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Abstract 

Background Cancer stem cells (CSCs) are crucial for lung adenocarcinoma (LUAD). This study investigates tumor 
stem cell gene signatures in LUAD using single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (RNA-
seq), aiming to develop a prognostic tumor stem cell marker signature (TSCMS) model.

Methods LUAD scRNA-seq and RNA-seq data were analyzed. CytoTRACE software quantified the stemness score 
of tumor-derived epithelial cell clusters. Gene Set Variation Analysis (GSVA) identified potential biological func-
tions in different clusters. The TSCMS model was constructed using Lasso-Cox regression, and its prognostic value 
was assessed through Kaplan–Meier, Cox regression, and receiver-operating characteristic (ROC) curve analyses. 
Immune infiltration was evaluated using the Cibersortx algorithm, and drug response prediction was performed 
using the pRRophetic package. TAF10 functional investigations in LUAD cells involved bioinformatics analysis, qRT-
PCR, Western blot, immunohistochemistry, and assays for cell proliferation.

Results Seven distinct cell clusters were identified by CytoTRACE, with epithelial cell cluster 1 (Epi_C1) showing 
the highest stemness potential. The TSCMS model included 49 tumor stemness-related genes; high-risk patients 
exhibited lower immune and ESTIMATE scores and increased tumor purity. Significant differences in immune land-
scapes and chemotherapy sensitivity were observed between risk groups. TAF10 positively correlated with RNA 
expression-based stemness scores in various tumors, including LUAD. It was over-expressed in LUAD cell lines 
and clinical tumor tissues, with high expression linked to poor prognosis. Silencing TAF10 inhibited LUAD cell prolif-
eration and tumor sphere formation.

Conclusions This study demonstrates the TSCMS model’s prognostic value in LUAD, reveals insights into immune 
infiltration and therapeutic response, and identifies TAF10 as a potential therapeutic target.
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Background
Lung adenocarcinoma (LUAD), a prevalent and chal-
lenging malignancy of the lungs, has exhibited a steady 
rise in its incidence in recent years [1–3]. Single-cell 
RNA sequencing (scRNA-seq) has emerged as a potent 
tool for delving deeper into the intricate landscape of 
this disease [4, 5]. Characterized by rapid technological 
advancements, single-cell technologies have garnered 
substantial attention and application across diverse solid 
and hematologic malignancies, such as utilizing scRNA-
seq to unveil the landscape of infiltrating T cells in liver 
cancer [6], and investigating the clonal evolution of circu-
lating tumor cells within peripheral blood [7]. In LUAD, 
by furnishing high-resolution gene expression profiles, 
single-cell sequencing has endowed researchers with an 
unprecedented ability to decipher the intricate heteroge-
neity and underlying molecular mechanisms driving the 
pathogenesis [8–10].

Leveraging the capabilities of single-cell sequencing, 
researchers are navigating complex gene expression sig-
natures, functional attributes, and intricate cellular inter-
actions within distinct subpopulations in LUAD [10]. Of 
particular significance within the landscape of LUAD 
research is the burgeoning interest in tumor stem cells 
(TSCs). TSCs are characterized by their intrinsic capacity 

for self-renewal, differentiation into diverse cellular line-
ages, and the pivotal role they play in the initiation and 
propagation of tumors [11, 12]. They exhibit distinctive 
biological attributes, including resistance to apopto-
sis, chemotherapeutic drugs, and radiation therapy, as 
well as the propensity for long-distance metastasis [12]. 
These characteristics render TSCs a highly attractive 
therapeutic target and a critical determinant of tumor 
aggressiveness and prognosis [13, 14]. In the context of 
LUAD, several TSCs specific markers have been iden-
tified, such as CD44, CD133 (PROM1), and aldehyde 
dehydrogenase 1 (ALDH1), which are upregulated in 
TSC populations [15–17]. These markers have been cor-
related with adverse clinical outcomes and resistance to 
therapeutic interventions. Preclinical investigations have 
demonstrated promise in targeting these markers as a 
therapeutic strategy aimed at overcoming drug resistance 
and mitigating the aggressive behavior of LUAD [18]. As 
such, understanding the functional role of TSCs in LUAD 
has significant implications for the development of tar-
geted therapies aimed at improving patient prognosis.

In pursuit of refining prognostication, numerous 
studies have embarked on the development of prog-
nostic models [19–21]. The publicly accessible data-
bases, including TCGA and GEO repositories, provide 
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abundant LUAD samples and associated clinical data, 
thereby facilitating the construction and rigorous vali-
dation of these prognostic models [22, 23]. In this study, 
we employed single-cell sequencing to investigate tumor 
stem cells in LUAD, identify key gene signatures, and 
develop a prognostic risk model. Our analysis revealed 
a tumor stem cell marker signature (TSCMS) that could 
predict prognosis and guide therapeutic decisions, 
including immune checkpoint blockade efficacy. We 
further identified TATA-box binding protein associated 
factor 10 (TAF10) as a critical oncogenic gene linked to 
stemness and poor prognosis in LUAD, suggesting its 
potential as a therapeutic target. These findings highlight 
the potential of the TSCMS model to improve prognos-
tication and personalized treatment strategies for LUAD 
patients.

Materials and methods
Data collection
Single-cell sequencing data (scRNA-seq) and bulk RNA 
sequencing data were obtained online from the GEO and 
TCGA databases. The single-cell data originated from 
GEO (GSE131907, 11 normal and 11 LUAD), while the 
bulk RNA data were downloaded from TCGA (TCGA-
LUAD cohort, n = 500) and GEO (GSE26939, n = 115, 
and GSE72094, n = 398). The LUAD immunotherapy 
cohort ‘IMvigor210CoreBiologies’ was sourced from 
previously published research [24]. Data for drug IC50 
predictions were acquired from a statistical study [25]. 
All these datasets were sourced from public databases or 
shared by others.

