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Abstract
Background Single-cell multi-omics technologies, particularly single-cell RNA sequencing (scRNA-seq), have 
revolutionized our understanding of cellular heterogeneity and development by providing insights into gene 
expression at the single-cell level. Investigating the influence of genes on cellular behavior is crucial for elucidating 
cell fate determination and differentiation, cell development processes, and disease mechanisms.

Methods Inspired by NLP, we present a novel scRNA-seq analysis method that treats genes as analogous to words. 
Using word2vec to embed gene sequences derived from gene networks, we generate vector representations of 
genes, which are then used to represent cells by summing gene vectors and subsequently tissues by aggregating cell 
vectors.

Results Our NLP-based approach analyzes scRNA-seq data by generating vector representations of genes, cells, and 
tissues. This multi-scale analysis includes mapping cell states in vector space to reveal developmental trajectories, 
quantifying cell similarity using Euclidean distance, and constructing inter-tissue relationship networks from 
aggregated cell vectors.

Conclusions This method offers a computationally efficient approach for analyzing scRNA-seq data by constructing 
embedding representations similar to those used in large language model pre-training, but without requiring high-
performance computing clusters. By generating gene embeddings that capture functional relationships, this method 
facilitates the study of cell development trajectories, the impact of gene perturbations, cell clustering, and the 
construction and analysis of tissue networks. This provides a valuable tool for single-cell data analysis.
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Introduction
The convergence of biology and computer science has 
established bioinformatics as a crucial interdisciplinary 
field, employing computational methods and tools to 
decipher the complexity of biological systems. This field 
encompasses diverse areas, including genomics, tran-
scriptomics, and proteomics. Progress in these areas is 
propelled by the development of sophisticated analyti-
cal methods and technologies, enabling researchers to 
investigate various facets of biological tissues and cells 
[1]. Recent advances in single-cell multi-omics technolo-
gies have enabled the simultaneous analysis of multiple 
biomolecules at single-cell resolution, providing a more 
comprehensive understanding of cellular heterogeneity 
and function. Among these technologies, single-cell RNA 
sequencing (scRNA-seq) has emerged as a transformative 
technique, enabling the measurement of gene expression 
at the single-cell level and generating high-resolution 
transcriptomic profiles [2–4]. These profiles can capture 
the inherent temporal dynamics of differentiating cells 
[5–7], offering valuable insights into cellular processes 
such as growth, development, and differentiation [8, 
9]. By facilitating the analysis of functional and expres-
sion heterogeneity between individual cells, scRNA-seq 
allows for a deeper understanding of the diverse roles 
cells play in biological processes [10–14]. Consequently, 
scRNA-seq has become an indispensable tool in cell biol-
ogy research, providing critical insights into cell devel-
opment processes, cell fate determination, and disease 
mechanisms, while also driving progress in transcrip-
tomics [15–18].

Natural language processing (NLP) is a crucial field 
within computer science dedicated to developing compu-
tational methods for understanding and processing nat-
ural language text and speech [19, 20]. NLP models can 
generate predicted outputs for test instances by complet-
ing the word sequences of input text. Pre-training, where 
a language model is initially trained on a large dataset and 
subsequently fine-tuned for a specific task, has proven to 
be an effective strategy for building robust word predic-
tion models. Among these models, Word2vec employs 
a simplified shallow neural network to learn distributed 
word representations and has demonstrated remarkable 
effectiveness in a variety of NLP tasks [21].

