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Single-cell transcriptomics reveals metabolic 
remodeling and functional specialization 
in the immune microenvironment of bone 
tumors
Jun Chen1, Na Cui1, Shao‑Hui He2, Chun‑Yan Xia1 and Wei‑Qing Li1* 

Abstract 

Objective To investigate the metabolic remodeling and functional specialization of immune cells within the tumor 
microenvironment (TME) of bone tumors, including Ewing’s sarcoma, osteosarcoma, and giant cell tumor of bone, 
through high‑resolution single‑cell RNA sequencing (scRNA‑seq) analysis.

Methods Immune cells were isolated from 13 bone tumor samples and profiled via scRNA‑seq to delineate cellular 
compositions, metabolic adaptations, and intercellular communication networks. Differential gene expression analy‑
sis, metabolic pathway enrichment, and pseudotime trajectory inference were employed to characterize functional 
states and differentiation processes of immune cell subsets.

Results We identified 12 major immune cell clusters with distinct functional and metabolic characteristics. Naïve T 
cells exhibited amino acid metabolism‑dependent activation potential, whereas NK cells relied on lipid metabolism 
and the TCA cycle for cytotoxic activity. Macrophage subsets demonstrated functional divergence: C06 macrophages 
adopted lipid metabolism to facilitate immunosuppression and tissue repair, while C04 macrophages displayed 
pro‑inflammatory characteristics associated with complement activation. Intercellular signaling analysis revealed FN1 
as a central regulator of immune coordination, governing cell adhesion, migration, and homeostasis within the TME.

Conclusion This study provides novel insights into the metabolic and functional plasticity of immune cells in bone 
tumor TMEs, underscoring the critical role of metabolic remodeling in immune regulation. Our findings highlight 
potential therapeutic targets for modulating immune cell function and offering new avenues to improve treatment 
outcomes for patients with bone tumors.
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Introduction
Bone tumors represent a highly heterogeneous group of 
malignancies, posing significant challenges to the medi-
cal community, impacting millions of patients worldwide, 
and profoundly affecting survivors’ quality of life [1]. Pri-
mary malignant bone tumors include Ewing’s sarcoma 
(ES) and osteosarcoma (OS), while giant cell tumor of 
bone (GCTB) is an intermediate-grade neoplasm with 
locally aggressive behavior [2]. However, early-stage 
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primary bone tumors are often asymptomatic, leading 
to delayed medical consultation, typically prompted by 
pathological fractures or severe pain [3]. Unfortunately, 
the highly invasive nature of malignant bone tumors ena-
bles rapid progression and metastasis, particularly to the 
lungs, posing a major challenge for early diagnosis and 
effective intervention.

Despite substantial research efforts to identify molec-
ular targets for treatment, no therapeutic strategies 
currently appear poised to transform the clinical manage-
ment of primary bone malignancies [4]. Immunotherapy 
has emerged as a promising alternative, gaining increas-
ing attention in oncology [5, 6]. Although the immune 
system possesses the intrinsic capacity to recognize and 
eliminate tumor cells, immune evasion remains a fun-
damental hallmark of cancer [7]. Thus, a comprehensive 
investigation of the tumor microenvironment (TME) is 
urgently needed to advance our understanding of sys-
temic immunotherapy in primary bone tumors.

In this study, we employed single-cell RNA sequenc-
ing (scRNA-seq) to systematically delineate the immune 
landscape of bone tumors at single-cell resolution. By 
analyzing immune cells from tumor samples of ES, OS, 
and GCTB patients, we characterized cellular heteroge-
neity, functional specialization, and metabolic adapta-
tions within the TME. Specifically, our analysis identified 
distinct immune cell populations, including macrophage 
subsets exhibiting either pro-inflammatory or tissue-
remodeling phenotypes, as well as functionally diverse 
T cell subpopulations, revealing the dynamic interplay 
between immune activation and suppression. These 
findings provide new insights into immune regulatory 
mechanisms in bone tumors and highlight potential ther-
apeutic targets for modulating the TME.