Preprocessing of ScRNA‑seq data
Employing the R package Seurat, we imported the 
unprocessed expression matrix [26]. Subsequently, we 
performed filtering to include single-cell data originat-
ing from both LUAD and normal tissues. Cells exhib-
iting mitochondrial gene content exceeding 30% and 
those manifesting expression of more than 10,000 genes 
were excluded from the analysis. For normalization, we 
applied the SCTransform function, which mitigates 
technical noise and ensures uniform scaling across cells. 
Subsequently, the RunPCA function was applied with 
the parameter npcs = 50, and the RunUMAP function 
used parameters reduction = “pca” and dim = 1:30. The 
FindNeighbors function was employed with parameters 
reduction =  “pca” and dims = 1:30. Leveraging these 
neighborhood relationships, clustering was performed 
with the FindClusters function, wherein a resolution 
parameter of 0.1 was chosen to delineate 16 distinct cell 
clusters.

Annotation of cellular subpopulations
After obtaining the 16 clusters, we proceeded to anno-
tate these clusters with cell types based on the expres-
sion of specific marker genes [27]. Immunological cells 
were identified using a spectrum of markers, including 
PTPRC, and various subclasses such as B cells (CD79A 
and MS4A1), plasma cells (IGLC2 and IGHM), T cells 
(CD3D and CD3E), monocytes (CD14 and S100A8), NK 
cells (NKG7 and GNLY), mast cells (CPA3 and KIT), and 
macrophages (CD68 and MARCO). Additionally, non-
immune cell types were characterized, including epithe-
lial cells (EPCAM and KRT8), endothelial cells (PECAM1 
and VWF), and fibroblasts (COL1A1 and DCN). This 
analysis ultimately yielded the identification of 10 major 
cell types within the dataset.

Differential gene analysis
The identification of highly expressed genes in scRNA-
seq cells was performed using the Seurat package’s Find-
AllMarkers function with parameters set as only.pos = T 
and logfc.threshold = 0.25, while keeping other parame-
ters as default. Differential gene analysis for the epithelial 
cell cluster in scRNA-seq was presented in Table S1, and 
results were visualized using the R package EnhancedVol-
cano. For bulk RNA-seq differential analysis, the DESeq2 
package was utilized with default parameters. Differ-
ential analysis was conducted by grouping samples into 
high and low-risk categories based on the median, and 
the results of differentially expressed genes between the 
high-risk and low-risk groups are available in Table S7.

Prediction of tumor epithelial cell stemness
CytoTRACE utilizes gene expression and an intrinsic 
stemness gene set to predict cell stemness at the single-
cell level [28]. To identify the clusters of tumor epithelial 
cells with the highest stemness or lowest differentiation, 
we employed the CytoTRACE pipeline from the R pack-
age. The results of stemness-related genes (cor > 0.3) can 
be found in Table S3.

Gene functional enrichment analysis
The enrichment analysis of seven types of tumor tissue-
derived epithelial cells in scRNA-seq was conducted 
using the R package GSVA [29]. Initially, 50 tumor 
Hallmark gene sets were obtained using the R pack-
age msigdbr. The GSVA function was applied with the 
parameter method =  “ssgsea” to perform enrichment 
analysis on the expression matrices of the seven epi-
thelial cell types. The ssgsea enrichment scores can be 
found in Table  S2. For the GSEA enrichment analysis 
of the TSCMS model, the R package fgsea was used 
with default parameters. Differential genes between 
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high and low-risk groups based on the TCGA training 
set were ranked according to their FoldChange. The 
enrichment results of KEGG pathways from GSEA can 
be found in Table S10.

Construction and validation of the prognostic risk model 
TSCMS
Intersecting the stemness-related genes with the highly 
expressed genes within the tumor epithelial cell cluster 
Epi_C1, we conducted a univariate Cox regression analy-
sis to ascertain the prognostic significance of these over-
lapping genes in relation to overall survival among LUAD 
patients sourced from the TCGA dataset. Genes yielding 
a p-value of less than 0.05 were designated as prognos-
tic candidates. Subsequently, we subjected the identified 
prognostic genes to a least absolute shrinkage and selec-
tion operator (LASSO) Cox proportional hazards regres-
sion, leveraging the "glmnet" package [30]. Employing 
ten-fold cross-validation, we curated a gene list featuring 
nonzero coefficients, culminating from an optimal model 
feature selection process (Table  S5). The resultant risk 
model was meticulously formulated by a linear summa-
tion of the products of genes and their corresponding risk 
coefficients. Patient stratification into low-risk or high-
risk groups was based on a median threshold (Table S6). 
To methodically validate the prognostic efficacy of the 
TSCMS model, we computed the area under the curve 
(AUC) utilizing the “timeROC” package [31]. Survival 
analysis, grounded in the Kaplan–Meier methodology, 
was adeptly undertaken. Further statistical assessment of 
differences was facilitated through the application of the 
log-rank test, seamlessly integrated within the R package 
“survminer” [32]. Notably, the predictive robustness of 
the model was subject to rigorous validation via survival 
analysis and AUC computation across two distinct GEO 
datasets.

Immune cell infiltration analysis
Immune cell infiltration analysis was conducted by using 
R Packages CIBERSORT and ESTIMATE in TCGA-
LUAD Patients [33]. The infiltration scores for 22 distinct 
immune cell types were computed using CIBERSORT 
(Table  S11). Based on the median risk score, patients 
were divided into two groups, and differences in immune 
cell infiltration across the 22 types were compared 
between these groups. Furthermore, the ESTIMATE 
package was utilized to calculate overall immune scores, 
stromal scores, ESTIMATE scores, and tumor purity 
(Table S12). Following the division into two groups based 
on the median risk score, inter-group differences were 
assessed.

Prediction of immunotherapy response
The IMvigor210 cohort is an immunotherapy-focused 
dataset for bladder cancer (BLCA), encompassing 
gene expression matrices, patient clinical informa-
tion [24], and records of immunotherapy responses. 
Patients were stratified into two groups based on the 
median cutoff of their risk scores. Comparative analy-
sis was performed to assess differences in the expres-
sion of immune checkpoint markers between the two 
groups, as well as disparities in patients’ immunother-
apy responses.