High-dimensional gene expression data from single-
cell RNA sequencing (scRNA-seq) requires effective rep-
resentation methods to capture its structure for better 
understanding [22–24]. While visualization is important 
for human interpretation, the core challenge is effectively 
embedding this high-dimensional data into lower dimen-
sions while preserving crucial biological information 
[25]. Effective embeddings must retain both local and 
global structure during dimensionality reduction [26]. 
Although methods like Principal Component Analysis 

(PCA), t-Distributed Stochastic Neighbor Embedding 
(t-SNE) [27], and Uniform Manifold Approximation and 
Projection (UMAP) are commonly used for dimension-
ality reduction and embedding [28], they are not always 
optimal for exploring high-dimensional data [29]. For 
instance, PCA is sensitive to noise, which cannot be 
explicitly eliminated, and the embedding can distort the 
global structure of the data [30]. These traditional meth-
ods primarily perform dimensionality reduction based on 
the geometric or statistical properties of the data, aim-
ing to preserve the distance or local neighborhood rela-
tionships between data points, typically using Euclidean 
distance or similar metrics. In contrast, language model-
based embeddings are learned from co-occurrence and 
semantic similarity of words or sentences within a con-
text, capturing deeper semantic information beyond 
superficial geometric relationships. Consequently, when 
data contains complex semantic structures, such as gene 
regulatory relationships or cell state transition trajec-
tories in gene expression data, language model-based 
embeddings may be more effective at revealing these hid-
den patterns. Therefore, to better capture the complex 
biological information within scRNA-seq data, such as 
continuous trajectories of cell states or regulatory rela-
tionships between genes, novel embedding methods are 
needed.

We have developed a computationally efficient, light-
weight natural NLP method to address the challenges of 
analyzing high-dimensional single-cell data. Unlike large-
scale foundation models for single-cell analysis [31–33], 
our approach is computationally less demanding, yet 
generates effective embeddings for efficient analysis and 
visualization of high-dimensional single-cell data. Using 
single-cell data for pre-training, our model generates 
embeddings that enable the following functionalities: (1) 
More accurately depict the cell development process; (2) 
Analysis of perturbations and prediction of responses, 
including inference of cell perturbations, analysis of 
developmental processes in cell populations at different 
stages, and investigation of gene sequences underlying 
transcriptional changes that may drive cell fate decisions, 
providing insights into the principles of cell growth and 
development; and (3) Determination of tissue network 
structure models through partitioning or clustering. 
These models help understand how cells connect and 
form tissues, thereby overcoming the challenges that tra-
ditional methods face in statistically modeling cell con-
nectivity. This lightweight NLP method offers an efficient 
solution for analyzing and visualizing single-cell data and 
holds promise for providing deeper insights into single-
cell growth and development.
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Datasets
For dimensionality reduction visualization and gene 
perturbation analysis, we utilized the human embryonic 
stem cell (hESC)-derived embryoid bodies (EBs) dataset 
[25] and the Zebrafish Embryos (ZE) dataset [34]. The 
EBs dataset comprises 16,825 single-cell data samples 
spanning five time points over 27 days of differentiation. 
The ZE dataset, generated using Drop-seq technology, 
includes 38,309 cells from 28 samples covering 12 dis-
tinct differentiation stages during zebrafish embryonic 
development, from the blastula to the somatic period. 
These two datasets include multiple developmental time 
points and important gene regulatory information, mak-
ing them ideal for studying cell differentiation, develop-
mental pathways, and gene perturbations.

To investigate gene and tissue network structures, we 
employed the fetal kidney temporal-spatial immune par-
tition dataset [35] and the Human Lung Cancer dataset 
[36]. The fetal kidney dataset contains 21,452 cells, par-
titioned into four compartments: immune, vasculature, 
developing nephron, and stroma. The Human Lung Can-
cer dataset consists of single-cell RNA sequencing data 
from 49 clinical biopsy specimens obtained before and 
during targeted therapy from 30 patients with metastatic 
lung cancer. These two datasets represent normal tissue 
development and disease states, making them suitable 
for constructing tissue networks and exploring disease 
mechanisms.

During data preprocessing, we used the raw data 
directly in the gene network construction phase to bet-
ter capture the relationships among genes. For construct-
ing cell embeddings, we normalized the gene expression 
matrix and used the normalized gene expression levels as 
weights to sum the gene vectors.

