease in its initial stages.

CHI3L1, also referred to as YKL-40, belongs to the 
evolutionarily conserved 18-glycosyl-hydrolase protein 
family and is expressed in a diverse array of cell types, 
including endothelial cells, macrophages, neutrophils, 
chondrocytes, fibroblasts, and epithelial cells [46, 47]. 
CHI3L1 is intricately associated with the onset and pro-
gression of various inflammatory diseases and inflam-
mation related tumors [48, 49]. In the context of GC, 
CHI3L1 is upregulated and positively correlated with 
the depth of tumor invasion, lymph node status, and 
tumor staging [50, 51]. CHI3L1 interacts with its recep-
tor CD44, leading to the activation of the AKT and ERK 
pathways and the phosphorylation of β-catenin. This 
interaction promotes malignant phenotypes [35]. CD44, 
a single-pass transmembrane glycoprotein, is expressed 
on embryonic stem cells, connective tissue, and bone 
marrow cells. Elevated expression of CD44 has been 
observed in individuals with gastric lesions that have pro-
gressed along the gastric precancerous cascade, as well 
as in those with Helicobacter pylori-positive gastritis [52, 
53]. CD44 is upregulated in malignant cells and acts as a 
marker for gastric stem cells. Activated by CHI3L1, CD44 
affects the cell cycle, proliferation, differentiation, EMT, 
and metabolism via Wnt/β-catenin, PI3K/AKT, and ERK 
signaling pathways, which are crucial for GC progression 
and metastasis [54–56].

Among these pathways, activation of the Wnt/β-
catenin pathway leads to the accumulation of β-catenin in 
the nucleus, promoting the expression of tumorigenesis-
related genes such as c-Myc, which is closely associated 
with the development of GC [57]. The PI3K/AKT path-
way regulates cell growth, metabolism, and survival, and 

is more closely linked to the progression of gastric can-
cer [58]. Activation of the ERK pathway is typically trig-
gered by the overexpression or mutation of growth factor 
receptors (e.g., EGFR), contributing to enhanced cell pro-
liferation and survival [59]. In this study, we concentrate 
on the GPL stage and demonstrate that CHI3L1 expres-
sion is significantly elevated in both GPL and GC tissues. 
The significant release of CHI3L1 effectively regulates 
the CD44-β-catenin-c-Myc signaling pathway in both in 
vitro and in vivo models, which contributes to the pro-
motion of malignant cellular phenotypes. These findings 
elucidate a potential mechanism underlying the trans-
formation from gastritis-to-cancer, thereby establishing 
a theoretical foundation for the development of targeted 
therapeutic agents aimed at this pathway. Naturally, there 
remains considerable scope for the enhancement and 
optimization of core gene acquisition algorithms based 
on machine learning [60]. This includes refining the SVM 
algorithm [61] for more effective gene selection, improv-
ing overall model performance, and integrating multiple 
novel model combinations to collaboratively construct 
more robust systems [62, 63]. Such advancements will be 
instrumental in facilitating the identification and screen-
ing of more suitable potential targets.

Given the significant role of CHI3L1 in the progres-
sion from gastritis-to-cancer, we conducted an analysis 
to identify the cell types responsible for its secretion. Our 
findings indicate that CHI3L1 is predominantly secreted 
by fibroblasts and dendritic cells, and its expression cor-
relates with poor prognosis in GC. This is consistent 
with previous research that integrated proteomics and 
transcriptome analysis, identifying plasma CHI3L1 as 
a potential biomarker for patients with endoscopically 
resectable GC [14]. Therefore, assessing the expression 
levels of CHI3L1 can facilitate the identification of GPL 
patients at elevated risk for progression to GC, while also 
serving as a valuable reference for clinicians in the devel-
opment of treatment strategies. Future research should 
focus on creating precise CHI3L1-targeted liquid biopsy 
platforms using advanced methods to measure CHI3L1 
in various biofluids [64]. Integrating these biomark-
ers with clinical and histopathological data via machine 
learning techniques may lead to the development of a 
robust diagnostic system, thereby improving the early 
detection of EGC and facilitating timely interventions for 
high-risk populations.

(See figure on previous page.)
Fig. 9 CHI3L1, mainly secreted by fibroblasts and dendritic cells, is linked to poor prognosis in gastric cancer. (A) Cell subpopulation clustering results 
of GSE167297 dataset. (B) The expression distribution of CHI3L1 at single-cell resolution. (C) The expression distribution of CD44 at single-cell resolution. 
(D) The co expression results of CHI3L1 and CD44 in single cells. (E) Co-immunofluorescence staining for α-SMA, CD11c, and CHI3L1 in control and GPL 
rat gastric mucosa (scale bar, 100 μm). (F) Differences in prognostic outcomes among patients with high and low expression of CHIL31 in the GSE22377 
dataset. (G) DFS survival outcomes of patients with high and low CHIL31 expression in the TCGA database. (H) The DSS survival outcomes of patients with 
high and low CHIL31 expression in the TCGA database
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Conclusion
This study highlights CHI3L1 as a key gene in the tran-
sition from gastritis to cancer, confirming its role in 
promoting cancerous behavior through the CD44-β-
catenin-c-Myc pathway. Measuring CHI3L1 levels in 
serum or body fluids could improve early detection and 
intervention in EGC. Inhibiting the secretion levels of 
CHI3L1 or targeting the blockade of its downstream 
signaling pathways may represent a potentially effective 
strategy for preventing the malignant progression, thus 
warranting further investigation and validation.
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