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Abstract 

Background Immune checkpoint inhibitors (ICI) have revolutionized cancer treatment, particularly in advanced non-
small cell lung cancer (NSCLC) and muscle-invasive bladder cancer (MIBC). However, identifying reliable predictive 
biomarkers for ICI response remains a significant challenge. In this study, we analyzed real-world cohorts of advanced 
NSCLC and MIBC patients treated with ICI as first-line therapy.

Methods Tumor samples underwent Whole Genome Sequencing (WGS) to identify specific somatic variants 
and assess tumor mutational burden (TMB). Additionally, mutational signature extraction and pathway enrichment 
analyses were performed to uncover the underlying mechanisms of ICI response. We also characterized HLA-I haplo-
types and investigated LINE-1 retrotransposition.

Results Distinct mutation patterns were identified in patients who responded to treatment, suggesting potential 
biomarkers for predicting ICI effectiveness. In NSCLC, tumor mutational burden (TMB) did not differ significantly 
between responders and non-responders, while in MIBC, higher TMB was linked to better responses. Specific muta-
tional signatures and HLA haplotypes were associated with ICI response in both cancers. Pathway analysis showed 
that NSCLC responders had active inflammatory and immune pathways, while pathways enriched in non-respond-
ers related to FGFR3 and neural crest differentiation, associated to resistance mechanisms. In MIBC, responders had 
alterations in DNA repair, leading to more neoantigens and a stronger ICI response. Importantly, for the first time, we 
found that LINE-1 activation was positively linked to ICI response, especially in MIBC.

Conclusion These findings reveal promising biomarkers and mechanistic insights, offering a new perspective on pre-
dicting ICI response and opening up exciting possibilities for more personalized immunotherapy strategies in NSCLC 
and MIBC.
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Background
Immune checkpoint inhibitors (ICI) are improving 
patient survival and enhancing available therapeutic 
options for different cancers. Their association with 
improved quality of life and longer life expectancy in 
advanced cancer patients, whose prior therapeutic 
options were limited, has positioned them as the stand-
ard first-line treatment for the management of several 
advanced tumors. Nevertheless, response rates to ICI 
remain below 20–40% and the mechanisms driving ICI 
response are yet to be understood.

High PD-L1 staining by immunohistochemistry has 
been the stratification criterion to undergo ICI therapy. 
However, it presents several pitfalls: first, conflicting evi-
dence has been reported with some responders show-
ing low PD-L1 staining and some non-responders with 
positive staining (due, for instance, to immune-excluded 
tumors) [1]. Second, its high heterogeneity, lack of stand-
ardization (with different calculation methods (i.e. TPS, 
CPS)), lax positivity threshold, and possible inter-pathol-
ogist bias lead to the administration of ICI to almost all 
candidate patients [2, 3]. The tumor mutational burden 
(TMB, defined as the number of non-synonymous muta-
tions per megabase) has been also considered a candidate 
biomarker for ICI response, as somatic mutations can act 
as neoantigens that may favor tumor recognition by infil-
trating T-cells during ICI treatment [4, 5]. However, TMB 
was originally calculated through whole-exome sequenc-
ing (WES), complicating its clinical implementation due 
to the need of sufficient input material (not always avail-
able in small biopsies) and specific technical equipment 
and expertise [6]. Despite the attempts to obtain TMB 
from targeted panels, the discrepancy of the results has 
prevented its clinical implementation.

But not only the quantity of neoantigens has been asso-
ciated with ICI response, the quality of the neoantigens 
(immunogenicity) can impact on ICI response. Different 
sources of high-quality neoantigens have been recently 
proposed as ICI biomarkers, such as those generated by 
transposable elements (TE) that can be transcriptionally 
activated during cancer, which may explain why tumors 
with low TMB show good immunotherapy responses [7, 
8]. Among TE, the Pan-Cancer initiative has identified 
LINE-1 retrotransposons (L1) as being particularly active 
in certain tumor types [9, 10]. Interestingly, most of the 
tumor-specific TE-chimeric transcripts derive from the 
LINE class [11] and analyzing how active L1 can impact 
ICI response remains a pending question. Parallel to neo-
antigen generation, antigen processing and presentation 
is a crucial aspect of antitumor immunity under check-
point blockade, and the repertoire of the Human Leu-
kocyte Antigen (HLA) has recently emerged as a major 
focus of biomarker discovery efforts [12, 13].

Thus, we have performed a comprehensive characteri-
zation of the genomic landscape of advanced lung and 
bladder primary tumors from patients treated with ICI 
in first line. First, lung cancer remains the leading cause 
of cancer morbidity and mortality worldwide [14]. Spe-
cifically, non-small cell lung cancer (NSCLC) represents 
85% of lung cancer cases, and over 40% of patients are 
diagnosed at advanced stages, when surgical resection is 
not feasible, leading to a 5-year survival rate of just 9%. 
Second, in the case of urothelial carcinoma, also referred 
to as bladder cancer, in which 20–25% of patients present 
muscle invasive bladder cancer (MIBC) at diagnosis [15] 
and, although radical cystectomy is the standard treat-
ment, it only provides a 50% 5-year survival rate [16]. In 
both cases, ICI have supported a new therapy paradigm 
representing the gold standard for metastatic NSCLC 
without an associated targeted therapy [17, 18], and very 
recently also for metastatic urothelial carcinoma in com-
bination with enfortumab-vedotin [19], with several clin-
ical trials analyzing its potential in neoadjuvant settings.

Therefore, effective predictive biomarkers represent 
an urgent need to identify those patients most likely to 
benefit from ICI therapy. After profiling the genome 
from NSCLC and MIBC patients treated with ICI in two 
real-world cohorts, we have identified specific somatic 
alterations and mutational signatures associated with 
ICI response. We have additionally evaluated (*) whether 
non-coding regions impact TMB calculation, (**) the 
presence of specific HLA-I haplotypes as relevant predic-
tors of response to ICI, and the activation of L1 elements 
as potential high-quality neoantigens (***).

Methods
Patients’ cohorts, response and survival
We included a total of 34 advanced NSCLC patients 
collected from Hospital Álvaro Cunqueiro (Complexo 
Hospitalario Universitario de Vigo, CHUVI, Spain) 
and Complexo Hospitalario Universitario de Santiago 
(CHUS, Santiago de Compostela, Spain). Considering 
that our main aim was to facilitate the prediction of ICI 
response in patients that are frequently multi-treated 
and start with the immunotherapy after progressing to 
several therapy lines, all patients were treated with ICI at 
first line, either alone or in combination with chemother-
apy (Table 1). In this way, our genomic results are really 
impacted by the ICI treatment and not by the result of 
several therapy pressures, even when this restricted the 
number of candidate patients. 