Drug response prediction
We conducted drug response prediction using the 
pRRophetic package [25]. The gene expression profiles 
of high- and low-risk groups were employed to estimate 
the IC50 values for various commonly used clinical or 
preclinical anti-tumor drugs. By leveraging statistical 
methods, we identified drugs with significantly distinct 
IC50 values between these risk groups (Table  S8 and 
S9).

Gene expression and bioinformatics analysis of TAF10 
from public database
The expression and RNA expression-based stemness 
score (RNAss) data for TAF10 in various tumor types 
in TCGA database were obtained from the SangerBox 
database (http:// Sange rBox. com/ Tool) [34]. For the 
prognosis analysis of TAF10 in LUAD, Kaplan–Meier 
(KM) survival curves for disease-free survival (DFS) 
and overall survival (OS) were generated using the 
GEPIA2 platform (http:// gepia2. cancer- pku. cn/) [35]. 
To perform Gene Set Enrichment Analysis (GSEA) 
based on TAF10 expression levels, tumor samples from 
the LUAD cohort were initially selected; patients were 
categorized into TAF10-High and TAF10-Low groups 
according to the median expression level of TAF10. 
GSEA was subsequently conducted for KEGG, GOBP, 
and Hallmark gene sets; all visualizations were gener-
ated using the ggplot2 package in R (version 4.4.1).

Cell culture
Human LUAD cell lines (A549, PC9, H1975) and 
human normal bronchial epithelial cells (16HBE) were 
purchased from the American Type Culture Collec-
tion (ATCC, RRID: CVCL_0023 for A549, CVCL_B260 
for PC9, CVCL_1511 for H1975, and CVCL_0021 for 
16HBE). The cell lines were authenticated by STR pro-
filing and karyotyping upon initial receipt, and were 
tested negative for mycoplasma using a PCR-based 
detection method. All cell lines were maintained in 
either RPMI-1640 medium or DMEM (Thermo Fisher 

http://SangerBox.com/Tool
http://gepia2.cancer-pku.cn/
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Scientific, MA, USA) medium supplemented with 10% 
fetal bovine serum. Cells were cultured at 37  °C in a 
humidified atmosphere with 5% CO2.

Plasmids and cell transfections
Short hairpin RNA (shRNA) sequences targeting TAF10 
were cloned into psiF-copGFP vectors (System Bio-
sciences, Mountain View, CA). The shRNA sequences 
for TAF10 were 5′-CCA GAA ATT CAT CTC AGA TAT-
3′, and the sequence for the negative control (shCtl) 
was 5′-GGT GTG CAG TTG GAA TGT A-3′. For plasmid-
based transfection, 2  µg of each plasmid (psiF-copGFP-
shTAF10 or psiF-copGFP-shCtl) were used to transfect 
HEK-293 T cells, with a plasmid ratio of 1:1 for pMD2.G 
and psPAX2. The plasmids pMD2.G and psPAX2 were 
obtained from Addgene (plasmid #12,259 and #12,260, 
respectively). Lentivirus was harvested 48  h post-trans-
fection. LUAD cell lines were transduced with the virus 
in the presence of 8  µg/mL polybrene (Sigma-Aldrich, 
Cat. # S-2667) and subsequently selected with 2  µg/mL 
puromycin (Thermo Fisher Scientific, Cat. #A11138-03) 
for 7 days to establish stable knockdown cell lines.

Cell proliferation and clone formation assay
Cell proliferation was assessed using the Cell Counting 
Kit-8 (CCK-8) assay (Dojindo, Tokyo, Japan) according 
to the manufacturer’s instructions. For each condition, 
three biological replicates were performed. Absorb-
ance was measured at 450 nm using a microplate reader 
(ELX808, BioTek, USA). The cell proliferation rate was 
calculated relative to the control group. The results are 
presented as the mean ± standard deviation (SD) from 
three independent experiments.

For the colony formation assay, cells were seeded in 
6-well plates at a density of 500 cells/well, with three 
technical replicates per condition. Cells were incubated 
at 37  °C, and the medium was refreshed every 3  days 
until colonies formed. After 14  days, cells were fixed 
with paraformaldehyde and stained with crystal violet 
(Sigma-Aldrich, St. Louis, MO). Colonies with more than 
50 cells per colony were counted under a microscope. 
The number of colonies was quantified and compared 
between experimental groups, with results presented as 
the mean ± SD from three independent experiments.

Sphere formation assay
LUAD cell lines were stably transfected with either 
shCtl or shTAF10 and seeded at 500 cells per well in 
24-well ultra-low attachment plates (Corning, USA). 
Cells were cultured in DMEM/F12 serum-free medium 
(Gibco, Cat. No. 11320–033) supplemented with 2% B27 
(Gibco, Cat. No. 17504–044), 20  ng/mL basic fibroblast 
growth factor (bFGF, PeproTech, Cat. No. 100-18B), 

20  ng/mL epidermal growth factor (EGF, PeproTech, 
Cat. No. 37000015), 5  μg/mL insulin (Sigma-Aldrich, 
Cat. No. I9278), and 0.4% BSA (Sigma-Aldrich, Cat. 
No. A1933-1G). After 12  days, spheroid formation was 
assessed by counting the number of spheres with a diam-
eter > 50 μm under a light microscope. The sphere forma-
tion efficiency was calculated as the ratio of the number 
of spheres to the total number of cells plated. Results 
were presented as the mean ± SD from three independent 
experiments.