Material and methods
Data and code availability
The raw single-cell RNA sequencing (scRNA-seq) data-
sets analyzed in this study have been deposited in the 
Gene Expression Omnibus (GEO) under accession 
numbers GSE168664, GSE212341, GSE210750, and 
GSE198896. Detailed clinicopathological information for 
patients with ES, OS, and GCTB is available in the Sup-
plementary Materials (ST.12). The R scripts used for pri-
mary data processing and analysis can be accessed upon 
reasonable request to the corresponding authors.

Single‑cell RNA‑seq data processing
All analyses were conducted in R (version 4.0.3) using the 
Seurat package (version 3.1.1). During quality control, 
cells with fewer than 200 detected genes or a mitochon-
drial gene content exceeding 10% were excluded. Dou-
blets or multiplets were identified and removed using 

the DoubletFinder function when multiple population-
specific marker genes exhibited aberrantly high expres-
sion within a single cell. Additionally, cells with UMI 
counts exceeding 40,000 or gene counts above 5000 were 
excluded to mitigate potential doublet contamination. 
The remaining UMI counts were normalized using the 
NormalizeData function with the ‘logNormalize’ method 
and a scaling factor of 10,000.

Dimensionality reduction and unsupervised clustering
Highly variable genes were identified using the Find-
VariableGenes function under default parameters and 
subsequently used for linear dimensionality reduction. 
Principal Component Analysis (PCA) was performed 
on the top 2000 highly variable genes using the RunPCA 
function. The optimal number of principal components 
was determined based on ElbowPlot inspection. For visu-
alization, uniform manifold approximation and projec-
tion (UMAP) was applied using the RunUMAP function 
with a perplexity value of 30. Unsupervised clustering of 
single cells was conducted using the FindClusters func-
tion at a resolution of 0.6, leveraging the same principal 
components used for UMAP visualization.

Identification of differentially expressed genes (DEGs)
Differentially expressed genes (DEGs) across clusters 
were identified using the FindAllMarkers or FindMark-
ers function in Seurat. Adjusted P-values were computed 
using the Bonferroni correction, and genes with adjusted 
P-values exceeding 0.05 were excluded. For pairwise dif-
ferential expression analysis between immune cell sub-
clusters, the Wilcoxon rank-sum test was employed.

Metabolic pathway analysis
Metabolic pathway activity was inferred using the scMe-
tabolism R package, which integrates single-cell expres-
sion data with KEGG-defined metabolic pathways. 
Pathway scores were calculated for each cell, and meta-
bolic differences among subpopulations were visualized 
using heatmaps and violin plots. This analysis provided 
insights into the metabolic specialization and plasticity of 
immune cells within the bone tumor microenvironment.

Pseudotime transcriptional trajectory analysis
Cellular differentiation trajectories were inferred using 
the Monocle2 package. The top 400 signature genes iden-
tified by the Differential GeneTest function were selected 
as input for pseudotime analysis. RNA expression counts 
from selected subclusters were utilized to reconstruct the 
developmental trajectories of monocytes, macrophages, 
osteoclasts, T and NK cells. Lineage differentiation was 
determined following dimensionality reduction and cell 
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ordering, while generalized additive models (GAMs) 
were employed to visualize expression trends.

Cell–cell interaction network analysis
Cell–cell communication was analyzed using the Cell-
Chat package to infer intercellular signaling interactions. 
The netAnalysis_signalingRole_scatter function was 
applied to visualize incoming and outgoing interaction 
strengths, whereas the netAnalysis_contribution func-
tion identified significant ligand-receptor pairs. Highly 
enriched signaling pathways were displayed using the 
netAnalysis_signalingRole_heatmap and netVisual_
aggregate functions. Specific signaling interactions, such 
as FN1-mediated signaling between source and target 
cell types, were visualized using the netVisual_bubble 
function.

Statistical analysis
All statistical analyses were performed using R software 
(version 4.0.3) and GraphPad Prism (version 8). Data 
were expressed as mean ± standard error of the mean 
(SEM). For comparisons between two groups, either an 
unpaired Student’s t-test or Wilcoxon rank-sum test was 
conducted, depending on data distribution. For compari-
sons across more than three groups, one-way analysis of 
variance (ANOVA) was applied. Statistical significance 
was defined as P-values < 0.05 (two-tailed).