We characterized the mutation profile of 17 patients 
using whole genome sequencing (WGS) and evaluated L1 
retrotransposition in 31 patients. Treatment-naive forma-
lin-fixed paraffin-embedded (FFPE) primary tumor biop-
sies were collected and peripheral blood mononuclear 
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cells (PBMCs) from the same NSCLC patients were used 
as germline control. Since intra-tumor heterogeneity has 
an important impact in the pathological diagnosis, even 
more in tumors where only small-size biopsies are avail-
able such as advanced lung cancer, our pathologists have 
ensured that the FFPE biopsies included had a minimum 
tumor content of at least 60%. Immunotherapy response 
was evaluated by computed tomography scan at  3 and 
6 months after the first dose. Durable response was eval-
uated according to the response at 6 months.

Furthermore, we included 26 MIBC patients involved 
in various clinical trials for neoadjuvant ICI treatment 
evaluation at Hospital “12 de Octubre” (Madrid, Spain) 
(Table 2). We analyzed a sub-cohort of 10 patients from 
the ABACUS clinical trial [20] using WGS and the 26 
patients for L1 activation. FFPE primary tumor biop-
sies were obtained and response to ICI was evaluated 
at cystectomy. Post-ICI FFPE tumor samples were also 
acquired at cystectomy for 4 out of the 10 patients sub-
jected to WGS.

Table 1 Clinicopathological characteristics of the NSCLC cohort

ADC adenocarcinoma, CT chemotherapy, ICI Immune checkpoint inhibitors, NR non‑responder, R responder, SCC squamous cell carcinoma

All patients (n = 34) 3 months after ICI 6 months after ICI

R
(n = 22)

NR
(n = 12)

R
(n = 10)

NR
(n = 14)

NA
(n = 10)

Sex

Female 9 4 5 3 6 0

Male 16 10 6 7 8 1

NA 9 8 1 0 0 9

Age (median)
(range)

63
(43–78)

63
(51–77)

60
(43–78)

66
(51–76)

62
(43–78)

59

Smoking status

Smoker 19 11 8 7 11 1

Former smoker 5 3 2 3 2 0

Never smoker 1 0 1 0 1 0

NA 9 8 1 0 0 9

Histological subtype

ADC 16 8 8 6 10 0

SCC 8 5 3 3 4 1

NA 10 9 1 1 0 9

Tumor stage

IIIC 2 1 1 1 1 0

IVA 6 6 0 4 2 0

IVB 9 1 8 1 8 0

NA 17 14 3 4 3 10

Treatment scheme

ICI 31 20 12 8 14 9

ICI-CT 3 2 0 2 0 1

Table 2 Clinicopathological characteristics of the MIBC cohort

NR non‑responder, R responder

All (n = 26) R (n = 19) NR (n = 7)

Sex

Female 4 3 1

Male 8 4 4

NA 14 12 2

Age (median)
(range)

70
(51–82)

66
(51–82)

70
(68–80)

Smoking status

Smoker 5 3 2

Former smoker 3 2 1

Never smoker 4 2 2

NA 14 12 2

Histological subtype

Flat urothelial 9 5 4

Papillary urothelial 3 2 1

NA 14 12 2
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In both cohorts, patients’ characteristics among the 
whole set of patients and the subset undergoing WGS 
are exactly the same. Patients with stable disease, par-
tial response, and complete response were classified as 
responders (R), while non-evaluable patients (exitus) or 
patients with disease progression at the time of evalu-
ation were considered non-responders (NR). Overall 
survival (OS) was defined as the time from treatment 
initiation to the time of death, while progression-free 
survival (PFS) was defined as the time from treatment 
initiation to the time of progression or death, which-
ever is earlier. The study was conducted with appropri-
ate authorization from the Galician Regional Research 
Ethics Committee (2019/046) and from the Ethics Com-
mittee from Hospital “12 de Octubre” (17/094) following 
the Helsinki Declaration of 1975 and all patients signed 
informed consent approving their participation.

Sample preparation and WGS
We isolated genomic DNA from FFPE samples from 
NSCLC and MIBC tumors using QIAamp DNA FFPE 
Tissue kit (Qiagen). PBMCs from NCLC patients were 
obtained by Ficoll density gradient from a blood sample 
drawn before the first ICI dose (baseline). We extracted 
DNA from PBMCs with the QIAamp DNA Blood Mini 
kit (Qiagen), according to manufacturer’s protocol, as 
germline control. We checked DNA quality using Qubit 
dsDNA BR Assay Kit in Qubit 4.0 (Thermo Fisher) and 
quantified the total yield and gDNA ScreenTape Analysis 
in a 4200 TapeStation system (Agilent Technologies) to 
assess the DNA integrity. Samples were sequenced in an 
external service (Macrogen) with Illumina Truseq Nano 
DNA Library in a NovaSeq6000 (Illumina) at 150 bp PE.

WGS data processing
We assessed the quality of raw WGS data with FastQC 
[21]. We next mapped the sequencing reads from both 
tumor and PBMC samples to the GRCh37/hg19 refer-
ence genome using the Burrows-Wheeler Aligner (BWA-
mem v0.7.17) [22, 23]. Afterwards, we used Samtools v1.9 
[24] to sort the aligned reads and to index the generated 
bam files. Duplicated reads were marked with Picard 
Bammarkduplicates [25]. Finally, we  used Base Quality 
Score Recalibration (BQSR) from the Genome Analysis 
Tool Kit (GATK) v.4.1.7.0 [26] to correct quality score 
bias, following the best practices guidelines [27].

SNVs and INDELs calling
Before variant calling, we estimated cross sample con-
tamination using GATK’s GetPileupSummaries and Cal-
culateContamination, as well as the genomAD resource 
obtained from the GATK bundle (https:// conso le. cloud. 
google. com/ stora ge/ brows er/ gatk- best- pract ices/ somat 

ic- b37; tab= objec ts? prefix=). Next, we used Mutect2 
v0.7.17 [28] for calling SNV and indels. For NSCLC, we 
performed cross sample contamination in paired-sample 
mode, using the PBMCs data as germline control, while 
for pre-treatment MIBC samples it was performed in 
tumor-only mode. For the post-treatment samples analy-
sis, we used the matching pre-treatment sample as con-
trol. We next applied FilterMutectCalls with standard 
parameters to remove low quality variants, considering 
the estimates from both CalculateContamination and 
LearnReadOrientationModel, which identifies paraffin 
related artifacts. Those variants selected by FilterMu-
tectCalls in at least two patients were considered arti-
facts and discarded from further analyses. The remaining 
variants were finally annotated with the Ensembl Variant 
Effect Predictor (VEP) v100.2 [29]. We identified likely 
pathogenic variants according to SIFT [30] and Polyphen 
[31] scores and used vcf2maf v1.6.21 [32] to transform 
the VCF files to MAF format. We used the mafTools R 
package v2.16.0 [33] for downstream analyses and visu-
alization purposes.