Quantitative real‑time PCR (qRT‒PCR)
First-strand cDNA was synthesized using the GenStar 
A212-05 kit according to the standard protocol. qPCR 
was performed using the SYBR Green Supermix and 
CFX96 real-time PCR detection system. Each experi-
ment was performed in triplicate, and the mRNA expres-
sion of genes was analyzed using the  2−ΔΔCt method. 
The following primers were used: 5′-ATT GAT GCC ATA 
CTC GCT GAG-3′ and 5′- GAA GTG AAG CCC GTA 
GTG TCC-3′ for TAF10, 5′-CTC AAG GTG CTG ATG 
GAG AAGG-3′ and 5′- GAA CTC ACT GAA GTC CAC 
CTGG-3′ for S100P, 5′-ACT CCT TGG TCC AGC TCA 
TGCA -3′ and 5′- ATT CTC CAG CCG CCA CAG TACA 
-3′ for PAFAH1B3, 5′-AGA AGG CAT AGT TGC TCT 
GCGC -3′ and 5′- CAA GCA GTC AGG ACT TAG GTCG 
-3′ for CCT6A, 5′-CCT GCA AAA GCA GTG GAC CATG 
-3′ and 5′- CTC CTA CCA GTG GCT GAG CATA -3′ for 
DCBLD2, 5′-TCG TGC GTG ACA TTA AGG AG-3′ and 
5′-ATG CCA GGG TAC ATG GTG GT-3′ for β-actin. Gene 
expression data were normalized to β-actin, and results 
are presented as mean ± SD from three independent bio-
logical replicates.

Western blot
Cells were lysed with RIPA buffer supplemented with 
protease inhibitor and boiled at 95  °C for 5  min. Equal 
amounts of protein (10 µg) were added to sodium dode-
cyl sulfate polyacrylamide (SDS-PAGE) gel electro-
phoresis and transferred to a polyvinylidene difluoride 
membrane. The membrane was blocked with 5% nonfat 
dry milk for 1 h at room temperature and then incubated 
with primary antibodies overnight at 4 °C. Antibodies for 
TAF10 (Novus Cat# NBP1-80,706, RRID: AB_11006462) 
were purchased from NOVUS Biologicals, and GAPDH 
antibody (Sigma-Aldrich Cat# SAB5600208, RRID: 
AB_2920926) was purchased from Sigma as a loading 
control. On the following day, membranes were incu-
bated with HRP-conjugated anti-rabbit or anti-mouse 
secondary antibodies (Santa Cruz Biotechnology, Dallas, 
TX) for 1 h at room temperature. Immunoreactive pro-
teins were visualized using the SuperSignal West Dura 
Chemiluminescent Substrate (Thermo Fisher Scientific). 



Page 6 of 19Zhao et al. Journal of Translational Medicine          (2025) 23:222 

Protein bands were quantified using ImageJ software 
(NIH, Bethesda, MD) and normalized to GAPDH. Quan-
titative data are presented as the mean ± SD from three 
independent experiments.

Immunohistochemistry
The protocol and all procedures involving human sam-
ples in this study were reviewed and approved by the 
Institutional Review Board (IRB) of Zhongshan City Peo-
ple’s Hospital (approval number: 2024–116). All paraffin-
embedded tissues of patients in this study were obtained 
with informed patient consent (n = 5 pairs of adjacent and 
tumorous tissues, totaling 10 tissues). For immunohisto-
chemistry staining, deparaffinized and rehydrated sec-
tions were boiled in Na-citrate buffer (10 mM, pH 6.0) for 
30 min for antigen retrieval. The sections were incubated 
with primary antibodies and developed using the Ultra 
Vision Detection System. Images were captured using an 
Olympus IX51 microscope and processed using cellSens 
Dimension software. The H-Score (Histochemistry score) 
is calculated as ∑ (pi × i), where i represents the inten-
sity grading of positive cells: 0 for negative (no staining); 
1 for weak positive (pale yellow); 2 for moderate posi-
tive (brown-yellow); and 3 for strong positive (brown). 
Here, pi represents the percentage of cells at each respec-
tive intensity level. The formula can be expressed as: 
H-Score = (percentage of weak positive cells × 1) + (per-
centage of moderate positive cells × 2) + (percentage of 
strong positive cells × 3). The resulting H-Score ranges 
from 0 to 300. A higher H-Score indicates a stronger 
overall positivity, reflecting both the intensity and the 
proportion of positive cells.

Statistical analysis
In appropriate scenarios, we employed either the Stu-
dent’s t-test or the Wilcoxon rank-sum test to assess the 
significance of differences between groups. The selection 
of the test depended on the distribution of the data and 
the assumption of normality. For survival analysis, the 
Log-Rank test was utilized to determine the significance 
of survival differences between different groups or condi-
tions. P value less than 0.05 was considered statistically 
significant. Statistical significance levels were denoted as 
follows: * for p < 0.05, ** for p < 0.01, *** for p < 0.001, and 
**** for p < 0.0001.

Results
Workflow and cell population landscape in LUAD
To explore the potential functions of LUAD tumor stem 
cells, we collected bulk RNA-seq data from TCGA-
LUAD and GEO datasets (GSE26939 and GSE72094), 
as well as single-cell RNA-seq data from the GEO data-
set (GSE131907). Using scRNA-seq, we predicted the 

stemness score of tumor epithelial cells. Then, we con-
structed a LUAD prognostic model based on tumor 
stemness genes and further validated its predictive ability 
(Fig. 1A). First, we conducted quality control on all cells, 
applying filters with a minimum cell count of 3, a mini-
mum feature count of 200, and mitochondrial gene con-
tent of less than 30% (Fig. S1). Next, we annotated a total 
of 22 samples (11 normal and 11 LUAD) from the sin-
gle-cell dataset, which comprised 88,144 individual cells 
distributed across 16 clusters (Fig.  1B, C, and Fig. S2). 
Based on the expression of cell markers within clusters, 
we identified ten major cell populations (Fig. 1B). Com-
pared to normal lung tissue, LUAD exhibited reduced 
infiltration of NK cells and macrophages. However, 
LUAD patients demonstrated heterogeneity, with differ-
ent LUAD samples showing varying proportions of epi-
thelial cells (Fig. 1D). We used common cell markers such 
as EPCAM for epithelial cells, PECAM1 for endothelial 
cells, PTPRC for immune cells, and COL1A1 for fibro-
blasts to define each cell type (Fig. 1E). Therefore, LUAD 
exhibits substantial tumor heterogeneity, with varying 
compositions of tumors and their microenvironments 
among different patients.