Results
Immune landscape of the bone tumor microenvironment
Through scRNA-seq analysis of 13 bone tumor samples 
from patients (4 ES, 4 OS, and 5 GCTB) (Fig.  1A), we 
identified 12 major immune cell clusters using UMAP-
based clustering (Fig.  1B). These clusters included 
C05_Monocyte_FCN1 (high CD14 expression), two 
macrophage subsets (C04_Macrophage_CCL3L1 and 
C06_Macrophage_APOE), plasmacytoid dendritic cells 
(C02_pDC_LILRA4), classical dendritic cells (C07_
cDC_CLEC10A), osteoclasts (C08_Osteoclast_CTSK), 
and B cells (C01_B cell_MS4A1). T cells were further sub-
divided into three functionally distinct subpopulations: 
naïve T cells (C09_Tnaïve_TCF7), memory T cells (C10_
Tem_GZMK), and regulatory T cells (C12_Treg_FOXP3). 
Natural killer (C11_NK_KLRD1) cells exhibited high 
KLRD1 expression (Fig. 1C).

Distinct functional characteristics were observed 
in macrophage and T cell subsets based on their top-
enriched genes. C04 macrophages, characterized by 
high CCL3L1 expression, exhibited a pro-inflammatory 
phenotype, with additional enrichment of genes such 
as C1QB, FOLR2, and LGMN, indicating roles in com-
plement activation, antigen processing, and immune 
recruitment [8, 9]. In contrast, C06 macrophages, 
defined by high APOE expression, were associated with 
lipid metabolism and extracellular matrix remodeling, 
as indicated by the co-expression of COL1A1, COL3A1, 
and HMOX1 [10]. These findings suggest functional 
specialization, with C04_Macrophage_CCL3L1 pro-
moting inflammation and immune activation, whereas 
C06_Macrophage_APOE contributing to stromal remod-
eling and metabolic regulation.

T cell subsets also displayed considerable heterogene-
ity and specialization within the tumor microenviron-
ment. Naïve T cells (C09) marked by high expression of 
TCF7, IL7R, and CD69, played essential roles in early 
antigen recognition and differentiation [11]. Memory T 
cells (C10) exhibited high expression of GZMK, CCL5, 
and IFNG, reflecting their cytotoxic potential and effec-
tor memory functions [12]. In contrast, regulatory T cells 
(Tregs) (C12), characterized by high FOXP3, CTLA4, 
and TIGIT expression, played immunosuppressive roles 
in maintaining immune homeostasis and facilitating 
immune evasion [13] (Fig. 1D).

Our findings provide a comprehensive overview of 
immune cell diversity in bone tumors, revealing the func-
tional specialization of macrophage and T cell subsets 
and their roles in shaping the tumor microenvironment.

Immunological heterogeneity and subtype‑specific 
immune dynamics in bone tumors
Clustering analysis of immune subpopulations identi-
fied three immunological subtypes (Group 1–3) across 
bone tumor samples, reflecting the heterogeneity of 
their immune microenvironments (Fig. 2A, B). Statistical 
analysis revealed significant differences in immune sub-
population distributions among tumor types (Fig.  2C). 
B cells (C01) were significantly enriched in ES and OS 
compared to GCTB (P < 0.01), while pDCs (C02), naïve 
T cells (C09), and NK cells (C11) were most abundant 
in OS (P < 0.05), highlighting active adaptive and innate 

(See figure on next page.)
Fig. 1 Workflow and single‑cell RNA sequencing analysis reveal the immune microenvironment of bone tumors. A Schematic representation 
of the single‑cell RNA sequencing workflow. B UMAP plot illustrating the clustering of immune cells from 13 tumor samples. The figure uses color 
coding to represent immune cell clusters, cell types, and sample origin. C Violin plots showing the expression of marker genes used to identify 
cell types and characteristic genes for each immune cell cluster. D Heatmap displaying the top 10 differentially expressed genes (DEGs) for each 
immune cell cluster
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immune responses in this subtype. Conversely, C06 tis-
sue-remodeling macrophages, predominantly enriched 
in GCTB, were associated with metabolic regulation and 
extracellular matrix remodeling (P < 0.05). This observa-
tion aligns with prior studies suggesting a critical role for 
myeloid cells in regulating the tumor matrix and bone 
remodeling in GCTB.