SNVs and INDELs custom filtering
To further remove low quality variants and potential arti-
facts for mutational signatures extraction and functional 
enrichment, we additionally removed mutations occur-
ring in the following genome conflicting regions accord-
ing to UCSC Genome Browser: (i) sites present in the 
NCBI track dbVar Curated Common SVs Conflicts with 
Pathogenic (DbVarConflict), which includes common 
structural variants that overlap with structural variants 
with ClinVar annotation [34]; (ii) variants present in the 
regions of the ENCODE blacklist subtrack, which con-
tains a set of problematic regions due to a high ratio of 
multi-mapping to unique mapping reads and high vari-
ance in mappability due to repetitive elements [35]; (iii) 
sites present in the database of fragile sites in human 
chromosomes (HumCFS) [36]; and (iv) variants over-
lapping with the Genome-In-A-Bottle (GIAB) giabCall-
Conflict track set, that contains a set of regions where it 
is difficult to make a confident call, due to low coverage, 
systematic sequencing errors and local alignment prob-
lems [37].

TMB and the ratio of non‑synonymous vs. synonymous 
substitutions (dN/dS)
We determined the TMB of each tumor sample as fol-
lows: (i) the genomic TMB was calculated as the 10-base 
logarithm of the number of total variants divided by the 
total genome size, while (ii) the coding TMB was calcu-
lated as the 10-base logarithm of the number of non-syn-
onymous variants located in exonic regions divided by 
 106.

https://console.cloud.google.com/storage/browser/gatk-best-practices/somatic-b37;tab=objects?prefix=
https://console.cloud.google.com/storage/browser/gatk-best-practices/somatic-b37;tab=objects?prefix=
https://console.cloud.google.com/storage/browser/gatk-best-practices/somatic-b37;tab=objects?prefix=
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Regarding dN/dS analysis and MIBC post-therapy vari-
ant analysis, we decided to reduce even more the noise 
from low frequency and unreliable calls, so we removed 
variants with less than 10 supporting reads in either the 
tumor or the corresponding PBMC sample, variants that 
were called in the PBMC sample, and variants with less 
than 0.075 variant allele frequency (VAF) in the tumor 
sample. Additionally, as variant calling in MIBC pre-
treatment samples was performed in tumor-only mode, 
we discarded variants with a VAF greater than 0.45 to 
rely only on subclonal variants.

Afterwards, these filtered variant sets were used to 
estimate the dN/dS score for each tumor sample to 
infer selection pressure in protein-coding genes through 
dNdScv, which applies a maximum likelihood approach 
to quantify selection patterns [38]. We selected dN/dS 
because it offers a broad, well-established and interpreta-
ble framework for identifying positive and negative selec-
tion in coding regions.

Single‑base substitution (SBS) signature extraction 
and assignment
To study mutational signatures, we used the trinucleoti-
deMatrix function from maftools to extract the immedi-
ate bases flanking the mutated site and to classify them 
into 96 classes depending on the combination of the tri-
nucleotides. Then, we applied extractSignatures function 
to decompose the matrix into n signatures. The number 
of signatures was chosen based on the value at which 
Cophenetic correlation, which measures the goodness of 
fit of the non-negative matrix factorization model, drops 
significantly (which can be calculated through estimateS-
ignatures and plotCophenetic functions). Finally, we used 
compareSignatures function cosine similarity to detect 
the best similarity to COSMIC database known signa-
tures [39].

CNV calling
We identified the copy number variants (CNV) of 
NSCLC tumor samples with the purity and ploidy esti-
mator (PURPLE) [40] in the paired-sample mode under 
default parameters, using tumor and PBMCs bam files 
together with the SNV and indel calling as input. We 
determined different CNV regions between responder 
and non-responder patients, together with the genes con-
tained in each aberrant region with GISTIC2.0 [41], using 
the CNV segments in each sample. The identification 
of differentially amplified/deleted regions was based on 
a G-score assigned to each of them, depending on their 
amplitude and their alteration frequency across the set 
of samples of each group. A q-value false discovery rate 
of 25% was set to call a significant region and then the 
window with the greatest amplitude and frequency was 

considered the “peak” of the region. We determined the 
boundary of each peak by the RegBounder algorithm 
implemented in GISTIC2.0, with a 95% confidence level 
to include target genes within each region [41].

Enrichment analysis
We performed an enrichment analysis using enrichR 
R package [42, 43], an interface to the Enrichr database 
hosted at https:// maaya nlab. cloud/ Enric hr/. This tool 
assesses whether our differentially mutated gene sets 
were enriched in specific biological/molecular functions 
by measuring the statistical significance (Fisher exact 
test) of the overrepresentation of a gene set in a specific 
list of genes. We selected the following databases: Human 
MSigDB collections (including MSigDB_Hallmark_2020, 
MSigDB_Oncogenic_Signatures, and MSigDB_Com-
putational) [44, 45], BioPlanet_2019 [46], KEGG_2019_
Human [47, 48], WikiPathways_2019_Human [49, 50], 
GO_Molecular_Function_2018, and GO_Biological_Pro-
cess_2018[51, 52], ChEA_2016 [42] and TRANSFAC_
and_JASPAR_PWMs [53].

HLA‑I haplotyping and HLA LOH analysis
To identify HLA-I haplotypes we applied LILAC [54], a 
tool which determines HLA-I germline alleles by align-
ing the sequencing reads to HLA-A, HLA-B and HLA-C 
regions which are present in the IMGT/HLA database 
[55]. Following their recommended pipeline, we first 
performed an “elimination” phase, removing allele can-
didates that are clearly not present in the sample, and 
an “evidence” step, which selects the best solution based 
on the observed reads amongst the whole set of possi-
ble HLA-I alleles. For the NSCLC cohort, we used both 
tumor and PMBCs bam files as input, together with the 
somatic variants (SNVs, INDELS, and CNA). For the 
MIBC cohort, we used tumor bam files and somatic vari-
ants (SNVs and INDELS). We also determined Loss of 
Heterozygosity (LOH) events affecting HLA haplotypes 
 (HLALOH) for NSCLC patients when the copy number 
estimated by PURPLE [40] (see Methods Sect.  2.6) was 
less than 0.5.

Neoantigen prediction
To get insights into the quantity and quality of neoanti-
gens associated to ICI response, we performed a pre-
liminary neoantigen prediction analysis of the top-most 
frequent exclusively mutated genes in responders and 
non-responders for both NSCLC and MIBC patients. 
We used the netMHCpan-4.0 tool (v.4.1) [56] to obtain 
the binding affinity of all possible 6 to 14-mer wild-
type and aberrant peptides to the most representative 
HLA alleles (HLA-A1, HLA-A2, HLA-A3, HLA-A24, 
HLA-A26, HLA-B7, HLA-B8, HLA-B15, HLA-B27, 

https://maayanlab.cloud/Enrichr/
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HLA-B39, HLA-B40 and HLA-B58). Peptide antigenic-
ity was assessed by the eluted ligand rank (EL_Rank), a 
rank-based score to estimate the likelihood that a peptide 
will be naturally processed and presented by MHC mol-
ecules. The score is given as a percentile rank, where a 
lower EL_Rank indicates a stronger or more likely binder. 
Peptides with a rank between 0.5–2% were considered 
low-binders and those with a rank lower than 0.5% were 
selected as strong binders to HLA alleles and therefore 
considered potential neoantigens.

LINE‑1 retrotransposition rate quantification by RetroTest
To quantify the amount of LINE-1 (L1) somatic inser-
tions, we applied the RetroTest targeted sequencing 
method [57], based on the use of probes that capture 
the unique sequence downstream of the 124 most active 
L1 elements of the human genome [9]. RetroTest library 
construction and bioinformatic processing were per-
formed following the recommended approach [57].