Methods
Our natural language processing (NLP)-based model 
for processing scRNA-seq data begins by calculating the 
cosine similarity between gene expression profiles from 
the raw single-cell transcriptome data. This similarity 
measure is then used to construct a gene distance matrix, 
which represents a gene network. We perform random 
walks on this gene network to generate gene sequences. 
These sequences are treated as text and embedded into 
a vector space using the word2vec algorithm [37], result-
ing in gene vectors. Subsequently, gene vectors are aggre-
gated by cell to obtain cell vectors, and cell vectors are 
further aggregated by tissue to derive tissue vectors. This 
hierarchical aggregation approach enables dimensionality 
reduction and allows us to infer pseudo-time trajectories, 
represent gene perturbations during development, and 
visualize tissue network structures (Fig. 1).

Dimensionality reduction and embedding of scRNA-seq 
data
Single-cell RNA sequencing technology has provided 
unprecedented insights into complex biological systems 
[38]. Due to the high dimensionality and sparsity of 
scRNA-seq data, similarity measures such as cosine simi-
larity and Pearson correlation are commonly employed to 
quantify relationships between gene expression profiles 
[39]. To capture potential relationships between genes 
and facilitate downstream analyses, including trajectory 
inference and visualization, we employ word embedding 
algorithms to generate gene vectors from the generated 
gene sequences. Word embedding techniques map high-
dimensional elements into a lower-dimensional continu-
ous vector space, representing each element as a vector 
in the real domain.

To capture potential relationships between genes, we 
analyzed the raw count matrix from scRNA-seq data. 
This matrix has dimensions of m × n, where m is the 
number of cells and n is the number of genes. Each col-
umn represents the expression levels of a specific gene 
across all cells, so the gene expression vector Gi for gene 
i is an m-dimensional vector. To measure the similarity 
between gene i and gene j, we calculate the cosine simi-
larity of these two gene expression vectors:

 
cos [i, j] = (Gi • Gj)

(|Gi| ∗ |Gj|)

where|Gi| and|Gj| represent the L2 norms of the respec-
tive vectors. We calculated the cosine similarity for all 
gene pairs, generating an n × n gene similarity matrix. 
This matrix served as the adjacency matrix for a gene co-
expression network, where nodes represent genes and 
edge weights are the cosine similarity scores, indicating 
the strength of gene-gene relationships.

Based on this gene network, we use random walks to 
generate gene sequences. Random walks are an effec-
tive method for simulating gene interaction relation-
ships within a network. The gene sequences generated 
by random walks capture both local and global structural 
relationships, reflecting functional associations between 
genes. Random walks can model co-expression rela-
tionships. for example, if two genes frequently appear 
together, this suggests a potential functional associa-
tion. Additionally, a gene may appear multiple times in 
the same sequence, which enhances its representation in 
the embedding space. This repetition reflects the gene’s 
importance within the network and its involvement in 
multiple functional modules or regulatory pathways.

In the random walk process, we can either systemati-
cally traverse each gene or randomly select genes as start-
ing nodes. In our simulations, we choose to traverse all 
genes as starting nodes. After establishing the initial 
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node, we perform a random walk by moving to a neigh-
boring node with a probability proportional to the cor-
responding edge weight. During the random walk, each 
visited gene is recorded, forming a gene sequence.

To explore the gene network, we conducted n random 
walks, each with n steps, where n is the number of genes 
in the gene network. This setup ensures an adequate bal-
ance between the sampling of each gene and computa-
tional efficiency. We observed that the choice of the initial 

node, whether selected randomly or by traversing the 
genes, does not significantly affect the results with this 
parameter setting. Despite the stochastic nature of the 
random walks, including variations in the random seeds 
and initial conditions, the generated gene embeddings 
remain highly consistent across multiple runs. This con-
sistency ensures the stability of subsequent downstream 
analyses. Furthermore, the n-step walk length captures 
gene-gene relationships effectively, and extending the 

Fig. 1 scRNA-seq data processing and analysis pipeline using natural language processing (NLP). (A) Construction of a gene similarity network based on 
gene expression profiles and generation of gene sequences using random walks. (B) Conversion of gene sequences to gene vectors using the word2vec 
model, and calculation of cell vectors by aggregating gene vectors weighted by gene expression levels. (C) Downstream applications of cell vectors, 
including visualization analysis, gene perturbation analysis, and tissue network structure analysis
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walk length further would significantly increase compu-
tational costs with only marginal improvements.