Analysis of immune subpopulation distributions within 
groups further defined the characteristics of each sub-
type (Fig. 2D). Group 1 (comprising two ES and two OS 
samples) represented a lymphoid-dominated immune 
phenotype, with significant enrichment of B cells (C01) 
and higher levels of pDCs (C02), naïve T cells (C09), 
memory T cells (C10), and NK cells (C11) compared to 
other groups. This phenotype suggests a microenviron-
ment dominated by adaptive immune activation, con-
sistent with prior findings linking enhanced lymphoid 
infiltration to anti-tumor immunity in osteosarcoma. 
Group 2, composed of two OS samples, one ES sample, 
and one GCTB sample, exhibited an intermediate level 
of immune infiltration. Although pDCs (C02) and naïve 
T cells (C09) were less enriched compared to Group 1, 
their levels were remained higher than those in Group 3. 
Additionally, Group 2 displayed significant enrichment of 
plasma cells (C03), indicative of active humoral immune 
responses. These findings align with previous research 
highlighting the role of plasma cells in antibody-mediated 
tumor immunity. Group 3, predominantly composed of 
GCTB samples (4 cases) and one ES sample, exhibited a 
myeloid-dominated phenotype characterized by signifi-
cant enrichment of macrophages (C04 and C06), classical 
dendritic cells (C07), and osteoclasts (C08). This subtype 
reflects a tumor microenvironment characterized by 
inflammation, tissue remodeling, and immune suppres-
sion, consistent with prior findings on the critical roles 
of myeloid cells in GCTB-associated bone resorption and 
immunosuppression.

Correlation analysis revealed cooperative interactions 
within lymphoid cells (Fig.  2E). B cells (C01) exhibited 
a strong positive correlation with naïve T cells (C09) 
(R = 0.63, P < 0.05) and regulatory T cells (C12) (R = 0.56, 
P < 0.05), suggesting that B cells may support adaptive 
immunity through collaboration with naïve T cells while 

maintaining immune homeostasis via interactions with 
regulatory T cells. Additionally, memory T cells (C10) 
and NK cells (C11) displayed a significant positive cor-
relation (R = 0.57, P < 0.05), indicative of functional coop-
eration in enhancing cytotoxic anti-tumor responses. 
These findings are consistent with previous research 
demonstrating that memory T cells enhancing NK cell 
activity to promote tumor cell killing. In contrast, C06 
macrophages exhibited negative correlations with naïve 
T cells (C09) (R = −0.7725, P = 0.0020) and NK cells (C11) 
(R = −0.6973, P = 0.0081), reinforcing their immunosup-
pressive role (Fig. 2F). This suppression may be mediated 
through inhibitory signaling pathways or extracellular 
matrix remodeling, which hinders lymphoid cell infiltra-
tion and activation.

Taken together, we underscore the distinct immune 
landscapes of bone tumors and reveal dynamic interac-
tions between immune subtypes. While cooperative 
interactions among lymphoid cells enhance adaptive and 
cytotoxic immunity, myeloid-driven immunosuppressive 
mechanisms counteract lymphoid-mediated immune 
activation.

Metabolic and functional plasticity of T and NK cells 
in the bone tumor microenvironment
To elucidate the immune landscape and cellular dynam-
ics of T and NK cells within the bone tumor microenvi-
ronment, we employed pseudotime analysis to map their 
differentiation trajectories across distinct states (Fig. 3A). 
Five differentiation states (State 1–5) were identified, rep-
resenting transitions from naïve to effector and regula-
tory phenotypes. State 1, primarily composed of naïve T 
cells (C09), exhibited high expression of TCF7 and SELL, 
highlighting their roles in early differentiation and anti-
gen recognition. State 2, a transitional phase, demon-
strated an increasing presence of memory T cells (C10), 
characterized by GZMK, CCL5, and NKG7 expression, 
indicative of enhanced cytotoxic and effector functions, 
Despite its mixed lymphoid composition, this state sug-
gested a shift toward an activated immune phenotype. 
State 3 and State 5 were primarily composed of NK cells 
(C11), reflecting a distinct differentiation trajectory due 
to the phylogenetic divergence between NK cells and 