Statistical analyses
We performed survival analyses using OS and PFS with 
censoring at the date of the last follow-up if a patient 
was alive and without disease progression. We combined 
clinical variables (sex, age, smoking habits and PD-L1 

staining) in a multivariate Cox proportional hazards 
ratio (HR) model with PFS as response variable, with 
the coxph function from the survival v3.5.7 R package. 
We estimated survival curves using the Kaplan–Meier 
method and compared them with the log-rank test. We 
assessed the significance between the TMB, the L1 inser-
tion rate and the presence of  HLALOH between responder 
and non-responder patients with the non-parametric 
Wilcoxon rank sum test (p-value threshold of 0.05). 
For multi-testing correction, we computed FDR values 
from nominal p-values using the Benjamini–Hochberg 
method.

Results
Clinic‑pathological characteristics of ICI response
We collected FFPE tumor biopsies at baseline before the 
start of first line ICI therapy from 34 advanced NSCLC 
patients with a median age of 63 years old, mostly males 
and tobacco smokers (Table  1). Both FFPE tumor sam-
ples and matching PBMCs from 17 patients underwent 
WGS (n = 34), and RetroTest was applied to 31 FFPE 
tumor biopsies (Fig.  1A). Most patients received single-
agent ICI therapy (anti-PD1 pembrolizumab, n = 31), 
while three of them were treated with ICI in combi-
nation with chemotherapy at first line. Our cohort 

Fig. 1 Overview of the NSCLC and MIBC cohorts. A Schematic representation of the two cohorts. For NSCLC patients treated with anti-PD1 at first 
line, treatment-naive FFPE tumor biopsies were collected for 34 patients and matching PBMCs as germline controls were collected from 17 patients. 
For MIBC patients who received anti-PD1 neoadyuvant therapy, treatment-naive FFPE tumor biopsies were obtained for 26 patients; plus, matching 
FFPE tumor samples were obtained post-cystectomy from 4 patients. B Kaplan–Meier curves for PFS with respect to ICI response for NSCLC patients 
subjected to WGS. Patients were grouped into responders and non-responders to ICI as evaluated by CT scan 3 months after the first anti-PD1 dose. 
Log-rank test was used to calculate the p-value. C Forest plot for the HR of response, sex, age, smoking status and PD-L1 TPS with respect to PFS 
in NSCLC patients subjected to WGS, obtained by multivariate Cox regression. The error bars indicate 95% CI for the HR. D Kaplan–Meier curves 
for PFS with respect to ICI response for MIBC subjected to WGS. Patients were grouped into responders and non-responders to anti-PD1 evaluated 
at the time of cystectomy. Log-rank test was used to calculate the p-value. E Forest plot for the HR of response, sex, age and smoking status 
with respect to PFS in MIBC patients subjected to WGS, obtained by multivariate Cox regression. The error bars indicate 95% CI (confidence interval) 
for the HR
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consisted mainly of adenocarcinoma histology (n = 16). 
All patients presented high PD-L1 staining (TPS ≥ 50%, 
median TPS of 80%). Responder patients (R) showed 
higher PFS (log-rank p-value = 0.0029, Fig.  1B) and OS 
(log-rank p-value = 0.011, Supplemental Fig.  1A) than 
non-responder patients (NR). We evaluated whether 
any clinical variables were associated with improved 
PFS. Although non-significant, low PD-L1 staining 
(TPS ≤ 80%) and smoking at the time of diagnosis showed 
an unfavorable tendency regarding PFS. Neither sex, nor 
age, reported a statistically significant association with 
PFS (Fig.  1C). Only ICI response showed a statistically 
significant impact on PFS.

In the case of MIBC patients, we collected FFPE tumor 
biopsies from 26 patients that received ICI as neoadju-
vant therapy before radical cystectomy in the context of 
clinical trials (Table 2). All FFPE baseline treatment-naïve 
tumor tissues were subjected to RetroTest (n = 26), and 
10 pre-treatment tumor samples and 4 matching post-
cystectomy bladder tissue underwent WGS (Fig.  1A). 
Patients showed a median age of 70 years old. Most were 
male and tobacco smokers, and most tumors showed 
urothelial histology (n = 9). Response to ICI therapy was 
evaluated after cystectomy and did not have impact in 
neither PFS nor OS (log-rank p-values 0.19 and 0.99, 
respectively, Fig.  1D, Supplemental Fig.  1B). Neither 
response, sex, age, nor smoking habits reported a sta-
tistically significant association with PFS (Fig.  1E), con-
firming the same results as in the original ABACUS 
clinical trial [20].

NSCLC mutation profiling and TMB in ICI response
We identified an average of 37,432 (9315–104,704) 
somatic variants (SNVs and INDELS) per sample in a total 
of 36,063 genes. To identify a list of potential candidate 
biomarkers for ICI response, we selected genes mutated 
in, at least, two patients of each group (i.e., mutated in 
two or more responder patients and not mutated in any 
of the non-responder patients, or vice versa). We found 
a total of 1,216 genes exclusively mutated in R patients 
and 1,748 genes exclusively mutated in NR patients (Sup-
plemental Tables 1, 2). We found that ATP6V1E1, RP11-
397E7.1 and RP11-69I8.2 were the most mutated genes 
exclusively among R (found in 35.3%), while FAM63B, 
MYH4, OR10D3, PROZ, RMND1, RNU6-743P, RP11-
122G11.1, and RP4-715N11.2 were the top among NR 
(35.3%).

When focusing on potentially pathogenic variants, we 
found an average of 92.88 variants per patient (16–316) 
in a total of 1,316 genes. We did not find differences on 
TMB, tumor purity, or type of mutation between R and 
NR (Fig.  2A). The most mutated genes with pathogenic 
variants were TP53 (82% of the patients), CSMD3 (47%), 

and KRAS (29%), found both in R and NR. We detected 
26 genes harboring pathogenic variants exclusively in 
R, while 34 genes were exclusively mutated in NR (Sup-
plemental Tables 3, 4, complete list of variantes in Sup-
plemental Table  5). PIEZO was found to be exclusively 
mutated and the most mutated gene among R (50%), 
while MT-CO3 gene was exclusive and the most mutated 
in NR (33.3%).

Afterwards, the COSMIC mutational signatures 
were extracted from the whole set of variants in both R 
and NR patients. Signatures COSMIC_4 (“exposure to 
tobacco (smoking) mutagens”) and COSMIC_5 were 
the most-common mutational signatures assigned to 
both R (cophenetic correlation = 0.982) and NR (cophe-
netic correlation = 0.989) (Fig. 2B, C). Based on the dN/
dS ratio, we evaluated the mutation selection patterns 
between responder and non-responder patients. We did 
not find evidence of positive or negative selection related 
to response in the different mutation types, although R 
showed a slight enrichment in missense mutations than 
NR (Fig. 2D).