Prediction of tumor epithelial stem cells
Further exploration of tumor stem cells involved the 
selection of 7252 tumor-derived epithelial cells for cal-
culating stemness scores using the CytoTRACE software 
(Fig.  2A). After applying dimensionality reduction and 
clustering techniques, 7 distinct cell clusters were iden-
tified (Fig.  2B). Comparing the CytoTRACE-predicted 
stemness scores across these 7 tumor epithelial cell clus-
ters revealed that Epi_C1 exhibited the highest stemness 
potential (Fig. 2C). Subsequent differential gene analysis 
of Epi_C1 highlighted elevated expression of genes such 
as CDKN2A, TMSB10, SOO2A, PTGS2, and SNCG 
(Fig. 2D and Table S1). Additionally, the Hallmark GSVA 
enrichment analysis demonstrated that Epi_C1 displayed 
higher enrichment scores in pathways associated with 
hypoxia, EMT, Kras signaling, MYC signaling, as well 
as E2F targets and G2M checkpoint, which are closely 
linked to cell cycle regulation, compared to other epithe-
lial cell clusters (Fig. 2E and Table S2). Thus, the Epi_C1 
cluster is likely to represent a subpopulation of stem-like 
epithelial cells within LUAD tumors.

Construction and validation of the prognostic model 
TSCMS
To investigate the impact of stem-like tumor epithe-
lial cells on LUAD patients, we intersected 1068 highly 
expressed genes in Epi_C1 with 2509 CytoTRACE-
computed genes showing correlation (cor > 0.3), result-
ing in 964 genes (Fig.  3A and Table  S1, 3). These genes 
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were utilized for univariate Cox regression analysis to 
predict their association with survival in LUAD patients. 
We used the LUAD mRNA count expression matrix and 
corresponding clinical information from the TCGA data-
base as the training set. Out of the 964 genes, 92 genes 
with p-value < 0.05 (Fig. S3) were further subjected to 
Lasso regression and multiple-factor Cox regression 

with tenfold cross-validation, ultimately selecting 49 
genes with non-zero coefficients as features to construct 
tumor stem cell marker signature (TSCMS) prognostic 
risk model (Fig. 3B and Table S4, 5). The risk score was 
calculated based on the cumulative expression values of 
the genes multiplied by their corresponding coefficients, 
and the TCGA training set samples were divided into 

Fig. 1 Landscape of cell type in LUAD and normal tissues. A Workflow of this study. B UMAP plot of major nine cell types of LUAD. C UMAP plot 
of sites. Different cell types and sites are grouped by different colors. D The proportion of different cell types within each sample. E Expression 
of representative genes for different cell types. Bubble size reflects expression proportion, while the color gradient from blue to red signifies higher 
expression levels
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high and low-risk groups using the median risk score 
(Fig. 3C and Table S6). In the training set, the model sig-
nificantly stratified patients’ survival (p < 0.0001), with 
area under the curve (AUC) values of 0.818, 0.851, and 

0.871 for 1-year, 3-year, and 5-year survival, respectively 
(Fig.  3D, G). Furthermore, we validated the  TSCMS 
model  using two independent external LUAD datasets, 
GSE26939 and GSE72094. The model demonstrated 

Fig. 2 Identification and functional analysis of tumor stem cells. A, B UMAP plot of 7 distinct tumor epithelial cell types with CytoTRACE stemness 
scores (A) and cell clusters (B). C Tumor stemness scores of 7 epithelial cell clusters using CytoTRACE. D Volcano plot of differentially expressed 
genes in Epi_C1. E Hallmark enrichment analysis of 7 epithelial cell clusters. The intensity of enrichment increases from blue to red
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robust prognostic stratification ability in GSE26939 
(p = 0.012) and GSE72094 (p = 0.00015) (Fig. 3E, F), with 
corresponding AUC values of 0.707, 0.637, and 0.595 for 

1-year, 3-year, and 5-year survival in GSE26939 (Fig. 3H), 
and 0.702, 0.667, and 0.751 in GSE72094 (Fig. 3I). In con-
clusion, the newly developed prognostic risk model based 

Fig. 3 Construction and validation of the prognostic model TSCMS. A Overlapping CytoTRACE predicted stemness-associated genes and marker 
genes of Epi_C1. B Each independent variable’s trajectory and distribution for the lambda. C Expression of 49 TSCMS genes in TCGA-LUAD cohort. 
D–F Kaplan–Meier plot of prognostic survival for TCGA  (D), validation sets GSE26939 (E) and GSE72094 (F). G–I ROC curves for TCGA (G) test set, 
validation sets GSE26939 (H) and GSE72094 (I). Red for 1-year, blue for 3-year, and black for 5-year survival rates
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on stem-like tumor epithelial cells exhibits an excellent 
predictive capacity for the prognosis of LUAD patients.

The association between TSCMS and immune cell 
infiltration in the TME
As immune cells play a pivotal role in tumor immunity 
and promotion, we explored the relationship between 
TSCMS and immune cell infiltration within LUAD 
patients. Leveraging the cibersortx program, we inves-
tigated the infiltration of 22 distinct immune cell types. 
Notably, the high-risk group demonstrated diminished 
levels of B cell naive,  CD4+ T cell memory resting, mono-
cytes, and mast cells when compared with the low-risk 
group (Fig.  4A). Conversely, macrophage M0 infiltra-
tion exhibited heightened levels within the high-risk 
group (Fig.  4A). Moreover, employing the ESTIMATE 
program, we calculated infiltration scores for both high- 
and low-risk groups, the high-risk group revealed mark-
edly reduced immune scores (Fig. 4B), lower ESTIMATE 
scores (Fig.  4D), and heightened tumor purity (Fig.  4E). 
Remarkably, no pronounced disparities emerged in stro-
mal scores (Fig.  4C). After partitioning TCGA-LUAD 
samples into two distinct groups according to the median 
risk score, we conducted an analysis of differential gene 
expression (Table  S7), followed by GSEA enrichment 
analysis ranked by fold change. Specifically, the high-
risk group exhibited enrichments in pivotal pathways 
such as cell cycle regulation, DNA repair, and P53 signal-
ing, while the low-risk group showcased enrichments in 
chemokine signaling, chemokine receptor interactions, 
and T cell receptor signaling (Fig. 4F). These results imply 
a positive correlation between the TSCMS risk score and 
tumor cell proliferation, and a negative correlation with 
immune functionality. The diminished predictive prog-
nosis of TSCMS might be attributed to its association 
with reduced immune infiltration capacity.

