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CNV-mediated dysregulation of the ceRNA o
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Abstract

Background Gastric cancer (GC) is a highly heterogeneous tumour with high morbidity. Approximately 95% of GC
cases are gastric adenocarcinomas, which are further categorized into two predominant subtypes: diffuse gastric
cancer (DGC) and intestinal gastric cancer (IGC). These subtypes exhibit distinct pathophysiological and molecular
characteristics, reflecting their unique tumorigenic mechanisms.

Method In this study, we employed a comprehensive approach to identify driver genes associated with DGC and IGC
by focusing on copy number variation (CNV) genes within the competing endogenous RNA (ceRNA) network. The
influence of driver CNV genes on the molecular, cellular, and clinical differences between DGC and IGC was subse-
quently analysed. Finally, therapeutic strategies for DGC and IGC were evaluated based on the status and functional
pathways of the driver CNV genes.

Results A total of 17 and 22 driver CNV genes were identified in DGC and IGC, respectively. These genes drive subtype
differences through the ceRNA network, resulting in alterations in the tumour microenvironment (TME). Based on these
differences, personalized treatment strategies for DGC or IGC could be developed. Immune checkpoint inhibitors may
be an effective treatment option in IGC. Additionally, DGC patients with homozygous deletion of PPIF might benefit
from adjuvant chemotherapy, whereas those with high-level amplification of MTAP could respond to targeted therapy.

Conclusion Driver CNV genes were identified to reveal the underlying cause of heterogeneity in DGC and IGC.
Furthermore, specific driver CNV genes were identified as potential therapeutic targets, facilitating personalized
treatment.
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Introduction

Gastric cancer (GC) is a highly heterogeneous malig-
nancy, with diffuse gastric cancer (DGC) and intestinal
gastric cancer (IGC) representing the two predominant
subtypes. These subtypes exhibit distinct pathophysi-
ological and molecular characteristics. DGC is character-
ized by disorganized cellular architecture, reduced cell
adhesion, and poor differentiation. In contrast, IGC is
characterized by a more structured tubular or glandular
organization, robust adhesion junctions, and a compara-
tively lower stromal component density [1]. Compared
with IGC, DGC is associated with earlier onset, poorer
prognosis, more aggressive progression, and a stronger
familial predisposition [2, 3]. The pronounced heteroge-
neity among GC subtypes, encompassing variations in
pathological, physiological, and molecular features, poses
substantial challenges for tailoring precise therapeutic
strategies. Therefore, elucidating the oncogenic mecha-
nisms and inter-subtype differences is critical for advanc-
ing our understanding of GC progression. Such insights
could facilitate the development of more targeted and
effective therapeutic approaches, ultimately improving
clinical outcomes.

Previous studies have suggested that molecular inter-
actions may contribute to the observed tumour hetero-
geneity [4]. Recently, the competing endogenous RNA
(ceRNA) hypothesis has garnered significant attention as
a unifying framework for understanding the functional
roles of long noncoding RNAs (IncRNAs), pseudogene
transcripts, and circular RNAs [5]. Substantial evidence
indicates that aberrant ceRNA expression disrupts home-
ostatic mechanisms, leading to dysregulation of ceRNA
networks and consequent disruption of biological func-
tions [6-8]. Advanced computational pipelines have
been developed to identify molecular interactions, offer-
ing valuable insights into network construction and the
identification of genetic markers associated with cancer
progression [9-13]. In addition, studies leveraging these
comprehensive networks have revealed novel correla-
tions among molecular interactions, thereby underscor-
ing their reliability in predicting potential relationships
between noncoding RNAs (ncRNAs) and therapeutic
drugs [14, 15]. However, few studies have focused on the
impact of genomic alterations on the ceRNA network and
thus on tumour heterogeneity. Genomic variations, such
as copy number variations (CNVs), play pivotal roles in
tumour development by affecting the expression of genes
and collectively contribute to intratumour heterogeneity
and critically impact prognosis [16, 17].