We next explored the relationship between CNAs and 
ICI response in our cohort. We detected 13 patients 
with whole genome duplication (WGD), with an aver-
age ploidy of 3.37 (Fig. 2A). Moreover, responder patients 
showed 66 regions with focal CNAs that were statisti-
cally significant (FDR q-value < 5%), of which 21 were 
exclusively found in R (Fig.  2E, Supplemental Table  6). 
Interestingly, we found two events in MDM2 with path-
ogenic variants exclusively found in R. In NR patients, 
we observed a total of 227 regions with statistically sig-
nificant CNAs (FDR q-value < 5%), of which 179 were 
exclusively present in NR patients (Fig. 2F, Supplemental 
Table 7). The pathogenic variants found exclusively in NR 
correspond to events overlapping PTPRU and ARPP21.

Finally, we compared the extent to which TMB can pre-
dict ICI response in our real-world cohort following two 
different approaches: first, we determined the TMB for 
each tumor sample as “genomic TMB” considering the 
number total of variants divided by the total genome size. 
Second, “the coding TMB” was calculated based on the 
number of non-synonymous variants located exclusively 
in exonic regions. In both cases, no statistically signifi-
cant differences were observed between the TMB of NR 
and R patients (Fig. 2G).

MIBC mutation profiling and TMB in ICI response
We identified an average of 199,221 (117,661–456,401) 
somatic variants (SNVs and INDELS) per sample in MIBC 
FFPE tumor tissue at baseline, in a total of 63,167 genes. 
The majority of these variants have an allele frequency 
below heterozygosity (Supplemental Fig.  2A), indicat-
ing a small amount of non-filtered germline variants. As 
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before, we selected genes exclusively mutated in at least 
two patients from each group (R vs. NR) to identify genes 
potentially associated with ICI response. A total of 5067 
genes were exclusively mutated in R patients, of which 
77 genes were mutated in all R (Supplemental Table  8). 
On the other hand, NR patients showed 721 genes exclu-
sively mutated (Supplemental Table  9). When consider-
ing just pathogenic variants, we found an average of 675.5 
(137–2,415) variants per sample in baseline samples, in a 
total of 4215 genes. The most mutated genes were TP53 
(70%) and ZFHX4 (60%) (Fig.  3A). To identify potential 
biomarkers for neoadjuvant ICI response, we selected 
the exclusively mutated genes with pathogenic vari-
ants. A total of 614 genes were exclusively mutated in R 

patients (Supplemental Table 10) and 24 genes were only 
mutated in NR (Supplemental Table  11) (Supplemental 
Table 12 for the complete list of variants). We found that 
PKHD1 gene harbored pathogenic variants in all the R 
patients and that HEATR5B and WDR36 were exclusively 
mutated in NR patients.

Using all identified variants, we next extracted the 
COSMIC mutational signatures in R (cophenetic corre-
lation = 0.997) and NR (cophenetic correlation = 0.956) 
patients. COSMIC_5 was a common signature to both 
groups (Fig. 3B, C). In contrast, COSMIC_13 (APOBEC 
Cytidine Deaminase) was only found in R (Fig. 3B), while 
COSMIC_3 (defects in DNA − DSB repair by HR) was 
exclusively identified in NR (Fig. 3C).

Fig. 2 Somatic variants landscape and TMB in NSCLC patients. A Oncoplot showing the top-40 most frequently mutated genes harboring 
probably pathogenic variants in the cohort of NSCLC patients. B Most common COSMIC mutational signatures for responder patients. C Most 
common COSMIC mutational signatures for non-responder patients. D Maximum Likelihood Estimation (MLE) of the dN/dS ratio for responder 
and non-responder patients considering different sets of variants. E Copy number variants profile showing the 66 significantly amplified (red) 
or deleted (blue) cytobands in responder patients. Those 21 cytobands exclusively altered in responder patients are labelled with their cytoband 
ID. Genes with probably pathogenic variants found exclusively in responder patients are shown sorted by genomic location. F Copy number 
variants profile showing the 227 significantly amplified (red) or deleted (blue) cytobands in non-responder patients. From the 179 cytobands 
exclusively altered in responder patients, the top-50 are labelled with their cytoband ID. Genes with probably pathogenic variants found exclusively 
in non-responder patients are shown sorted by genomic location. G Boxplots of the TMB calculated considering all variants (left) and of the 
TMB calculated considering only variants in coding regions (right) with respect to immunotherapy response. Differential p-value was derived 
by the Wilcoxon rank-sum test. The central mark represents the median, with 25th and 95th percentiles at the box, 5th and 95th percentiles 
at the whiskers and minima and maxima noted by dots.
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We next assessed the predictive potential of TMB cal-
culated following the two different approaches explained 
above. Interestingly, R patients presented substantially 
higher TMB compared to NR. However, this difference 
was only statistically significant when considering coding 
variants (p-value = 0.016) (Fig. 3D).

Changes in the mutational profiling during ICI treatment 
in MIBC
In four MIBC patients, besides the baseline treatment-
naïve samples we also obtained a bladder tissue sample 
from the radical cystectomy after the treatment. Three 
of the patients were non-responders, showing pro-
gressive disease at the time of cystectomy while one 
showed partial response. We investigated the changes 
in the mutation profile in the bladder before and after 
the treatment and reported that post-ICI samples gen-
erally have higher SNV count than pre-ICI samples 

(Supplemental Fig.  2B). Next, we focused on the gene 
identities already altered in the pre-ICI sample. Specifi-
cally, we analyzed variant allele frequency (VAF) shifts 
of the mutations shared between the pairs of matching 
pre- and post- samples. When considering all variants, 
we did not find a clear VAF shift pattern between pre- 
and post-ICI treatment (Supplemental Fig.  2C), even 
when only considering exonic/coding regions (Supple-
mental Fig.  2D). Nevertheless, we detected 25 genes 
with variants whose VAF substantially increased in 
post-treatment samples (Fig. 3E). When focusing exclu-
sively on MIBC driver genes, we did not find a com-
mon pattern, and all the exonic variants that changed 
their VAF before and after the treatment were patient 
exclusive. The only gene with VAF changes in two 
NR patients was TP53: one NR patient presented two 
different TP53 variants with lower VAF in the post-
treatment sample, while another NR harbored a TP53 

Fig. 3 Somatic variants landscape and TMB in MIBC patients treated with neoadyuvant immunotherapy. A Oncoplot showing the top-40 most 
frequently mutated genes harboring probably pathogenic variants in the cohort of MIBC patients. B Most common COSMIC mutational signatures 
for responder patients. C Most common COSMIC mutational signatures for non-responder patients. D Boxplots of the TMB calculated considering 
all variants (“genomic TMB”) and of the TMB calculated considering only variants in coding regions (“coding TMB”) with respect to immunotherapy 
response. Differential p-value was derived by the Wilcoxon rank sum test. The central mark represents the median, with 25th and 95th percentiles 
at the box, 5th and 95th percentiles at the whiskers, and minima and maxima noted by dots. E Variant allele frequencies of genes with exonic 
variants that were shared between a pair of pre- and post-anti-PD1 neoadjuvant therapy. F Variant allele frequency shift of exonic variants present 
in bladder cancer driver genes
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mutation positively selected (VAF from 0.25 to 0.5) 
after ICI therapy (Fig. 3F).