TSCMS could predict immunotherapy benefits in LUAD 
patients
Building upon the pivotal role of TSCMS in immune 
cell infiltration, we further explored its predictive influ-
ence on immune checkpoint blockade and immuno-
therapy response. Firstly, within the IMvigor210 cohort, 
we analyzed immune checkpoint expression including 
PD1, PD-L1, and CTLA4. Notably, there were no signifi-
cant differences in PD1 and CTLA4 expression between 
high- and low-risk groups (Fig.  5A, D), while PD-L1 
expression was higher in the high-risk group (Fig.  5B). 
Evaluating the response to anti-PD-L1 therapy, the risk 
score was notably lower in the R (complete response/par-
tial response; CR/PR) group compared to the NR (stable 
disease/progressive disease; SD/PD) group (Fig.  5C). In 
terms of treatment response, the low-risk group showed 

a nearly 9% higher proportion of CR/PR compared to the 
high-risk group (Fig. 5E). Moreover, the stratification of 
patient prognosis by TSCMS within this cohort exhibited 
statistically significant implications (Fig.  5F). In conclu-
sion, these findings suggest that patients with a lower risk 
score may benefit more from anti-PD-L1 therapy, indi-
cating TSCMS as a potentially helpful biomarker for anti-
PD-L1 treatment.

TSCMS‑based prediction of anti‑tumor drug efficacy
In addition to immunotherapy, chemotherapy remains 
a pivotal approach in the battle against tumors. Thus, 
we computed the IC50 sensitivities of commonly used 
clinical or preclinical anti-tumor drugs between high- 
and low-risk TSCMS groups. Among the findings, IC50 
values for 61 drugs were observed to be lower in the 
high-risk group in comparison to the low-risk group 
(Table S8). Furthermore, for 8 drugs, the IC50 values in 
the low-risk group were significantly lower than those 
in the high-risk group (Table  S9). Through prioritizing 
results based on significance, we revealed the top 6 drugs 
with better sensitivity in the high-risk group (Fig.  6A) 
and the top 3 drugs with better sensitivity in the low-risk 
group (Fig. 6B) in terms of IC50 outcomes. These results 
hold the potential to offer invaluable guidance for per-
sonalized treatment strategies in LUAD patients.

TAF10 plays oncogenic role in LUAD
To investigate the role of genes incorporated into the 
TSCM prognostic risk model in LUAD, we assessed the 
mRNA expression of the top five genes in LUAD cell 
lines. Our results demonstrated that these genes were 
significantly upregulated in LUAD cell lines compared to 
human normal bronchial epithelial cells (16HBE), with 
TAF10 exhibiting the highest expression levels (Fig. 7A). 
Given its strong association with the prognosis of LUAD 
patients among the 49 genes analyzed, TAF10 was 
selected for further investigation. Using data from TCGA 
and GTEx databases, we found that the mRNA expres-
sion of TAF10 was elevated in various tumors, includ-
ing LUAD, compared to corresponding normal tissues 
(Fig. 7B). Importantly, analysis of stemness features indi-
cated a positive correlation between TAF10 expression 
and RNA expression-based stemness scores (RNAss) 
across several tumor types, including LUAD (R = 0.325, 
p = 0.009) (Fig. 7C). Additionally, high TAF10 expression 
was correlated with poor prognosis in LUAD patients 
(Fig.  7D, E). Western blotting results further confirmed 
the high protein expression of TAF10 in LUAD cells 
(Fig.  7F). Furthermore, TAF10 expression was signifi-
cantly higher in tumor tissues compared to adjacent 
normal tissues (Fig.  7G). To further investigate the role 
of TAF10 in LUAD, we used a loss-of-function approach 



Page 11 of 19Zhao et al. Journal of Translational Medicine          (2025) 23:222  

Fig. 4 Immune infiltration and functional analysis of TSCMS. A Fraction scores of 22 immune cell infiltration using CIBERSORTx software. B‑E Box 
plots of immune scores (B), stromal scores (C), ESTIMATE scores (D), and tumor purity (E) for TSCMS high- and low-risk groups using ESTIMATE 
software. F Enhanced GSEA plot for TSCMS gene set enrichment analysis
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Fig. 5 Prediction of immunotherapy efficacy using TSCMS in the IMvigor210 cohort. A Box plot of PD1 expression in high-risk and low-risk groups. 
B Box plot of PD-L1 expression in high-risk and low-risk groups. C Box plot of TSCMS scores in the anti-PD-L1 treatment group. D Box plot of CTLA4 
expression in high-risk and low-risk groups. E Bar chart showing treatment response proportions in high-risk and low-risk groups. F Kaplan–Meier 
plot of TSCMS in the IMvigor210 Cohort
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Fig. 6 Comparison of anti-tumor drug sensitivity between high-risk and low-risk groups. A Bortezomib, Pazopanib, AKT inhibitor VIII, AZD6482, 
CGP.082996, and CEP-701 demonstrated enhanced drug sensitivity in the high-risk group. B CCT007093, GDC.0449, and Lapatinib exhibited superior 
drug sensitivity in the low-risk group. Statistics based on Wilcoxon test
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to evaluate the impact of TAF10 on LUAD cells (Fig. 7H). 
We found that TAF10 silencing significantly reduced col-
ony formation (Fig. 7I) and suppressed cell proliferation 
in LUAD cell lines (Fig. 7J). Notably, TAF10-knockdown 
LUAD cells formed fewer and smaller tumor spheres 
than those transduced with the negative control (shCtl) 
(Fig. 7K). These results indicate that upregulated TAF10 
expression promotes stemness and cell proliferation in 
LUAD, highlighting TAF10 as an ideal gene for further 
mechanistic studies in LUAD.