Therefore, the motivation for this work lies in the
significant challenges posed by the heterogeneity of
GC. Understanding the underlying causes of this het-
erogeneity is crucial for developing more effective and
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personalized treatment strategies. This study focused on
the analysis of driver CNV genes affecting the associated
ceRNA network to elucidate the discrepancies between
DGC and IGC at multiple levels, as well as the underlying
molecular mechanisms responsible for these differences.
A total of 17 and 22 driver CNV genes were identified in
DGC and IGC, respectively. These driver CNVs lead to
significant alterations in the tumour microenvironment
(TME), highlighting the molecular distinctions between
the two subtypes. Based on the unique TME character-
istics of each subtype, personalized therapeutic strate-
gies have been proposed for DGC and IGC. Given that
the majority of driver CNV genes were associated with
immune cell infiltration, IGC may benefit from immu-
notherapy. On the other hand, DGC exhibited insensi-
tivity to immunotherapy, potentially due to monocyte
enrichment in its TME. DGC patients with homozygous
deletion of the PPIF gene may respond favourably to
chemotherapy, whereas targeted therapies could be effec-
tive in patients with high-level amplification of the MTAP
gene. These findings offer a new perspective on precision
medicine and individualized treatment for patients with
gastric cancer and provide substantial support for future
research and clinical practice.

Methods

Collection of expression, CNV, and clinical data

Gastric cancer data, including clinical data, CNV data,
and gene expression data, were collated from The Can-
cer Genome Atlas (TCGA) (https://portal.gdc.cancer.
gov/). For the clinical data, the samples of “Stomach Ade-
nocarcinoma, Signet Ring Type” and “Stomach, Adeno-
carcinoma, Diffuse Type” were considered as DGC [18].
Moreover, the samples of “Stomach, Intestinal Adeno-
carcinoma, Not Otherwise Specified (NOS)’, “Stomach,
Intestinal Adenocarcinoma, Papillary Type’, “Stomach,
Intestinal Adenocarcinoma, Mucinous Type” and “Stom-
ach, Intestinal Adenocarcinoma, Tubular Type” were cat-
egorized as IGC. Ultimately, clinical data from 85 DGC
samples and 191 IGC samples were collected, including
variables such as age, sex, and survival time. For CNV
data generated using Affymetrix Genome-Wide Human
SNP Array 6.0 platform, GISTIC 2.0 was applied to the
CNV data at level 3 segmentation [19]. In this study, only
homozygous deletions and high-level amplifications were
considered reliable CNVs, whereas the remaining CNVs
were deemed insignificant and excluded from further
analysis. Gene expression profiles for mRNAs, IncR-
NAs, and miRNAs were obtained from Illumina HiSeq
sequencing data (Illumina HiSeq_ RNASeqV2 for mRNAs
and IncRNAs and Illumina HiSeq_miRNASeq for miR-
NAs). All fragments per kilobase of transcript per mil-
lion mapped reads (FPKM) data were log2-transformed
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for subsequent analysis. Any mRNA, IncRNA, or miRNA
was excluded if its nondetection frequency exceeded
30% or if its average expression level was less than 0.1.
To ensure data completeness, only samples containing all
three types of data (mRNA, IncRNA, and miRNA) were
retained. In the end, 73 DGC samples and 163 IGC sam-
ples were included.

Collection of ceRNA interactions

A total of 423,975 miRNA-mRNA interactions and
35,459 miRNA-IncRNA interactions associated with gas-
tric cancer (GC) were retrieved from the StarBase v2.0
database (https://rnasysu.com/encori/) [20]. Addition-
ally, 22,286 miRNA-IncRNA interactions related to GC
were obtained from the InCeDB database (http://gyanx
et-beta.com/Incedb) [21].

Identification of driver CNV genes

We developed a comprehensive method to identify genes
that influence the heterogeneity of gastric cancer, where
CNVs of these genes specifically affect the related ceRNA
networks, thereby influencing the heterogeneity of sub-
types (Fig. 1). First, genes with a high frequency of CNVs
(>8%) and a significant impact on gene expression were
identified as candidate genes. The samples were sub-
sequently stratified into two groups based on the CNV
status of each candidate gene: CNV-positive and CNV-
negative. For each group, ceRNA networks were con-
structed by integrating interactions among mRNAs,
miRNAs, and IncRNAs while excluding interactions with
an absolute correlation coefficient less than 0.25. A com-
parative analysis of the ceRNA networks between the two
groups was then conducted. If a candidate gene-associ-
ated ceRNA network was exclusively observed in one
group, the CNV of the candidate gene was inferred to
influence the ceRNA network. Finally, genes with CNVs
that significantly altered the ceRNA network were desig-
nated as driver CNV genes (Supplementary Table 1).