Gene pathways implicated in ICI response in NSCLC 
and MIBC
After assessing that the enriched pathways on the 
aggregated set of all mutated genes in each group of 
patients were similar (Supplemental Fig.  3, Supple-
mental File 1), we performed an enrichment analysis 
focusing on genes exclusively mutated in only one of 
the groups (R vs. NR). In the NSCLC cohort, we found 
that immune related pathways including inflammatory 
response, and some related to Ras, T-cell receptor/Ras 
pathway, activation of Ras in B-cells were enriched in R 
(Supplemental Fig. 4A, Supplemental File 2), while the 
Ras-independent pathway in NK cell-mediated cyto-
toxicity, neural crest differentiation, PI3K/Akt signal-
ing pathway and FGFR3 and FGFR4 ligand binding and 
activation pathways appeared enriched in NR (Supple-
mental Fig. 4B, Supplemental File 3). When focusing on 
pathogenic variants, we observed that R were enriched 

in several ERBB4 related pathways such as PI3K events 
in ERBB2 signaling, signaling by ERBB4 or down regu-
lation of ERBB4 signaling (Fig.  4A, Supplemental File 
4). In the case of NR, we detected processes related 
to cell signaling with an important role of integrins, 
or ECM-receptor interaction (Fig.  4B, Supplemental 
File 5). In addition, adaptive immune system and anti-
gen presentation (folding, assembly, and peptide load-
ing of MHC class-I proteins pathway) were also altered 
among NR patients. It is worth mentioning that we 
detected variants affecting other antigen presentation 
genes more frequently in NR, specifically in genes such 
as HERC2, PSMD1, PSMA6, and B2M. Intriguingly, we 
realized that SNVs in B2M were also amplified in two of 
the patients.

In the MIBC cohort, we found no significantly 
enriched pathways (Supplemental Fig.  4C, D, Supple-
mental Files 6 and 7), suggesting a high variability in 
the cohort. When focusing only on pathogenic variants, 
we found Double-strand break repair pathway, integ-
rins in angiogenesis and interaction between L1-type 

Fig. 4 Functional enrichment of somatic variants and HLA typing in responder and non-responder patients. A Barplot of the pathway enrichment 
analysis based on the 26 genes that contain potentially pathogenic variants exclusive of NSCLC responder patients. B Barplot of the pathway 
enrichment analysis based on the 34 genes that contain potentially pathogenic variants exclusive of NSCLC non-responder patients. C Barplot 
of the pathway enrichment analysis based on the 614 genes that contain potentially pathogenic variants exclusive of MIBC responder patients. D 
Barplot of the pathway enrichment analysis based on the 24 genes that contain potentially pathogenic variants exclusive of MIBC non-responder 
patients. Enrichment p-values were calculated with the Fisher exact test. E HLA-I haplotypes repertoire for NSCLC patients. The bubble size 
and color indicate the number of patients presenting each specific haplotype. F HLA loss of heterozygosity (LOH) status among responder 
and non-responder NSCLC patients. A patient was considered positive for  HLALOH if the copy number status estimation for the HLA locus was lower 
than 0.5. G HLA-I haplotypes repertoire for MIBC patients. The bubble size and color indicate the number of patients presenting each specific 
haplotype
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proteins and ankyrins enriched in R patients (Fig.  4C, 
Supplemental file 8). With respect to NR patients, we 
did not find any statistically significant altered path-
ways, since all the pathways were only enriched by one 
gene (Fig.  4D, Supplemental File 9), indicating again a 
huge variability among patients.

HLA‑I haplotypes repertoire and neoantigen prediction 
in immunotherapy response
Since cancer biology and ICI response are intimately 
related to immune processes such as antigen presenta-
tion, we next explored the HLA-I locus complexity in 
both cohorts.

In the NSCLC cohort, the most common haplotype 
was the HLA-A*02:01, present in four R and in six NR 
patients (Fig.  4E). With respect to ICI response, we 
found several HLA-I haplotypes that were exclusive to 
R patients, with HLA-A*01:01, HLA-A*23:01, HLA-
B*15:03, and HLA-C*15:02 present in more than one 
patient. In the case of NR patients, HLA-A*30:02 resulted 
the only exclusive haplotype, present in two patients, 
while the alleles HLA-A*02:01 and HLA-B*14:02 were 
the most common haplotypes among NR, although 
non-exclusive (Fig.  4E). Based on our previous results, 
we analyzed if HLA loss of heterozygosity occurred 
more frequently in NR patients, finding that  HLALOH 
was not statistically significantly higher in NR patients 
(p-value = 1, Fig. 4F).

For the MIBC cohort, we identified a higher heteroge-
neity of HLA-I haplotypes in NR patients, without any 
common haplotype (Fig. 4G). Interestingly, when focus-
ing on exclusive haplotypes, HLA-C*06:02 and HLA-
A*01:01 appeared exclusively in three NR patients, while 
HLA-B*49:01 and HLA-A*23:01 were exclusive for R 
patients (Fig. 4G).

Then, we applied the neoantigen prediction to the top-
most exclusively mutated gene of NSCLC responders 
(PIEZO2) vs. non-responders (MT-CO3), and to those 
of MIBC exclusive of responders (PKHD1) vs. non-
responders (HEATR5B and WDR36). We have shown 
that mutated genes generate more potential neoantigen 
peptides (EL_Rank < 0.5) than wild-type genes (Wilcoxon 
rank-sum test p-value = 0.0476).

In NSCLC, the peptides generated by mutations in 
PIEZO2, the most frequent exclusively mutated gene in 
responder patients, tend to bind HLA with stronger affin-
ity than those peptides generated by mutations MT-CO3, 
the most frequently mutated gene in non-responder 
patients, although not reaching the statistical signifi-
cance (Wicoxon rank-sum test p-value = 0.186, Supple-
mental Fig. 5A). Interestingly, neoantigens derived from 
PIEZO2 have statistically significant stronger affinity for 

HLA-A*01:01 (Wilcoxon rank-sum test p-value = 0.0357, 
Supplemental Fig. 5B), and such HLA allele is exclusive of 
our NSCLC responder patients (Fig. 4E).

With respect to MIBC, we have shown that peptides 
derived from PKHD1 variants, exclusively mutated in all 
responder patients, bind to HLA with stronger affinity 
than those peptides generated by HEATR5B and WDR36 
the most frequently mutated gene in non-responder 
patients (Wicoxon rank-sum test p-value = 0.0002, Sup-
plemental Fig.  5C). It is important to note that variants 
in PKHD1, HEATR5B and WDR36 produce translation 
frameshifts, generating a high neoantigen load com-
pared to the single aminoacid substitutions produced by 
PIEZO2 and MT-CO3 mutations.

Therefore, our results indicate that genes that are 
exclusively mutated in responder patients generate more 
amounts of neoantigen peptides and with a higher poten-
tial neoantigen activity, compared to peptides derived 
from exclusively mutated genes in non-responders.