After performing random walks, we obtain a set of 
gene sequences forming a text corpus, which contains n 
sentences composed of gene “words”, with each sentence 
also having a length of n. Subsequently, we utilize this 
gene text corpus and the word2vec model to obtain the 
embedding of each “word”, i.e., each gene.

We used the Gensim library [40] to implement the 
word2vec model, which is a widely used Python library 
for efficient word embedding generation. We adopted 
Gensim’s default parameter settings, specifically using 
the Continuous Bag-of-Words (CBOW) model with a 
vector dimension of 100, a window size of 5, and a mini-
mum word frequency of 5. As a result, we obtained n 
gene vectors, each with 100 dimensions, forming a gene 
vector matrix of size n × 100.

Since each single cell expresses a set of genes, the cell 
vector is calculated as the weighted sum of its expressed 
gene vectors, where the weights are the gene expres-
sion levels in that cell. The resulting cell vector matrix is 
m × 100:

 
Cmk =

∑
i

amigik

where Cmk represents the k-th dimension of the m-th cell 
vector, ami represents the expression level of the i-th gene 
in the m-th cell, and gik represents the k-th dimension of 
the i-th gene vector.

After obtaining cell vectors, we perform further dimen-
sionality reduction and visualization to explore cell rela-
tionships within the embedded space. This enables us 
to identify potential pseudo-time trajectories, observe 
developmental dynamics, and reveal key cell types and 
differentiation pathways.

Gene perturbation analysis in embedding space
The rapid advancement of genome sequencing tech-
nologies [41, 42] has fueled the need to understand how 
genomic variations influence organismal phenotypes, 
linking identified genomic variations to phenotypic varia-
tions in health and disease [43, 44]. Analyzing the tran-
scriptional response of cells to genetic perturbations 
provides crucial insights into cellular functions and regu-
latory mechanisms [45]. For instance, it helps in under-
standing how specific genes regulate cell growth and 
differentiation. While experimental perturbation studies 
are invaluable, computational methods can complement 
these approaches by predicting the effects of perturba-
tions in silico, especially in the context of high-dimen-
sional single-cell data. Our embedding-based approach 
provides an effective method to analyze gene perturba-
tions within the learned latent space.

Unlike methods based solely on transcriptional kinetics 
or RNA velocity [46], our approach leverages the learned 
gene embeddings to model the impact of perturbations. 
Since cell vectors are calculated as the weighted sum of 
their expressed gene vectors, perturbing a gene’s repre-
sentation directly affects the cell vectors in the embed-
ding space. Specifically, to simulate the effect of a gene 
perturbation (e.g., overexpression or knockout), we mod-
ify the corresponding gene vector and recompute the cell 
vectors. For example, to simulate gene overexpression, 
we can add a scaled version of the gene vector to the 
original gene vector. Conversely, to simulate gene knock-
out, we can set the corresponding gene vector to zero or 
remove its contribution from the cell vectors.

The effect of the perturbation on cell m can be quan-
tified by comparing the original cell vector Cm with the 
perturbed cell vector C’m. This comparison can be per-
formed by calculating the vector difference (C’m - Cm). 
The direction and magnitude of the vector difference 
reveal the direction and strength of the perturbation’s 
effect on the cell’s representation in the embedding space. 
By visualizing the original and perturbed cell vectors, we 
can observe how the perturbation shifts the cell’s posi-
tion within the embedded space, providing insights into 
its potential impact on cell state and developmental tra-
jectory. This approach allows us to predict the positive or 
negative effect of gene perturbation on cell development.