Validation of driver CNV genes through external datasets
and methods

To evaluate the consistency of our method with other
approaches, we reanalysed our data using previously
published methodologies and performed comparative
analyses. First, as described by Xu et al., the chi-square
test was used to construct CNV-related ceRNA networks
[22]. Next, as demonstrated by Ding et al., we integrated
CNV data with gene expression alterations to identify
CNV-driven IncRNA-associated ceRNAs [23]. Finally,
following the method of Wang et al., a multivariate mul-
tiple regression model was applied to investigate whether
specific CNV events regulate the expression of ceRNA
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axes [24]. The three methods mentioned above were used
to validate the stability of our approach by applying other
techniques to our data. To further assess the robustness
of the driver CNV genes, we applied our method to iden-
tify these genes in three independent public GC data-
sets and performed a comparative analysis. Independent
validation datasets, including GSE51575 [25], GSE26899
[26], and GSE62717 [27] (Supplementary Table 2), were
obtained from the GEO database (https://www.ncbi.nlm.
nih.gov/geo/). Specifically, in the GSE51575 and GS26899
datasets, differentially expressed genes (DEGs) between
DGC/IGC and normal samples were identified. These
DEGs were then subjected to a hypergeometric test to
assess their overlap with the driver CNV genes of DGC
or IGC, thereby validating the robustness of these genes.
Additionally, in the GS62717 dataset, CNV genes in DGC
or IGC samples were selected and compared with the
driver CNV genes of DGC or IGC using the hypergeo-
metric test. Furthermore, we cross-referenced our iden-
tified CNV genes with GC-related gene sets from the
GeneCards database to explore their potential relevance
in GC pathogenesis [28]. Previous studies have classified
DGC into two subtypes based on transcriptomic analy-
sis: the intestinal-like (INT) subtype and the core diffuse-
type (COD) subtype [29]. The corresponding expression
matrices were obtained from the GSE113255 dataset
(Supplementary Table 2), which included 44 INT samples
and 55 COD samples.

Construction and visualisation of networks

The protein—protein interaction (PPI) networks of driver
CNVs were constructed using the STRING database
(https://cn.string-db.org/) [30]. And the visualisation of
the ceRNA networks was performed using Cytoscape
v3.9.1.

Functional analysis of driver CNV genes

To further investigate the biological processes influenced
by the driver CNV genes, the R package clusterProfiler
(v4.12.0) was used to associate these genes with cancer-
related pathways and characteristics. A total of 50 cancer-
related features were curated from the MsigDB database
(https://www.gsea-msigdb.org/gsea/msigdb) [31].

Calculation of immune cell infiltration and immune
evasion scores

To verify the relationship between different GC sub-
types and the TME, CIBERSORT was used to predict
the infiltration of immune cells. Furthermore, TIDE
(http://tide.dfci.harvard.edu/login/) was used to calcu-
late the immune evasion score of each sample based on
the normalized expression matrix [32]. Specifically, the
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Fig. 1 Flowchart for the identification of driver CNV genes. A Selection of candidate CNV genes with high-frequency copy number variations
(CNVs) and a significant impact on gene expression. B Construction of candidate ceRNA networks based on interactions among mRNAs, miRNAs,
and IncRNAs. C Identification of driver CNV genes inferred to modulate the ceRNA network

normalization method involved subtracting the average
expression value of each gene across all samples from its
expression value in each sample. The normalized expres-
sion matrix was then uploaded to the website to obtain
the immune evasion score, T-cell dysfunction score, and
T-cell exclusion score.

Consensus clustering based on ICR-related genes

We used 5 clustering methods (hclust, kmeans, skmeans,
pam, and mclust) to infer potential stable consensus sub-
groups of 2—6 clusters. The most stable partitions were

selected from all methods based on an inspection of the
membership matrix.