To investigate the signaling pathways associated with 
TAF10, we performed GSEA based on its expression lev-
els. We found that high TAF10 expression is linked to key 
tumor-related pathways, including the MAPK signaling 
pathway, Notch signaling, and pathways involved in the 
cell cycle and DNA replication (Fig.  7L). Notably, high 
TAF10 expression is also associated with non-small cell 
lung cancer  (NSCLC) (Fig.  7L). From a biological per-
spective, high TAF10 expression positively regulates the 
cell cycle and protein translation, potentially influencing 
the proliferation and differentiation of tumor stem cells 
(Fig.  7M). Furthermore, hallmark of Cancer pathway 
analysis revealed significant correlations between high 
TAF10 expression and critical pathways related to cell 
proliferation, including the classic p53 pathway, tumor 
DNA repair mechanisms, and the G2/M checkpoint, as 
well as E2F targets (Fig. 7N). These findings suggest that 
TAF10 may promote tumor stemness by regulating key 
pathways involved in cell proliferation, the cell cycle, and 
DNA repair, thus contributing to the maintenance and 
differentiation of tumor stem cells.

Discussion
In the rapidly evolving field of biomedical research, 
advanced optimization and feature selection techniques 
have emerged as transformative elements. Numer-
ous studies have introduced innovative optimization 
algorithms that not only enhance the performance of 
diagnostic models but also reshape medical research, 

enabling more accurate disease diagnoses and a deeper 
understanding of biological mechanisms [36–39]. Pre-
viously, significant efforts focused on developing prog-
nostic models for LUAD by utilizing tumor-associated 
cancer-associated fibroblasts (CAFs) and immune cells 
[40–43]. In contrast, the present study centers on tumor 
stem cells in LUAD. By integrating stemness-associated 
genes and scRNA-seq datasets, we have successfully 
identified distinct epithelial cell clusters within the tumor 
microenvironment that display stemness characteristics. 
This endeavor led us to the development of a novel prog-
nostic risk model termed TSCMS. Notably, this model 
relies not only on clinical parameters but also provides 
enhanced precision in predicting patient survival out-
comes, thereby serving as a robust aid for informed clini-
cal decision-making.

The TSCMS was constructed from a set of 49 key 
genes, among which TAF10, S100P, PAFAH1B3, CCT6A, 
DCBLD2, CCDC85B, PSMD11, TFAP2A, TM4SF1, and 
DRG1 hold prominent coefficients. Functionally, TAF10, 
TFAP2A, PAFAH1B3, and DRG1 play crucial roles in 
regulating cell proliferation and differentiation in tumors 
[44–47]. S100P and TM4SF1 are mainly responsible for 
affecting cell-cell interaction and migration [48, 49]. 
CCDC85B and PSMD11 are involved in protein deg-
radation [50, 51], and DCBLD2 promotes angiogenesis 
for tumor growth [52]. CCT6A facilitates lung adeno-
carcinoma progression and glycolysis via STAT1/HK2 
axis [53]. Notably, the TSCMS exhibits robust predictive 
capacity, highlighting its potential significance in prog-
nostic evaluation.

In the TCGA training dataset, the TSCMS reveals a 
substantial median survival difference of more than 
5  years between high-risk and low-risk patients. Simi-
larly, across two independent external validation 
datasets, the TSCMS indicates a median survival differ-
ence of 3  years between the high and low-risk patient 
groups. Furthermore, when evaluating the accuracy of 
TSCMS for predicting survival rates at 1 year, 3 years, 

Fig. 7 TAF10 plays oncogenic role in LUAD. A mRNA expression levels of the corresponding gene in human normal bronchial epithelial cells 
(16HBE) and LUAD cell lines. B TAF10 mRNA expression levels in various tumors and matched normal tissues from the TCGA and GTEx databases, 
analyzed using SangerBox platform. C The stemness features (RNA expression-based stemness scores) analyses of TAF10 across different types 
of tumors in the TCGA database, analyzed by SangerBox platform. (D‑E) Disease-free survival (D) and overall survival (E) analyses of TAF10 in LUAD 
samples from the TCGA database, performed using the GEPIA2 platform. (F) Protein expression levels of TAF10 in 16HBE and LUAD cell lines. G 
Representative IHC analysis of TAF10 expression in paired adjacent and tumorous tissues from LUAD patients (n = 5 pairs, 10 tissues in total). Black 
scale bar: 50 μm; red scale bar: 20 μm. H TAF10 knockdown in LUAD cells was confirmed by Western blot analysis. I LUAD cell lines were stably 
transfected with either shCtl or shTAF10 for 24, 48, and 72 h, and cell viability was measured using a CCK-8 assay. (J) The effect of TAF10 knockdown 
on colony formation in LUAD cells was assessed using a colony formation assay. (K) Representative micrographs and quantification of tumor sphere 
formation by TAF10-silenced cells (shTAF10) or vector control cells (shCtl). Scale bar, 100 μm. L–N GSEA plot of KEGG (L), GOBP (M), and Hallmark 
pathways (N), grouped by TAF10 expression into TAF10-high and TAF10-low subgroups. NES represents the normalized enrichment score, and FDR 
represents the adjusted p-value

(See figure on next page.)
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and 5 years, our results consistently surpass an average 
threshold of 0.7 across the three cohorts. Importantly, 
in comparison to risk models proposed by Ren et  al. 

centered on CAFs [40] and Zhang et  al. focusing on 
T-cell markers [42], our TSCMS displays superior accu-
racy in predicting patient survival. This underscores the 
robust predictive power of TSCMS for patient survival.