Fig. 2 Immune cell composition and functional correlation in bone tumor samples. A Bar plot showing the distribution of immune cell clusters 
across individual tumor samples. B Cluster dendrogram displaying the similarity between tumor samples. Based on immune cell composition, 
samples are categorized into three groups. C Boxplots grouped by tumor type (OS, ES, and GCTB) showing the distribution of immune cell clusters 
with significant differences. D Boxplots grouped by the immune classification identified in B. E Matrix plot showing Mantel’s test results for pairwise 
correlation between immune cell clusters based on gene expression profiles. The correlation strength (r value) and statistical significance (P‑value) 
are represented by color intensity. F Scatter plots showing the correlation of C06_Macrophage_APOE with C09_Tnaive_TCF7 and C11_NK_KLRD1. 
The X‑axis represents the percentage of C06_Macrophage_APOE, while the Y‑axis shows the percentage of the respective clusters

(See figure on next page.)
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T cells. These states were defined by high expression of 
TYROBP, GNLY, and PRF1, underscoring the innate 
cytotoxic capabilities of NK cells. State 4, dominated by 
regulatory T cells (C12), emerged as the most prominent 
population along the differentiation continuum, marked 
by high FOXP3, CTLA4, and IL2RA expression. This state 
encapsulated the dynamic equilibrium between immune 
exhaustion and proliferation, functioning as a regulatory 
hub within lymphoid differentiation (Fig. 3B, C).

Gene set enrichment analysis revealed metabolic 
specializations associated with these functional states 
(Fig.  3D, F). Naïve T cells (C09) were enriched in path-
ways such as cysteine and methionine metabolism and 
butanoate metabolism, indicating a reliance on amino 
acid and sulfur metabolism to sustain cellular readiness 
and oxidative balance (Fig. 3G) [14]. In contrast, NK cells 
(C11) exhibited significant enrichment in glycerophos-
pholipid metabolism, linoleic acid metabolism, and the 
citrate cycle (TCA cycle), with high expression of PRF1, 
KLRF1, and SPON2, essential for cytotoxic degranula-
tion. Additionally, their enrichment in arginine bio-
synthesis and ether lipid metabolism highlighted their 
metabolic adaptability to nutrient fluctuations in the 
tumor microenvironment (Fig.  3F, G). This metabolic 
diversity underscores the functional disparities between 
quiescent T cells and highly active NK cells.

In summary, T and NK cells within the bone tumor 
microenvironment exhibit dynamic functional and 
metabolic plasticity, balancing immune activation and 
suppression.

Dynamic differentiation and functional specialization 
of myeloid cells in the bone tumor microenvironment
To dissect the differentiation dynamics of myeloid cells 
in the bone tumor microenvironment, we performed 
pseudotime analysis and identified seven distinct dif-
ferentiation states (State 1–7), spanning from early 
immune responses of monocytes to the tissue-remod-
eling functions of osteoclasts (Fig.  4A). The diverse dif-
ferentiation trajectories of myeloid cells were closely 
linked to their functional and metabolic specializations, 
highlighting their critical roles in shaping the tumor 
microenvironment.

State 1 was predominantly composed of monocytes 
(C05) that highly expressed FCN1 and S100A fam-
ily genes (Fig.  4B, C). These genes are associated with 
inflammatory signaling and early immune activation, 
emphasizing the pivotal role of monocytes in initiating 
immune responses [15]. By contrast, State 2 was enriched 
in classical dendritic cells (C07), characterized by high 
expression of CLEC10A, HLA-DRA, and CD1C (Fig. 4B, 
C), reflecting their essential roles in antigen presentation 
and adaptive immune activation [16]. As differentiation 
progressed, State 3 and 7 were dominated by osteoclasts 
(C08), which highly expressed CTSK, MMP9, and ACP5 
(Fig.  4B, C). These genes highlight the osteoclasts’ key 
functions in extracellular matrix degradation and bone 
remodeling [17]. Metabolic analysis revealed significant 
enrichment in the citrate cycle and oxidative phospho-
rylation pathways (Fig.  4E), suggesting that osteoclasts 
rely on energy-intensive metabolic processes to sustain 
bone resorption. State 4 was primarily composed of mac-
rophages (C06) that predominantly expressed APOE and 
HMOX1 (Fig. 4B, C), reflecting their involvement in lipid 
metabolism and anti-inflammatory functions [10]. Meta-
bolic analysis indicated significant enrichment in syn-
thesis and degradation of ketone bodies and linoleic acid 
metabolism (Fig.  4E), suggesting that C06 macrophages 
regulate immune suppression and tissue repair through 
lipid metabolic reprogramming [18]. State 5 and State 
6 were enriched in another macrophage subset (C04), 
which highly expressed genes associated with comple-
ment activation, pro-inflammatory signaling, and chemo-
taxis (Fig.  4D). In contrast, C06 macrophages exhibited 
minimal expression of these genes, reinforcing their 
functional divergence. This discrepancy underscores the 
pro-inflammatory and highly activated nature of C04 
macrophages, while C06 macrophages are more special-
ized in tissue repair and metabolic regulation.