Gene perturbation vector fields were constructed fol-
lowing the scVelo approach [16]. Briefly, we simulated 
gene overexpression or knockout by modifying gene vec-
tors and recalculating the corresponding cell vectors. 
The resulting vector differences, representing pre- and 
post-perturbation changes, capture shifts in cell states. 
We then computed the cosine similarity between these 
differences and neighboring cells to generate a similarity 
matrix, reflecting the intensity and direction of the per-
turbation effects. From this matrix, we derived weighted 
displacement vectors to represent cell movement in 
latent space. To ensure a smooth and continuous vector 
field, we applied Gaussian kernel smoothing to interpo-
late these vectors onto a grid. Finally, we visualized cell 
state transitions using Matplotlib’s quiver or streamplot 
functions, with arrows or streamlines indicating the 
direction and magnitude of cell “flow”.

Network construction from cell and cell embeddings
Quantitatively characterizing, understanding, and mod-
eling cell-cell interactions within tissues is a key challenge 
in contemporary biology [47–49]. While constructing 
gene networks from transcriptome data provides insights 
into gene relationships [50], analyzing cell-cell interac-
tions requires considering the collective behavior of cells 
within their tissue context. However, measuring biologi-
cal distances at a local scale, especially with limited data 
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from rare diseases or difficult-to-access tissues, can hin-
der the capture of overall structural information at the 
tissue level.

To address this, we first construct a cell network based 
on cell embeddings and use it as a foundation for con-
structing the tissue network. We leverage the previously 
generated cell vectors, which capture gene expression 
patterns within individual cells. By calculating the pair-
wise distances between cell vectors, we can construct a 
cell network to gain a preliminary understanding of the 
relationships between cells and provide context for sub-
sequent tissue-level analysis.

Building upon this, we further construct a tissue net-
work to explore relationships between different tissues. 
Here, “tissue” refers to a collection of cells, not necessar-
ily a specific anatomical tissue type. For instance, in the 
context of lung cancer data analysis, we define a “tissue” 
as the collection of cells from a single patient.

Tissue vectors are calculated by aggregating the cell 
vectors belonging to the same “tissue”. Specifically, we 
sum all cell vectors within the same “tissue” to obtain the 
corresponding tissue vector. This aggregation captures 
the overall gene expression profile of the cell population 
within that tissue.

Once tissue vectors are obtained, we construct a tissue 
network to explore relationships between different tis-
sues. This network is constructed by calculating the pair-
wise distances between tissue vectors, where each node 
represents a tissue and the connections between nodes 
represent the proximity or similarity between tissues. 

By analyzing this network, we can observe relationships 
between tissues, such as identifying clusters of tissues 
with similar characteristics, which may reflect shared 
biological functions or disease states. For example, in 
lung cancer research, this network can be used to identify 
patient subgroups with similar gene expression profiles, 
or discover potential associations between different tis-
sues, thereby better understanding disease development.

Results
Visualization analysis of EBs and ZE datasets
Our model analyzes the development and differen-
tiation of embryonic cells through gene similarity using 
natural language processing techniques. Utilizing sin-
gle-cell transcriptome sequencing datasets from human 
embryonic stem cells and zebrafish embryos, our model 
extracts informative data on cell development. By con-
structing a gene embedding space and aggregating gene 
expression vectors of embryonic cells according to their 
expression weights, we generate cell vector representa-
tions in gene space.