Fig. 7 (See legend on previous page.)
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Immune cells play a pivotal role within the tumor 
microenvironment, exerting influence over tumor devel-
opment and therapeutic responses. Employing meth-
odologies such as CIBERSORT and ESTIMATE, we 
observed distinctions in the distribution of B cells, mono-
cytes, mast cells, and macrophages between the high-risk 
and low-risk groups. Sarvaria et al. have highlighted the 
crucial role of B cells in promoting inflammation and 
carcinogenesis [54]. M0 macrophages exhibited signifi-
cantly higher infiltration in the high-risk group, a trend 
consistent with the findings of Huang et al., who reported 
M0 macrophages promoting malignant growth in glioma 
[55]. Mast cells promote angiogenesis by releasing clas-
sical pro-angiogenic factors, and support tumor invasion 
by releasing matrix metalloproteinases [56]. We found 
that the proportion of activated mast cells was notably 
higher in the high-risk group compared to the low-risk 
group. Additionally, the low-risk group exhibited higher 
enrichment of immune-related pathways, including T 
cell receptor signaling and chemokine-chemokine recep-
tor signaling pathways. In the tumor microenvironment, 
tumor infiltration of T cells was driven by chemokines 
[57], and T cells integrate chemokine signals to enhance 
antitumor responses in peripheral tissues [58]. Those 
results suggest a potential association between tumor 
stemness and immune infiltration, thereby providing 
valuable leads for further exploration into immune-based 
therapies.

Immunotherapy and drug treatment are effective strat-
egies in combating cancer. TSCMS has demonstrated 
robust predictive capability within the IMvigor210 
immunotherapy cohort. In the high-risk group, PD-L1 
expression levels are significantly elevated compared to 
low-risk patients. Additionally, patients who respond 
favorably to anti-PD-L1 treatment exhibit lower risk 
scores. Moreover, we successfully predicted the response 
of different risk groups to various anti-cancer drugs. 
These findings provide substantial support for personal-
ized treatment and drug selection, holding the potential 
to make a positive impact in clinical practice.

Among the 49 key genes, TAF10 holds the highest 
prognostic correlation coefficient. Numerous studies 
have demonstrated that TAF10 plays an oncogenic role 
within a wide variety of tumors, including transcrip-
tion, the cell cycle, and apoptosis [59, 60]. For example, 
in gastric cancer cells, high expression of TAF10 plays an 
important role in maintaining tumor cell survival [61]. 
We found that TAF10 is overexpressed in LUAD cell lines 
and tumor tissues, and that elevated TAF10 expression 
is associated with poor prognosis in LUAD. Silencing 
TAF10 inhibited tumor sphere formation in LUAD cells, 
with TAF10-knockdown cells forming significantly fewer 
and smaller spheres compared to control cells. These 

results suggest that TAF10 may play a critical role in reg-
ulating tumor stemness.

In terms of signaling pathways, our initial and explora-
tory analysis revealed that high TAF10 expression is 
associated with several key tumor-related pathways, 
including the MAPK signaling pathway, Notch signaling, 
and pathways involved in the cell cycle and DNA replica-
tion. These pathways are fundamental for tumor cell pro-
liferation and differentiation, indicating that TAF10 may 
promote LUAD progression by modulating these criti-
cal pathways. Furthermore, high TAF10 expression was 
linked to NSCLC, further supporting its potential role 
in tumorigenesis. From a biological perspective, TAF10 
appears to regulate the cell cycle and translation, impact-
ing tumor stem cell proliferation and differentiation. 
Hallmark of Cancer analysis also revealed significant 
correlations between high TAF10 expression and key 
pathways involved in cell proliferation, such as the p53 
pathway, DNA repair mechanisms, and the G2/M check-
point. Taken together, these findings suggest that TAF10 
may promote tumor stemness and progression through 
its regulation of essential pathways, although further 
studies are needed to fully elucidate its mechanisms in 
LUAD.

However, our study has certain limitations. Firstly, 
while the TSCMS model demonstrates robust predictive 
capacity, its clinical utility requires independent valida-
tion in larger, prospective cohorts of LUAD patients. The 
sample size in this study may limit the generalizability of 
the findings, and future research should address this to 
confirm the robustness of the model. Secondly, although 
we identify key pathways associated with TAF10 and 
tumor stemness, direct experimental validation is lack-
ing, and further mechanistic studies are needed to 
explore how TAF10 regulates tumor progression and 
stemness at the molecular level, including in  vivo stud-
ies to better understand its role in LUAD. Furthermore, 
although the predictive capacity of TSCMS in immu-
notherapy cohorts is promising, additional clinical tri-
als and mechanistic studies are needed to fully assess its 
effectiveness in predicting treatment outcomes, particu-
larly in the context of immunotherapy. These validations 
will be crucial for strengthening both the clinical applica-
bility and biological understanding of our findings.

In terms of clinical implications, targeting TAF10 with 
specific inhibitors or RNA interference could be explored 
as potential therapeutic strategies to reduce LUAD 
metastasis. Additionally, integrating the TSCMS model 
into clinical diagnostic protocols could aid in the early 
identification of high-risk patients, enabling timely and 
personalized treatment interventions. Moreover, incor-
porating the TSCMS model could facilitate the develop-
ment of more effective, tailored therapies that address 
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the unique molecular profiles of LUAD patients. Col-
laborative efforts with clinical institutions for real-world 
testing will be essential for translating these findings into 
clinical practice.

Lastly, while we have outlined potential therapeutic 
implications, further studies are required to refine these 
strategies and explore the most effective approaches for 
targeting TAF10 in LUAD. The use of advanced optimi-
zation and feature selection methods could also improve 
the analytical rigor of future studies, enhancing the accu-
racy and reliability of molecular interactions identified in 
cancer progression.

Conclusion
In conclusion, our research highlights the prognostic 
value of the TSCMS model in evaluating the clinical out-
comes of LUAD patients, provides important insights 
into immune cell infiltration and therapeutic response, 
and suggests that TAF10 may serve as a potential thera-
peutic target for LUAD. However, further studies are 
needed to validate its clinical relevance and therapeutic 
potential.
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