Myeloid cells in the bone tumor microenviron-
ment exhibit significant functional heterogeneity and 
dynamic differentiation. From the immune activation 
roles of monocytes to the matrix degradation functions 
of osteoclasts, and the divergent roles of macrophages 
in inflammation and repair.

(See figure on next page.)
Fig. 3 Trajectory analysis and functional features of T and NK cells in bone tumors. A UMAP plot and pseudotime trajectory of T and NK cells. The 
trajectory is colored by pseudotime (from low to high) and state transitions (State 1 to State 5). B The upper panel shows the developmental tree 
of T and NK cells, with each node represented as a pie chart displaying the composition of cell types from different states along the trajectory. The 
lower panel consists of boxplots depicting the pseudotime distribution of each cluster. C Violin plots showing the expression of functional genes 
in T and NK cells. D Violin plots displaying naïve, cytotoxic, exhausted, and proliferation scores for each cluster. E Heatmap presenting the top 10 
DEGs for each T and NK cell cluster. F Volcano plot identifying upregulated genes in C09_Tnaive_TCF7 and C11_NK_KLRD1. Genes with significant 
fold changes and adjusted P‑values are highlighted. G Clustering heatmap showing the enriched metabolic pathways for each cluster
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Cellular interactions and metabolic‑signaling regulation 
in the bone tumor microenvironment
In the bone tumor microenvironment, myeloid and 
lymphoid cells orchestrate tumor immune regulation 
through complex intercellular interactions and metabolic 
remodeling. Building upon previous findings, we con-
ducted a comprehensive analysis of intercellular signaling 
networks, integrating metabolic pathway characteristics 
to reveal key communication mechanisms among mono-
cytes, macrophages, osteoclasts, T cells, and NK cells, 
with a particular focus on the FN1 signaling pathway.

Signal transmission analysis indicated that the immune 
regulation and tissue remodeling functions of mye-
loid cells are closely associated with their metabolic 
state (Figs.  5A, B). Osteoclasts (C08) secreted SPP1 
interacting with integrin receptors (ITGAV + ITGB1, 
ITGAM + ITGB2), thereby forming robust signaling 
connections. These interactions not only facilitated 
the migration and activation of lymphoid cells but also 
enhanced osteoclast integration into the local microen-
vironment during bone matrix degradation [19]. Among 
macrophage subsets (C04 and C06), distinct functional 
roles were observed: C04 macrophages mediated pro-
inflammatory signals via CCL3L1-CCR1 interactions, 
while C06 macrophages regulated immune suppression 
through APOE and lipid metabolism pathways, reflecting 
their anti-inflammatory and tissue-repairing functions.

Lymphoid cells, including T cells (C09, C10) and NK 
cells (C11), also played critical roles in signal transmis-
sion and metabolic remodeling (Fig.  5A, C). T cells, 
through high IFNG expression, formed a feedback loop 
with myeloid cells, driving immune activation [20] and 
further enhancing intercellular adhesion and migration 
via FN1 signaling. The FN1 signaling pathway played a 
central regulatory role in the interaction between mye-
loid and lymphoid cells (Figs. 5D, E). FN1 engaged inte-
grin receptors such as ITGA4 + ITGB1, ITGAV + ITGB1, 
and CD44 to modulate cell adhesion, migration, and 
signal transmission [21, 22]. This pathway established 
significant bidirectional signaling axes between mac-
rophages (C04 and C06) and T cells (C09 and C12), 
providing structural and functional support for the coor-
dinated activity of various cell types within the microen-
vironment. Furthermore, FN1 signaling was significantly 
supporting cellular energy demands and maintaining 

immune suppression and homeostasis within the tumor 
microenvironment by regulating immune cell function 
[23, 24].