Identification and analysis of GC cell subpopulations

Single-cell data for GC were obtained from the GEO
database (GSE183904, Supplementary Table 2) [33]. First,
genes that were expressed in fewer than 5 cells and cells
that expressed fewer than 300 genes were excluded. Then,
cells with more than 200 and fewer than 2500 expressed
genes and a mitochondrial content less than 0.05 were
excluded. Finally, mitochondrial genes beginning with
“MT” were excluded. The final expression profiles



Xu et al. Journal of Translational Medicine (2025) 23:308

included 20,974 genes from 9,619 cells in 6 DGC sam-
ples and 22,758 genes from 29,860 cells in 14 IGC sam-
ples. The R package Seurat (v4.4.0) was used to identify
the cell subpopulations, whereas CellMarker 2.0 (http://
bio-bigdata.hrbmu.edu.cn/CellMarker/) [34] was used
for the annotation of these cell subpopulations. CIBER-
SORTx (https://cibersortx.stanford.edu/upload.php) was
used to estimate the proportion of cell subpopulations in
each sample.

Calculation of driver CNV gene activity

The R package AUCell (v1.18.0) was used for calculations
to assess the activity of driver CNV genes across differ-
ent cell types, with gene activity levels quantified by AUC
values. In general, a positive correlation was observed
between activity and the AUC value.

Construction of risk score models

Considering the synergistic impact of multiple driver
CNV genes on the prognosis of INT and COD patients, a
risk score model was constructed based on CNV to esti-
mate patient prognosis.

17
Riskscore = E e; X cnv;,
i=1

where e; represents the expression of the driver CNV
gene and cnv; represents the CNV status of the driver
CNV gene (-2 or 2). An elevated risk score was indica-
tive of a worse prognosis.

Evaluation of resistance to targeted drugs

We collected data on drugs that are highly resistant or
highly sensitive in DGC and IGC from published studies
[35] and evaluated their efficacy using the half maximal
inhibitory concentration (IC50) values. Specifically, the
IC50 values of DGC samples for different targeted drugs
were calculated using the R package OncoPredict (v1.2)
based on the expression data of driver CNV genes. The
IC50 refers to the concentration of a drug that results
in 50% inhibition of a specific biological or biochemical
function based on the dose-response curve. It is com-
monly used to assess a drug’s pharmacodynamic activity,
selectivity, toxicity, and resistance. A lower IC50 value
typically indicates greater efficacy in cancer inhibition.

Statistics

All comparative analyses were conducted using the
hypergeometric test, t-test, and Wilcoxon rank-sum
test, as appropriate. Pearson correlation analysis was
used to assess the relationship between driver CNV
genes and immune checkpoint signature genes (Sup-
plementary Table 3). Moreover, the same method was
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used to assess the correlation between driver CNV
genes and senescence signature genes (Supplementary
Table 4) [36]. Survival analyses were conducted using
the Kaplan—Meier method, and differences were tested
using the log-rank test. P<0.05 was considered statis-
tically significant. All the statistical analyses were per-
formed in the R4.2.3 software environment.

Results
Distinct driver CNV genes influence divergent
developmental mechanisms in GC subtypes
The comparison and identification of driver CNV genes
and their ceRNA networks in DGC and IGC facilitate
an understanding of the developmental mechanisms
of GC subtypes. Here, a comprehensive method was
developed to identify driver CNV genes in different GC
subtypes based on the dysregulated ceRNA network
(Fig. 1). A total of 17 and 22 driver CNV genes were
found in DGC and IGC, respectively (Fig. 2A, Supple-
mentary Table 1). To validate the robustness of these
genes, we first used other published methods to re-
identify key genes. Our findings revealed that most GC
subtype-specific CNV genes identified by our method
were validated by other methods (Fig. 2B). Next, using
a hypergeometric test, we demonstrated that the driver
CNV genes identified by our method were signifi-
cantly enriched among the differentially expressed and
CNV-altered genes from three independent public GC
datasets (Fig. 2B, C). Furthermore, we observed a sig-
nificant overlap between the driver CNV genes and the
experimentally validated GC-related genes in the Gen-
eCards database (Fig. 2B, C). Notably, many of these
CNV genes were identified as potential drug targets for
GC, suggesting their possible roles in GC pathogenesis
and their potential therapeutic relevance (Fig. 2B).
Interestingly, the number of candidate genes in DGC
was significantly lower than that in IGC at each step of
identification of the driver CNV genes (Fig. 2A). The
number of DGC-specific mRNAs, miRNAs, and IncR-
NAs was relatively high across the entire ceRNA net-
work (Fig. 2D). These findings indicated the presence
of genetic and biological differences between DGC
and IGC. The majority of driver CNV genes in DGC
exhibited high-level amplification, except for MTAP
and PPIF. Similarly, MTAP, ITGAYV, IRF2, and CDKN2B
were homozygously deleted in IGC samples, whereas
the remaining driver CNV genes exhibited high-level
amplification (Fig. 2E). These findings highlight genetic
and biological differences between DGC and IGC, with
high-level amplification being a dominant phenomenon
in both subtypes.
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Driver CNV genes affect the TME by targeting