To visualize the continuous developmental process of 
human embryonic stem cells from Day 1 to Day 5, we 
employed three dimensionality reduction methods: PCA, 
UMAP, and UMAP based on our calculated cell embed-
dings (NLP-UMAP), with the results shown in Fig.  2A. 
As shown in the figure, PCA fails to capture the branch-
ing structure information in cell development, resulting 
in a linear trend in the developmental trajectory that fails 
to reflect the complexity of cell differentiation. While 

Fig. 2 Comparison of our model (NLP-UMAP) with PCA and UMAP applied to human embryonic stem cell (EBs) and zebrafish embryo (ZE) data. (A) EBs 
developmental trajectory. (B) ZE developmental trajectory
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UMAP shows some separation of cell populations, its 
overall structure is rather loose, and the data points are 
distributed sparsely, making it difficult to clearly reveal 
the continuous developmental trajectory and branching 
relationships. In contrast, our NLP-UMAP method bet-
ter preserves both the global and local structures of the 
data, clearly revealing branching trajectories in cell dif-
ferentiation, indicating its improved ability to capture cell 
differentiation and development.

We also validated our approach on a zebrafish embryo 
dataset [34]. As shown in Fig. 2B, the NLP-UMAP visu-
alization of cell vectors clearly illustrates the time evolu-
tion trajectory of zebrafish embryonic cells in gene space, 
with distinct color transitions from red to purple signi-
fying different degrees of cell differentiation. Similar to 
the EB dataset, our method also reveals more branching 
and differentiation details in this dataset. These results 
further support the possibility that the gene embedding 
space constructed through natural language processing 
techniques may effectively capture semantic relationships 
between genes, thereby better reflecting the processes of 
cell development and differentiation.

Gene perturbation of EBs and ZE datasets
Changes in gene vectors lead to corresponding changes 
in cell vectors. To explore the effect of gene perturbation 
on cell developmental trajectories, we performed in silico 
gene perturbation experiments on EBs and ZE single-cell 
transcriptome sequencing data, observing the resulting 
changes in cell vectors visualized by NLP-UMAP (Fig. 3).

In the EBs data (Fig. 3A), we focused on genes known 
to play crucial roles in early development and differentia-
tion. For instance, POU5F1 and OTX2 are key transcrip-
tion factors known to induce EBs differentiation [25]. As 
described in [25], differentiation in the extra-embryonic 
lineage initiates with the induction of the anterior neuro-
ectoderm state, characterized by POU5F1 down-regula-
tion and OTX2 up-regulation. To simulate this process, 
we performed in silico perturbations by individually up-
regulating OTX2, individually down-regulating POU5F1 
(0.2-fold), and simultaneously up-regulating OTX2 
(2-fold) and down-regulating POU5F1 (0.2-fold). As 
shown in the UMAP plots in Fig. 3A, individually up-reg-
ulating OTX2 and individually down-regulating POU5F1 
shifted the cell trajectory in distinct directions. Impor-
tantly, simultaneously up-regulating OTX2 and down-
regulating POU5F1 resulted in a cell trajectory shift more 
closely aligned with the expected anterior neuroecto-
derm state, demonstrating the model’s ability to capture 
synergistic gene effects. Furthermore, we tested that up-
regulating GATA3, SATB1, and KLF8, while down-regu-
lating EOMES and FOXA2, can further differentiate into 
cells expressing the endoderm, with the cell developmen-
tal direction consistent with [25].

We also applied the model to study several genes with 
important roles in ZE development and differentiation 
(Fig.  3B). We performed in silico up-regulation of the 
prechordal plate marker GSC, the late notochord marker 
NTD5 [34], and SOX32 [51], involved in endoderm 
development, to investigate their effects on cell develop-
mental trajectories. GSC plays a crucial role in regulating 
embryonic axis formation during early developmental 
stages, transmitting important embryonic signals that 
promote normal embryonic development. As shown in 
Fig.  3B, in silico increasing GSC expression shifted the 
cell trajectory towards later developmental stages, sug-
gesting that GSC up-regulation may enhance its regula-
tory role in axis formation, potentially leading to more 
effective axis development. NTD5 is essential for noto-
chord development [34], and in silico predictions suggest 
that up-regulating NTD5 expression may impact noto-
chord development, influencing both proper neuronal 
differentiation and neural structure formation. We also 
explored branching events driven by single genes, such 
as the role of SOX32 in endoderm development [51]. As 
shown in Fig.  3B, in silico up-regulation of SOX32 led 
to branching in the cell trajectory, demonstrating the 
model’s ability to capture single-gene-driven branching 
events.