LINE‑1 (L1) role on ICI response
Next, we evaluated if L1 activity showed any associa-
tion with TMB and/or ICI response according to the 
WGS data in both cohorts. In NSCLC, we did not find 
a statistically significant correlation between TMB and 
L1 activation (p-value = 0.37, Supplemental Fig.  6A, 
B). We also detected that L1 activation was not statisti-
cally significantly different between R and NR patients 
(p-value = 0.72, Fig. 5A). In the case of MIBC, we found 
a significantly positive correlation between the TMB 
and L1 activity (p-value = 0.013, Supplemental Fig.  6C, 
D). Interestingly, L1 activation was clearly higher in R 
patients, albeit not statistically significant (p-value = 0.09, 
Fig. 5B).

Based on these results, we decided to validate them 
by specifically determining L1 activity in larger cohorts 
using RetroTest [57]. We evaluated the impact of ICI 
response in patients’ prognosis for a larger NSCLC cohort 
comprising 31 patients (Table 1). First, we confirmed that 
R patients showed better OS and PFS (log rank p-values 
of 0.002 and < 0.0001, respectively, Fig.  5C). Moreover, 
patients with durable response (6  months) also showed 
better OS (p-value = 0.002) and PFS (p-value < 0.0001) 
(Supplemental Fig. 6E). For MIBC, we did not have access 
to the patients’ follow-up after the cystectomy to perform 
survival analyses. When analyzing L1 retrotransposition 
in these NSCLC patients, we found that patients with 
squamous tumors showed statistically higher L1 activ-
ity than those with adenocarcinomas (p-value = 0.032, 
Fig.  5D), while current smokers showed higher activa-
tion than former smokers (p-value = 0.049, Fig.  5E). 
Finally, when we evaluated L1 activity with respect to ICI 
response, we detected that 45.16% of patients showed 
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L1 activation. In addition, we noticed that most patients 
with high L1 activation were R, although not reaching 
statistical significance (p-value = 0.5804, Fig. 5F).

In the case of L1 retrotransposition in a larger MIBC 
cohort (n = 26) (Table  2), we found that 57.7% of the 
patients presented L1 activation. We observed that all 
patients with high L1 activation were R (p-value = 0.026, 
Fig.  5G), thus following the same tendency observed in 
NSCLC, but this time reaching statistical significance, 
hence highlighting the power of L1 activation as predic-
tive biomarker for ICI response.

Discussion
ICI have achieved a milestone in advanced cancer treat-
ment, although the identification of response predic-
tive biomarkers is still limited. In fact, it has become the 
first-line treatment for advanced NSCLC [18], recently 
approved for MIBC in combination with enfortumab-
vedotin [19], and as neoadjuvant treatment in NSCLC 
[58]. In this scenario, the lack of effective predictive bio-
markers of response represents a key challenge in clinical 
practice. In this study, we provide a wide genomic char-
acterization for NSCLC and MIBC treated with ICI as 
first-line therapy.

Importantly, none of the analyzed clinical character-
istics showed a statistically significant association with 
patient prognosis, neither in NSCLC, nor in MIBC, 
highlighting the need of reliable and robust genomic bio-
markers for oncological patient management.

Our results confirmed that key cancer driver genes are 
often mutated in both R and NR patients, such as TP53, 
the most mutated gene for both tumor types, KRAS 
and MT-CO3 in NSCLC, and ZFHX4 in MIBC. Nev-
ertheless, we also identified specific mutations, which 
could potentially serve as predictive biomarkers for ICI 
response, such as PIEZO2 and MT-CO3, specific of R and 
NR respectively in NSCLC patients, while PKHD1 and 
HEATR5B/WDR36 appeared exclusively in R and NR 
respectively in MIBC.

Moreover, by exploring the active mutational signatures 
in these cohorts, we found that COSMIC_4 (tobacco 
exposure) and COSMIC_5 were common in all NSCLC 
patients. The presence of the COSMIC_4, with 94% of 
ever-smoker patients, is expected and in agreement with 
what has been described for NSCLC [59, 60]. In relation 
to MIBC, we identified APOBEC cytidine deaminase 
signatures (COSMIC_13) exclusively among R patients. 
A correlation between APOBEC-mediated mutagenesis 

Fig. 5 Evaluation of L1 activation measured by RetroTest (L1 active transductions were calculated as the number of TD2 per sample) in NSCLC 
and MIBC patients treated with ICI. A Boxplot of L1 activation with respect to immunotherapy response in the cohort of NSCLC patients with WGS 
data (n = 17). B Boxplot of L1 activity with respect to immunotherapy response in the cohort of MIBC patients with WGS data (n = 10). C Kaplan–
Meier curves for OS (left) and PFS (right) according to ICI response in NSCLC patients. The log-rank test was used to derive the p-values. D Boxplot 
of L1 activation based on the number of transductions according to tumor type. E Boxplot of L1 activity with respect to smoking status (former 
smokers and current smokers). F Boxplot of the number of transductions in lung cancer patients according to ICI response evaluated at 3 months 
after the first ICI dose. G Boxplot of the number of transductions in MIBC patients according to response evaluated at the time of cystectomy. For all 
boxplots, differential p-values were derived by the Wilcoxon rank-sum test. The central marks represent the median, with 25th and 95th percentiles 
at the box, 5th and 95th percentiles at the whiskers, and minima and maxima noted by dots. ADC adenocarcinoma, NR non-responder, R responder, 
SCC squamous cell carcinoma
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and ICI effectiveness has already been described in MIBC 
[61], with several studies linking APOBEC mutagenesis 
to neoantigen generation [62, 63]. Hence, the presence 
of this feature could not only potentially represent a bio-
marker for ICI response, but also underlie the mecha-
nisms behind this process in MIBC patients.

In relation to TMB, we detected no statistically sig-
nificant association between the TMB and ICI response 
in NSCLC. In contrast, MIBC R patients showed a sig-
nificantly higher TMB than NR patients when consider-
ing the coding regions. These results appear to indicate 
that WES-based estimates may be sufficient, as our WGS 
TMB metrics did not contribute to a higher predictive 
power. In any case, it should be mentioned that TMB was 
only found to be an effective biomarker of ICI response 
in MIBC.

With the aim of digging deeper into the mechanisms 
that could underlie ICI response, we explored the molec-
ular pathways enriched in the sets of exclusively mutated 
genes in R and NR patients. We found pathways related 
to inflammatory response and to Ras dependent immune 
molecular genes exclusively mutated in NSCLC R. RAS 
family has been widely studied as a key regulator of the 
activity of multiple downstream signaling pathways, 
including cell proliferation [64]. In particular, onco-
genic RAS mutations have been described as promoting 
immune evasion by favoring the expression of PD-L1 in 
tumor cells [65, 66], which could partly explain why ICI 
therapy is more effective in these patients. Similar to pre-
vious studies, we also found mutations in ERBB related 
pathways in R. ERBB4 alterations have been described 
as hampering immunotherapy response in NSCLC [67], 
thus promoting PD-L1 expression [67–69]. In addition, 
we described its co-mutation with MDM2 gene in one R 
patient, whose inhibition was reported to increase MHC 
class I and II expression in a TP53 dependent manner, 
its main inhibitor, and, hence, to promote neoantigen 
recognition and T-cell infiltration [70, 71]. Accordingly, 
there are different clinical trials targeting MDM2 in com-
bination with immunotherapy [70, 72]. Finally, genes 
belonging to CTCF pathway, closely related to chromatin 
remodeling and epigenetics, presented pathogenic vari-
ants exclusively in R. Notably, CTCF has been described 
as an inhibitor of lncRNA responsible of reducing immu-
notherapy response [73].