the corresponding ceRNA networks

Despite their distinct pathophysiology and clinical fea-
tures, DGC and IGC share interconnected mechanisms.
A PPI network of driver CNV genes was constructed
based on the STRING database, revealing interactions
among their encoded proteins (Fig. 3A). The association
between DGC and IGC was represented in the ceRNA
network in two ways. One way was that the same driver
CNV genes were identified in both DGC and IGC. For
example, MTAP could influence the ceRNA network in
IGC through hsa-miR-30a-3p and affect the ceRNA net-
work in DGC via hsa-miR-195-5p (Fig. 3B). The other
way was that the same miRNA regulated distinct driver
CNV genes in DGC and IGC. For example, hsa-miR-
155-5p targeted ZKSCANI in IGC and TRIM44 in DGC
(Fig. 3C). Numerous physiological and pathological pro-
cesses, including the inhibition of viral infection and
tumour proliferation, are mediated by hsa-miR-155-5p
[37]. Similarly, several different driver CNV genes of IGC
and DGC were found to be regulated by identical miR-
NAs (Supplementary Fig. 1). These findings illustrated
the complexity of the ceRNA network and its poten-
tial significance in tumour development. In addition,
enrichment analysis of the driver CNV genes in IGC
and DGC revealed both common and subtype-specific
pathways (Fig. 3D). Notably, the IGC-specific pathway
"IL6_JAK_STAT3_SIGNALING" and the DGC-specific
pathway "Wnt_BETA_CATENIN_SIGNALING" were
both immune related [38, 39], suggesting that differences
in the tumour microenvironment (TME) between DGC
and IGC are driven by distinct driver CNV genes.

IGC is more sensitive to immunotherapy than DGC

The investigation of the differences in the TME between
DGC and IGC provides a theoretical basis for under-
standing their distinct biological behaviours and poten-
tial therapeutic strategies. CIBERSORT was used to
quantify the infiltration of immune cells in DGC and
IGC, revealing significant differences in the infiltration
scores of distinct immune cell types between the two
groups (Fig. 4A). Furthermore, the immune cell types
identified through CIBERSORT were classified into four
functional groups based on a previous study [40], and
these group-based differences in immune cell infiltra-
tion scores between DGC and IGC remained consistent
(Fig. 4B). Notably, compared with DGC, IGC presented
a greater number of driver CNV genes associated with
immune cell infiltration scores (Fig. 4C), suggesting
that IGC is more likely to benefit from immune check-
point therapies. Compared with IGC, DGC had signifi-
cantly greater T-cell dysfunction scores, T-cell exclusion
scores, and TIDE scores, indicating a less favourable
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immune microenvironment for immunotherapy efficacy
(Fig. 4D). Additionally, the immune rejection constant
(ICR), a modular immune gene signature associated
with immunotherapy responsiveness in cancer [41], was
used to stratify IGC samples into three immune subtypes
(Fig. 4E). Among the 22 driver CNV genes identified in
IGC, IRF2 was significantly upregulated in the ICR-high
subtype, whereas HSP90AB1, AARS2, ZKSCANI, and
FAMO91A1 were markedly downregulated (Fig. 4F). The
ICR-high subtype, characterized as a “hot tumour,” exhib-
ited elevated expression of immune regulatory genes
(Fig. 4G) and was more likely to respond positively to
immunotherapy. Therefore, the combination of high IRF2
expression and low expression of HSP90OAB1, AARS2,
ZKSCANT1, and FAM91A1 may serve as a predictive bio-
marker for improved prognosis in IGC patients receiving
immune checkpoint inhibition therapy [42, 43].