In summary, these results demonstrate that our model 
can effectively simulate the effects of gene perturbation 
on cell developmental trajectories, in both EBs differen-
tiation and ZE embryogenesis. The model captures both 
single-gene and multi-gene synergistic effects and can 
predict the developmental direction of cells under differ-
ent perturbation conditions.

Tissue network structure in fetal kidneys and human lung 
Cancer
We applied our model to construct tissue-level networks 
based on cell type composition and gene similarity. Using 
a spatiotemporal immune compartmentalization dataset 
of the fetal kidney, comprising 24 cell types and 4 spatio-
temporal immune compartments [35], we established a 
baseline tissue network (Fig. 4). The construction process 
begins with dimensionality reduction and visualization 
of the original data using methods like UMAP (Fig. 4A). 
Subsequently, the gene expression information is trans-
formed into gene vectors using natural language process-
ing (Fig. 4B), which are then converted into cell vectors 
(Fig. 4C). To assess the spatial relationships between cells 
and inform the network structure, we analyzed inter-
cellular distances (Fig.  4F). Tissue vectors were then 
calculated by summing the cell vectors within each cell 
category. Connecting these cell category nodes based on 
gene similarity generated the tissue network (Fig. 4D). By 
color-coding cell types according to their spatiotemporal 
immune compartments in the kidney, we visualized the 
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coexistence of different cell types within these compart-
ments. The resulting color patterns showed a trend of 
agreement with the immune compartments defined by 
our network structure, suggesting the potential of our 
tissue vectors for spatiotemporal immune compartment 
classification.

To explore patient-specific network structures in 
human lung cancer, we further applied this approach to 
a human lung cancer dataset (Fig. 5). As shown in the fig-
ure, we first performed UMAP dimensionality reduction 
on the single-cell data (Fig.  5A), and then transformed 
gene expression information into gene vectors using NLP 

(Fig.  5B), further deriving cell vectors (Fig.  5C). Based 
on the similarity between cell vectors, we constructed a 
patient network (Fig. 5D), where each node represents a 
patient. To gain a deeper understanding of the cellular 
organization within individual patients, we took patient 
TH103 as an example and constructed a cell network 
based on their cell vectors (Fig.  5E). By comparing cell 
distance distributions across different patients (Fig.  5F), 
we can analyze differences in cellular organization 
between patients. This network-based approach can con-
nect patients with shared disease characteristics, even in 
cases of significant variations in disease progression. By 

Fig. 3 In silico gene perturbation analysis. (A) Human Embryonic Stem Cells (EBs): Individual and combined perturbations of OTX2 and POU5F1, and 
multi-gene co-perturbations. The left matrix plot shows the expression changes of key genes at different time points. (B) Zebrafish Embryos (ZE): Up-
regulation of GSC, NTD5, and SOX32
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analyzing the network structure, we can infer differences 
in genetic similarity between patients with the same lung 
cancer.

Although detailed patient-specific descriptions in 
lung cancer literature are limited, some information can 
be gleaned from case studies [36]. For example, patient 
TH226, with samples taken from the same primary tumor 
site at three different treatment time points, exhibited 
a standard EGFR exon 19 deletion oncogenic mutation. 
Compared to other patients in the scRNA-seq dataset, 
TH226 showed significantly higher expression of many 
genes related to squamous cell differentiation. Addition-
ally, patient TH266 showed a decreased proportion of 
macrophages in two tumor biopsies. A network model 
based on genetic similarity can reveal relationships and 
categories between different patients and identify poten-
tial genetic mutations (Fig. 5D).

Discussion
We have developed an effective model for analyzing 
scRNA-seq data. Our approach leverages natural lan-
guage processing (NLP) to represent genes as embedded 
word vectors in a gene space. These gene vectors are then 

aggregated to create cell vectors, representing individ-
ual cells in a lower-dimensional embedding space. This 
framework enables visualization and analysis of scRNA-
seq datasets at both the cellular and tissue levels.