In conclusion, we integrated multidimensional analy-
ses of intercellular signaling and metabolic remodeling, 
revealing the dynamic communication mechanisms 
between myeloid and lymphoid cells in the bone tumor 
microenvironment. As a key hub, the FN1 signaling path-
way not only bridges physical and functional intercel-
lular interactions but also drives metabolic adaptation 
to maintain tumor microenvironment homeostasis and 
immune dysfunction.

Discussion
The development of bioinformatics algorithms has sig-
nificantly contributed to advancing life science research 
[25–27]. With the rapid evolution of sequencing tech-
nologies, single-cell RNA sequencing (scRNA-seq) has 
become an indispensable tool for dissecting the immune 
microenvironment of tumors [28, 29]. Computational 
methods enable the efficient processing and visualiza-
tion of high-dimensional data [30]. Through scRNA-
seq analysis, researchers have gained a comprehensive 
understanding of the distribution and subtype-specific 
characteristics of immune cells across various cancer 
types [31–33]. However, single-cell sequencing also has 
inherent limitations, including limited coverage depth 
and the inability to capture certain rare cell subpopula-
tions. Nevertheless, it remains a powerful approach for 
studying cellular heterogeneity and immune dynamics in 
tumors.

In recent years, several single-cell studies have provided 
valuable insights into bone-related tumors. For example, 
Shenglin Wang et  al. constructed a high-resolution cel-
lular atlas of the bone metastatic microenvironment 
in NSCLC, revealing the central role of cellular senes-
cence in bone metastasis [34]. Their study identified the 
SOX18 and SPP1 signaling pathways as potential thera-
peutic targets and highlighted the role of CD4Tstr cells 
in immunosuppression and angiogenesis. Similarly, tar-
geting cancer-associated fibroblasts (CAFs) has emerged 
as a key research focus in bone tumors. Xin Huang et al. 
applied single-cell sequencing to analyze the tumor 
microenvironment of recurrent osteosarcoma, identify-
ing SERPINE1-expressing CAFs as a critical driver of 

Fig. 4 Pseudotime trajectory and metabolic specialization of myeloid cells. A UMAP and trajectory plot illustrating the pseudotime of myeloid cells. 
B Developmental tree and pseudotime boxplots of myeloid cells. C Heatmaps showing the DEGs for myeloid cell clusters. The left panel highlights 
the DEGs for each cluster, while the right panel visualizes the dynamic expression of these DEGs along the pseudotime trajectory. D Violin plots 
illustrating the expression levels of functional genes across myeloid cell clusters. E Dot plot depicting the enriched metabolic pathways for each 
myeloid cell cluster

(See figure on next page.)
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tumor recurrence by promoting CAF activation, enhanc-
ing the epithelial-to-mesenchymal transition (EMT) 
process, and modulating macrophage polarization [35]. 
Furthermore, their research characterized a distinct 
LOX-high-expressing CAF phenotype, demonstrating its 
essential role in osteosarcoma progression [36].

The tumor immune microenvironment (TME) plays 
a crucial role in cancer progression, clinical classifica-
tion, and precision therapy. Previous studies have out-
lined four key strategies for enhancing T-cell anti-tumor 
activity by modulating immune checkpoints through 
nanotechnology-based delivery systems to counteract 
T-cell exhaustion [37]. These systems can also be lever-
aged to reprogram macrophages, enhancing the stabil-
ity of METTL14 in  vivo, inhibiting the TLR4 pathway, 
regulating macrophage polarization, and remodeling 
the TME to improve anti-tumor responses [38]. In con-
trast, our study focused on the metabolic regulation of 
immune cells within the TME. Using scRNA-seq, we sys-
tematically characterized the immune landscape of bone 
tumors, including Ewing’s sarcoma (ES), osteosarcoma 
(OS), and giant cell tumor of bone (GCTB). Our findings 
revealed extensive immune heterogeneity and functional 
specialization, highlighting distinct immune dynamics 
orchestrated by lymphoid and myeloid populations.