Driver gene CNVs in monocytes contribute

to immunotherapeutic resistance in DGC

Modifications at the cellular level typically reflect the
effects of immune checkpoint therapy. Comparing the
differences at the single-cell level between IGC and DGC
may reveal the mechanisms underlying DGC resistance
to immune therapy, providing valuable insights for fur-
ther screening and optimizing treatment strategies for
DGC. A total of 10 and 9 cell clusters were identified in
DGC and IGC based on single-cell data from the GEO
database (Fig. 5A, B). Interestingly, the DGC driver CNV
gene CCT2 and the IGC driver CNV gene HSP90AB1
were highly expressed across a range of cell clusters. In
contrast, the DGC driver CNV gene PPIF was specifically
expressed in monocytes, whereas the IGC driver CNV
gene ATAD?2 was specifically highly expressed in gastric
isthmus cells (Fig. 5C, D).

To accurately assess the enrichment of driver CNV
genes in DGC or IGC cells, AUCell was used to calcu-
late the activity of these genes across different cell types.
Among them, the activity of DGC driver CNV genes was
notably greater in DGC monocytes (Fig. 5E). Monocytes
potentially influence the effectiveness of tumour immu-
notherapy through immune evasion mechanisms [44]. In
our study, we further performed enrichment analysis of
DEGs between DGC and IGC monocytes. These genes
are involved in processes such as antigen presentation
and processing and proton transmembrane transport
(Fig. 5F). Moreover, the AUCell scores of DGC mono-
cytes were significantly greater than those of other cell
types (Fig. 5G). These findings suggest that the driver
CNV genes in DGC influence monocytes in the TME,
thereby affecting the immune response and ultimately
limiting the effectiveness of immunotherapy in DGC.
Additionally, the significant difference in AUCell scores
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between B cells and other cell types in IGC (Fig. 5H) sug-
gests that B cells might play a distinct role in immune
responses within IGC.

DGC might benefit from adjuvant chemotherapy

or targeted therapy

Next, we identified suitable treatments for DGC patients
through analysis of the mechanism of DGC anti-immune
checkpoint therapy. First, 178 immune checkpoint
related genes were manually gathered (Supplementary
Table 3), and they were screened for immune checkpoint
genes that correlated with driver CNV genes (Fig. 6A,
Supplementary Figs. 2 and 3). The DGC driver CNV
gene ZMIZ1 was found to be negatively correlated with
PD-L1 expression and to be targeted by the greatest
number of miRNAs within its dysregulated ceRNA net-
work. Although PD-L1 expression does not necessarily
indicate the efficacy of immunotherapy, it typically indi-
cates a high level of PD-L1 antibody targets expressed in
the tumour, which is correlated with comparatively bet-
ter efficacy [45]. Therefore, the high level of amplification
of ZMIZ1 in DGC was identified as a potential factor
contributing to the poor immunotherapeutic efficacy of
DGC.

Furthermore, identifying efficacious therapeutic strat-
egies for DGC is critical. A previous study classified
DGC into two subtypes: the INT and the COD. The
COD was responsive to immunotherapy and engaged
in EMT-related processes, whereas the INT subtype
was associated with DNA repair and the cell cycle and
was responsive to adjuvant chemotherapy. In our study,
the ceRNA network mediated by PPIF was significantly
enriched for the DNA repair pathway, which was consist-
ent with the INT subtype, whereas the ceRNA network
mediated by SLC1A2 was significantly enriched for the
TGEF-beta signaling pathway, which was consistent with
the COD subtype (Fig. 6B). Moreover, a significant differ-
ence in PPIF expression was observed between INT and
COD subtypes, however, no variation in SLC1A2 expres-
sion was detected (Fig. 6C). Furthermore, a risk score
based on CNV was constructed, which revealed that the
COD subtype had a worse prognosis than the INT sub-
type, as indicated by a higher risk score (Fig. 6D). Conse-
quently, DGC patients with homozygous deletion of PPIF
might benefit from adjuvant chemotherapy.