Regarding NR patients, we found an enrichment of 
FGFR3 ligand binding and activation pathways. Intrigu-
ingly, FGFR3 mutations have been recently described to 
drive T-cell-depleted microenvironment in bladder can-
cer, attenuating the response to ICI in metastatic MIBC 
patients [74]. Moreover, we discovered an important 
enrichment on neural crest differentiation, which is in 
line with recent research pointing towards a neuronal 

regulation of immune response mediated by innate lym-
phoid cells (ILCs) [75–77]. This is noteworthy consider-
ing the emerging field of cancer neuroscience and how 
ICI response could be strongly modified by neuromod-
ulation strategies [78, 79]. We also detected exclusive 
alterations affecting cell-surface and cell–cell interac-
tion components, such as integrins, and MHC class-I. In 
this regard, the blockage of Netrin-1, a member of one of 
the pathways in which these integrins are involved, has 
been associated to a better response to ICI [80], while 
MHC class-I components impairment can hamper neo-
antigen presentation and have been proposed as tumor 
resistance processes [81–83]. In addition, we identified 
variants more frequently in NR affecting several genes 
related to antigen presentation, such as HERC2, PSMD1, 
PSMA6, and B2M (B2M appeared also amplified in two 
of the patients). Our observations also indicated that an 
impaired HLA-I complex affects the ICI response. These 
results are in line with previous studies reporting recur-
rent inactivation of B2M in lung cancer, together with 
a down-regulation of the HLA-I complex, leading to an 
abnormal immunosurveillance in lung cancer [84]. Thus, 
our results confirm a molecular resistance to the ICI 
therapy by impairing the presentation of immunogenic 
neoantigens.

In MIBC patients, we found  Double Strand Break 
Repair system alterations in R patients. Concordantly, 
previous studies have shown that these impairments can 
cause genomic instability [85, 86], PD-L1 expression and 
TMB upregulation, and immunotoxicity through cGAS-
STING stimulation, which favor interferon expression 
and lymphocytes infiltration [86–89]. Furthermore, the 
impairment of this repair system may also trigger neoan-
tigen generation [86, 90], favoring ICI response. In rela-
tion to this, ATM mutations have also been reported in 
other NSCLC cohorts in patients who responded to ICI 
therapy [60] while its inhibition has been described to 
enhance cancer immunotherapy by promoting cGAS/
STING activation [91]. Among NR patients, we found 
a huge mutational variability, which likely indicates the 
activation of a mixture of molecular pathways preventing 
the response in a neoadjuvant scenario.

Since we are aware of the lack of the normal-matched 
samples in the MIBC cohort, we wanted to ensure that 
no specific bias was included in our results. Thus, in 
addition to the filtering steps explained in the Meth-
ods section, we have compared the median non-synon-
ymous mutation rate in coding regions with those from 
Loriot et  al. [92], a recent study that characterizes the 
genomic landscape of metastatic urothelial cancer per-
forming WES of tumor and adjacent normal tissue. They 
reported a somatic mutation rate of 5.17 mutations/Mb 
which, considering the WES libraries used, equals ~ 260 
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average mutations per patient. This rate does not differ 
in magnitude with our results (~ 476). In addition, exome 
libraries used in their study do not cover the full range of 
UTR regions, which may also explain their lower muta-
tion rate compared to ours, that include UTRs from all 
genes. Finally, since our results are based on the com-
parison between responder and non-responder patients, 
both groups will be affected by the same bias and the dif-
ferential features identified between them should not be 
heavily affected.

We additionally explored features related to the tumor 
microenvironment by analyzing the HLA-I haplotype 
repertoire. In each cohort, we found several common 
HLA haplotypes but also identified several exclusive hap-
lotypes to both R and NR subgroups. Stratifying patients 
based on this genetic background could potentially 
guide ICI decision-making. Specific HLA-I alleles have 
been already related to tumor infiltrating lymphocytes 
cytotoxicity activation after antigen presentation [93], 
and the presence of HLA-A*03 alleles has been recently 
suggested as a biomarker of poor response to ICI [94]. 
Indeed, this specific allele was found more frequently 
within our NR patients. HLA-A*02:01 allele was the 
most frequent in our cohort of MIBC, especially in NR, 
and has been recently associated with good prognostic 
in pancreatic cancer [95]. Therefore, these novel results 
support the need to further study the HLA haplotypes as 
potential predictive biomarkers for ICI response.

Finally, recent studies have reported that the activation 
of TEs, such as L1, can enhance ICI response by inducing 
inflammation and generating immunogenic neoantigens 
[8, 11, 96]. However, the relation between L1 activation 
and immunotherapy response in real-life ICI-treated 
patients is yet to be evaluated. Based on this and on 
our first results showing a higher tendency of L1 activa-
tion in tumors with higher TMB resulting in R patients, 
we decided to further validate the possible association 
between L1 activation and ICI response in extensive 
cohorts. In general, we found that half of the patients pre-
sented L1 activation at baseline, varying slightly among 
the NSCLC and MIBC patients. In NSCLC, a significant 
positive association was found between smoking and L1 
activity, finding an association with squamous tumors, 
intimately linked to smoking habits. Interestingly, we 
detected a clear tendency in both NSCLC and MIBC, 
showing a higher L1 activation in R compared to NR 
patients, although only statistically significant in MIBC. 
To the best of our knowledge, this is the first time that 
the capacity of L1 activation was demonstrated to predict 
ICI response at baseline.

Conclusions
In summary, our findings highlight that while several can-
cer driver genes, such as TP53, are commonly mutated 
in both R and NR patients, but specific mutations were 
also identified as potential predictive biomarkers for ICI 
response. The analysis of active mutational signatures 
revealed interesting patterns that may relate to treatment 
efficacy. In this context, the relationship between TMB 
and ICI response resulted evident in MIBC patients but 
not for NSCLC. The examination of molecular pathways 
also indicated that certain mechanisms, such as immune 
evasion driven by RAS mutations and PD-L1 expres-
sion, play a crucial role in treatment effectiveness. Find-
ings regarding the activation of L1 suggest a potential 
link between induced inflammation and response to ICI, 
opening new avenues for developing additional biomark-
ers. Ultimately, our results underscore the importance 
of a genomic approach in cancer management and the 
need for further studies to validate these biomarkers and 
better understand the underlying mechanisms affect-
ing response to ICI therapy. This will not only improve 
clinical management for patients but also contribute to a 
more personalized approach in cancer treatment.
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