At the cellular level, cell vectors facilitate the inference 
of pseudo-time series and the simulation of genetic per-
turbations. Our model demonstrated promising results 
in analyzing human embryonic stem cell (EBs) data, 
effectively illustrating the processes of embryonic cell 
development and differentiation, thus providing a valu-
able foundation for further investigations into growth 
and developmental mechanisms. By capturing the con-
tinuous and branching structures of these trajectories, we 
identify key regulatory genes and pathways that govern 
cell fate decisions. For instance, in silico perturbations of 
POU5F1 and OTX2 in EBs revealed critical insights into 
how these genes influence the anterior neuroectoderm 
state, contributing to the understanding of the molecular 
mechanisms underlying early developmental stages and 
cell fate determination.

At the tissue level, we construct tissue vectors by 
aggregating cell vectors within defined cell categories. 
These tissue vectors can then be used to establish tissue 

Fig. 4 Construction of a fetal kidney tissue network from scRNA-seq Data. (A) Original data (UMAP). (B) Gene vectors (NLP embedding). (C) Cell vectors. 
(D) Tissue network based on cell categories. (E) Henle’s loop epithelial cell network. (F) Inter-cellular distance distribution of Henle’s loop epithelial cells
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networks, providing insights into tissue organization and 
inter-cellular relationships within tissues. Our analysis of 
the spatiotemporal immune compartmentalization data-
set of the fetal kidney demonstrated the effectiveness of 
this approach in capturing known tissue structures. This 
method can also be applied to the study of other tissue 
types, facilitating a deeper understanding of the interac-
tions between different cell populations and contributing 
to analysis-based disease classification research.

By constructing tissue-level networks based on cell 
type composition and gene similarity, we have demon-
strated an effective approach to analyze both normal tis-
sue development (fetal kidney) and disease progression 
(lung cancer). This method allows for the integration of 
diverse data types and provides insights into the com-
plex relationships between cells, tissues, and patient-
specific characteristics. For instance, a multi-layered 
network analysis from lung cancer patient TH226 may 
help identify potential therapeutic targets for EGFR-
mutant patients. Additionally, examining intercellular 
distances allows us to infer interactions within the tumor 
microenvironment, enhancing our understanding of can-
cer heterogeneity and progression. These insights help 
identify key genes and pathways involved in both normal 

development and cancer progression, offering valuable 
perspectives for early prediction and treatment discovery.

In this study, we chose word2vec as the gene embed-
ding method to balance computational efficiency and 
model complexity. The stability and effectiveness of 
word2vec have been validated in gene network analy-
sis [52]. As a lightweight method, word2vec efficiently 
processes large-scale single-cell data, even in resource-
limited settings. For example, processing the EBs data-
set took approximately 38 min on a laptop with an AMD 
Ryzen 5 4600 CPU, a GTX 1650 GPU, and 32GB RAM. 
Our results demonstrate that word2vec effectively cap-
tures gene co-occurrence patterns and semantic similari-
ties by mapping genes into an embedding space.

While more advanced contextual embedding methods 
based on Transformer architectures, such as scBERT 
[31], Geneformer [32], and scGPT [33], have emerged in 
recent years, they typically require higher computational 
resources and more complex model structures. Given 
the data scale and the goal of developing a lightweight 
model, word2vec is sufficiently effective for this study. 
Future research could incorporate attention mechanisms 
to address word2vec’s limitations in capturing long-range 

Fig. 5 Patient-Specific Network Analysis in Human Lung Cancer. (A) UMAP of single-cell data. (B) Gene vectors (NLP embedding). (C) Cell vectors. (D) 
Patient network based on gene similarity. (E) Cell network for patient TH103. (F) Comparison of cell distance distributions within individual patients
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dependencies, thereby enhancing the model’s ability to 
represent more complex biological relationships.
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