(See figure on next page.)
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To develop effective targeted therapeutic strategies,
identifying potential targets that are specifically overex-
pressed in DGC is essential. Previous studies have identi-
fied drugs that are highly resistant or highly sensitive in
DGC and IGC (Fig. 6E), with their effectiveness evalu-
ated by IC50 values. By comparing the differences in
IC50 values across samples with varying expression levels
of driver CNV genes, precise and personalized treatment
strategies can be provided for DGC patients. Specifically,
the expression of MDM?2 exhibited a significant positive
correlation with the IC50 values of afatinib, AZD4547,
and trametinib, indicating a worsened drug response
with increased MDM2 levels (Fig. 6F). Similarly, a signifi-
cant negative correlation was observed between the IC50
value of ibrutinib and MTAP expression, suggesting that
increased MTAP levels were associated with increased
medication efficacy (Fig. 6F).

Overall, targeted therapy, immunotherapy, and chemo-
therapy have facilitated the implementation of precision
medicine for DGC and IGC on a personalized basis. Our
research has enhanced the efficacy and relevance of treat-
ment by facilitating the development of individualized
treatment regimens.

Driver CNV genes lead to age- or sex-specific survival
differences in IGC and DGC

Genomic and cellular alterations ultimately result in
modified clinical characteristics. Therefore, the differ-
ences in clinical characteristics between DGC and IGC
patients were further investigated (Fig. 7A). Notably, IGC
patients who were less than or equal to 60 years of age
exhibited significantly prolonged survival compared with
that in IGC patients who were greater than 60 years of
age (Fig. 7B), suggesting that aging has an impact on the
prognosis of IGC. A total of 125 genes and their corre-
sponding status associated with senescence were sub-
sequently assembled (Supplementary Table 4), and the
correlations between driver CNV genes of IGC and these
senescence genes were calculated (Fig. 7C). In the case of
gene types such as growth factors and protease inhibi-
tors, there was a strong correlation between driver CNV
genes and senescence genes (R>0.5), implying that IGC
driver CNV genes may play an important role in gene
expression, tissue development, and cell growth within
the regulatory network.

Fig. 4 Quantitative analysis of tumour-infiltrating immune cells. A Boxplot of the differences in the infiltration of 22 immune cell types
between DGC and IGC ("***": P <0.001; "*": P <0.01; "*": P <0.05). B Differences in the infiltration of the 4 major immune cell types. C Heatmap
of the correlation between the expression of driver CNV genes and the degree of immune cell infiltration in DGC and IGC. D Differences in TIDE
scores between DGC and IGC. E Consistent clustering of IGC based on ICR-related genes. F Differential expression of driver CNV genes in the ICR
subtype. G Heatmap of immune-related gene expression patterns across ICR subtypes
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(See figure on next page.)

Fig. 6 Therapeutic targets of DGC. A Correlations of immune checkpoint-related genes with driver CNV genes in DGC and IGC and miRNAs
associated with driver CNV genes. The left column represents the 5 common immune checkpoints. In the middle column, blue represents the driver
CNV genes in IGC, and brown represents the driver CNV genes in DGC. The right column represents the miRNAs associated with each driver CNV
gene. BThe ceRNA networks regulated by specific driver CNV genes in DGC or IGC are functionally identical to those in the INT or COD subtypes.

C Boxplots of differences in the expression of specific driver CNV genes between INT and COD subtypes. D Boxplots of differences in risk scores
between INT and COD subtypes. E Heatmap of drug sensitivity between DGC and IGC. Drugs are clustered according to their known target. F
Comparison of IC50 values for drugs in DGC samples with different driver CNV gene expression levels ("**": P <0.01, "*": P <0.05)
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In addition, the prognosis for male patients with DGC
was worse than that for those with IGC (Fig. 7D), which
might be attributed to the complex interplay between cel-
lular characteristics and clinical characteristics. Accord-
ingly, we observed that the proportion of monocytes in
male DGC patients was significantly greater than that in
male IGC patients (Fig. 7E). As a result, the expression
of driver CNV genes enriched in monocytes of DGC
was increased, which significantly affects the associ-
ated ceRNA networks, ultimately resulting in a poorer
prognosis.