Notably, we identified macrophage subsets with dis-
tinct functional properties, such as the pro-inflamma-
tory C04 and the tissue-remodeling C06 macrophages, 
underscoring their dual roles in promoting inflammation 
and immunosuppression, which are intimately linked to 
tumor progression and extracellular matrix remodeling. 
Subtype-specific immune profiles were also observed, 
with ES and OS tumors exhibited lymphoid-dominant 
microenvironments enriched in B cells, naïve T cells, and 
NK cells, indicative of active adaptive and innate immune 
responses. Conversely, GCTB displayed a myeloid-dom-
inated phenotype, characterized by significant enrich-
ment of osteoclasts and macrophages, emphasizing the 
role of myeloid cells in tissue remodeling and immu-
nosuppression. These findings refine our understand-
ing of bone tumor subtypes and suggest the necessity 
of tailored immunotherapeutic strategies that target the 
unique immune compositions of each tumor type.

Metabolic analysis further revealed that immune cells 
within the bone tumor microenvironment adapt their 

metabolic pathways to meet distinct functional demands. 
Naïve T cells relied on amino acid metabolism to sustain 
activation potential [14], while NK cells exhibited pref-
erential enrichment in lipid metabolism and the TCA 
cycle to support cytotoxic activity. Additionally, mac-
rophage subsets displayed divergent metabolic profiles, 
linking lipid metabolism to their roles in tissue repair 
and immune suppression [10]. These findings empha-
size the intricate interplay between cellular function and 
metabolic plasticity, providing a rationale for targeting 
immune cell metabolism as a strategy to modulate the 
TME.

The TME is a highly dynamic and complex system that 
plays a pivotal role in cancer progression, immune regu-
lation, and therapeutic resistance [39, 40]. Among the key 
regulators of the TME, fibronectin 1 (FN1), a major extra-
cellular matrix (ECM) protein, has emerged as a criti-
cal modulator of tumor-immune interactions. A study 
on prostate cancer bone metastasis identified FN1 as a 
key player in macrophage-induced anti-androgen resist-
ance, proposing the FN1-integrin-SRC signaling axis as 
a potential therapeutic target for metastatic castration-
resistant prostate cancer [41]. Furthermore, studies on 
head and neck tumors have demonstrated that high FN1 
expression is significantly associated with poor progno-
sis and higher pathological grade in HNSCC patients. 
The autophagy-lysosome degradation pathway of FN1 
has been implicated in regulating EMT in HNSCC [42]. 
Consistently, our study identified FN1 signaling as a cen-
tral pathway modulating immune cell dynamics, with 
key interactions involving integrin receptors such as 
ITGA4 + ITGB1, ITGAV + ITGB1, and CD44. Similarly, 
studies in breast and kidney cancers have also validated 
these findings [24, 43].

In conclusion, by delineating subtype-specific immune 
dynamics and identifying critical cellular interactions, 
such as the FN1-mediated signaling network, our study 
highlights novel opportunities for immunotherapy. Tar-
geting specific metabolic pathways in immune cells may 
enhance their anti-tumor activity or attenuate immu-
nosuppressive mechanisms within the TME. Moreover, 
integrating metabolic profiling into diagnostic protocols 
could facilitate the early identification of patients most 
likely to benefit from personalized immunotherapy. Nev-
ertheless, our study has certain limitations, including a 

(See figure on next page.)
Fig. 5 Intercellular communication and signaling networks in bone tumor microenvironment. A Heatmap of outgoing and incoming signaling 
patterns for each immune cell cluster. B Bar plots summarizing the overall communication strength of major pathways across immune cell clusters. 
C Scatter plot showing the relative contribution of different immune cell clusters to shaping the immune microenvironment (outgoing signaling 
strength) and receiving environmental signals (incoming signaling strength). D Circle plots displaying the detailed intercellular communication 
network for FN1 signaling pathways. E Dot plot illustrating the specific interaction mechanisms within the FN1 signaling pathway
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relatively small sample size, necessitating further valida-
tion in larger patient cohorts. Additionally, as the data 
were derived from multiple datasets, potential discrepan-
cies in treatment backgrounds and patient heterogeneity 
must be considered. Future research will focus on eluci-
dating the causal relationships between metabolic path-
ways and immune cell function, conducting clinical trials 
to facilitate translational applications, and evaluating the 
real-world efficacy of metabolic interventions.
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