To summarize, alterations in samples at various levels
ultimately influence clinical outcomes. Therefore, com-
prehending the molecular mechanisms underlying these
variations is critical to facilitate the development of per-
sonalized therapeutic strategies.

Discussion

Previous studies have shown that CNV plays a vital role
in cancer development. However, the impact of CNV
on the ceRNA network and its relationship with tumour
heterogeneity, especially in the context of DGC and IGC,
has not been thoroughly investigated. Therefore, investi-
gating genomic variation to identify driver CNV genes of
different GC subtypes will generate novel findings, which
is conducive to further revealing the pathogenesis of GC.
To fill this gap, comprehensive techniques were used to
identify specific driver CNV genes in DGC and IGC. By
analysing the differences and associations between DGC
and IGC at the genomic, transcriptomic, and cellular lev-
els, potential molecular mechanisms responsible for the
heterogeneity of GC were illustrated. For example, genes
such as MTAP and PPIF in DGC and IGC showed dif-
ferent CNV patterns, which may lead to different biologi-
cal behaviours of the two subtypes. This knowledge can
potentially lead to the identification of specific driver
CNV genes as potential therapeutic targets, thereby
providing novel results for personalized treatment and
improving the prognosis of GC patients.

A total of 17 and 22 identical or different driver CNV
genes in DGC and IGC, respectively, suggested biologi-
cal and genetic similarities or differences between the
two gastric cancer subtypes. These differences might
lead to alterations in cancer proliferation, clinical char-
acteristics, and prognosis. Notably, the DGC-specific
pathway “Wnt_BETA_CATENIN_SIGNALING” and
the IGC-specific pathway “IL6_JAK_STAT3_SIGNAL-
ING” were highly correlated with immunity. There-
fore, an analysis of immune cell infiltration in DGC and
IGC was conducted, which revealed that the majority
of immune cells were significantly different between
the two subtypes. Moreover, a strong correlation was
observed between immune cell infiltration and driver
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CNV genes in IGC, suggesting that IGC patients might
benefit from immunotherapy. Furthermore, PPIF was
activated in monocytes, which have been associated
with immune evasion, confirming that immunotherapy
was not applicable to DGC. To identify potential thera-
peutic strategies for DGC, DGC samples were classified
into two subtypes based on previous studies. The INT
subtype was enriched in DNA repair-related pathways
and was deemed suitable for adjuvant chemotherapy.
Moreover, DGC patients with high-level amplification
of MTAP might benefit from targeted therapy.

There is a growing body of literature that uses multi-
omics data to investigate cancer heterogeneity [46—48],
and our study contributes novel and pertinent insights
to this field. By integrating transcriptomic and genomic
data, we identified driver CNV genes associated with
GC subtypes and identified personalized therapeu-
tic strategies based on the relationship between these
genes and therapeutic targets. Moreover, the screening
process for driver CNV genes could be used to iden-
tify specific genes in other cancer types, facilitating the
study of other types of cancer. Nevertheless, there are
several limitations to this study. One limitation is that
although the treatment response was assessed using
IC50 values, the lack of real data could bias our results.
Future studies should include more comprehensive
treatment response data to validate the identified thera-
peutic targets. Additionally, our study is limited to the
analysis of transcriptomic, genomic, and immune cell
infiltration data. The incorporation of more data, such
as epigenomic and proteomic data, could provide a
more comprehensive understanding of the heterogene-
ity of GC [49, 50].

Conclusion

In conclusion, our multiomics analysis revealed that dif-
ferent gastric cancer subtypes exhibit different molecular
mechanisms and TMEs. The driver CNV genes identified
through our analyses have prognostic implications and
might serve as potential therapeutic targets for immuno-
therapy or targeted therapy. These findings provide new
insights into the basic biology of gastric cancer and may
have an impact on the development of personalized ther-
apies for gastric cancer patients.
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