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Abstract 

Background Gastric cancer (GC) is a highly heterogeneous tumour with high morbidity. Approximately 95% of GC 
cases are gastric adenocarcinomas, which are further categorized into two predominant subtypes: diffuse gastric 
cancer (DGC) and intestinal gastric cancer (IGC). These subtypes exhibit distinct pathophysiological and molecular 
characteristics, reflecting their unique tumorigenic mechanisms.

Method In this study, we employed a comprehensive approach to identify driver genes associated with DGC and IGC 
by focusing on copy number variation (CNV) genes within the competing endogenous RNA (ceRNA) network. The 
influence of driver CNV genes on the molecular, cellular, and clinical differences between DGC and IGC was subse-
quently analysed. Finally, therapeutic strategies for DGC and IGC were evaluated based on the status and functional 
pathways of the driver CNV genes.

Results A total of 17 and 22 driver CNV genes were identified in DGC and IGC, respectively. These genes drive subtype 
differences through the ceRNA network, resulting in alterations in the tumour microenvironment (TME). Based on these 
differences, personalized treatment strategies for DGC or IGC could be developed. Immune checkpoint inhibitors may 
be an effective treatment option in IGC. Additionally, DGC patients with homozygous deletion of PPIF might benefit 
from adjuvant chemotherapy, whereas those with high-level amplification of MTAP could respond to targeted therapy.

Conclusion Driver CNV genes were identified to reveal the underlying cause of heterogeneity in DGC and IGC. 
Furthermore, specific driver CNV genes were identified as potential therapeutic targets, facilitating personalized 
treatment.
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Introduction
Gastric cancer (GC) is a highly heterogeneous malig-
nancy, with diffuse gastric cancer (DGC) and intestinal 
gastric cancer (IGC) representing the two predominant 
subtypes. These subtypes exhibit distinct pathophysi-
ological and molecular characteristics. DGC is character-
ized by disorganized cellular architecture, reduced cell 
adhesion, and poor differentiation. In contrast, IGC is 
characterized by a more structured tubular or glandular 
organization, robust adhesion junctions, and a compara-
tively lower stromal component density [1]. Compared 
with IGC, DGC is associated with earlier onset, poorer 
prognosis, more aggressive progression, and a stronger 
familial predisposition [2, 3]. The pronounced heteroge-
neity among GC subtypes, encompassing variations in 
pathological, physiological, and molecular features, poses 
substantial challenges for tailoring precise therapeutic 
strategies. Therefore, elucidating the oncogenic mecha-
nisms and inter-subtype differences is critical for advanc-
ing our understanding of GC progression. Such insights 
could facilitate the development of more targeted and 
effective therapeutic approaches, ultimately improving 
clinical outcomes.

Previous studies have suggested that molecular inter-
actions may contribute to the observed tumour hetero-
geneity [4]. Recently, the competing endogenous RNA 
(ceRNA) hypothesis has garnered significant attention as 
a unifying framework for understanding the functional 
roles of long noncoding RNAs (lncRNAs), pseudogene 
transcripts, and circular RNAs [5]. Substantial evidence 
indicates that aberrant ceRNA expression disrupts home-
ostatic mechanisms, leading to dysregulation of ceRNA 
networks and consequent disruption of biological func-
tions [6–8]. Advanced computational pipelines have 
been developed to identify molecular interactions, offer-
ing valuable insights into network construction and the 
identification of genetic markers associated with cancer 
progression [9–13]. In addition, studies leveraging these 
comprehensive networks have revealed novel correla-
tions among molecular interactions, thereby underscor-
ing their reliability in predicting potential relationships 
between noncoding RNAs (ncRNAs) and therapeutic 
drugs [14, 15]. However, few studies have focused on the 
impact of genomic alterations on the ceRNA network and 
thus on tumour heterogeneity. Genomic variations, such 
as copy number variations (CNVs), play pivotal roles in 
tumour development by affecting the expression of genes 
and collectively contribute to intratumour heterogeneity 
and critically impact prognosis [16, 17].

Therefore, the motivation for this work lies in the 
significant challenges posed by the heterogeneity of 
GC. Understanding the underlying causes of this het-
erogeneity is crucial for developing more effective and 

personalized treatment strategies. This study focused on 
the analysis of driver CNV genes affecting the associated 
ceRNA network to elucidate the discrepancies between 
DGC and IGC at multiple levels, as well as the underlying 
molecular mechanisms responsible for these differences. 
A total of 17 and 22 driver CNV genes were identified in 
DGC and IGC, respectively. These driver CNVs lead to 
significant alterations in the tumour microenvironment 
(TME), highlighting the molecular distinctions between 
the two subtypes. Based on the unique TME character-
istics of each subtype, personalized therapeutic strate-
gies have been proposed for DGC and IGC. Given that 
the majority of driver CNV genes were associated with 
immune cell infiltration, IGC may benefit from immu-
notherapy. On the other hand, DGC exhibited insensi-
tivity to immunotherapy, potentially due to monocyte 
enrichment in its TME. DGC patients with homozygous 
deletion of the PPIF gene may respond favourably to 
chemotherapy, whereas targeted therapies could be effec-
tive in patients with high-level amplification of the MTAP 
gene. These findings offer a new perspective on precision 
medicine and individualized treatment for patients with 
gastric cancer and provide substantial support for future 
research and clinical practice.

Methods
Collection of expression, CNV, and clinical data
Gastric cancer data, including clinical data, CNV data, 
and gene expression data, were collated from The Can-
cer Genome Atlas (TCGA) (https:// portal. gdc. cancer. 
gov/). For the clinical data, the samples of “Stomach Ade-
nocarcinoma, Signet Ring Type” and  “Stomach, Adeno-
carcinoma, Diffuse Type” were considered as DGC [18]. 
Moreover, the samples of “Stomach, Intestinal Adeno-
carcinoma, Not Otherwise Specified (NOS)”, “Stomach, 
Intestinal Adenocarcinoma, Papillary Type”,  “Stomach, 
Intestinal Adenocarcinoma, Mucinous Type” and “Stom-
ach, Intestinal Adenocarcinoma, Tubular Type” were cat-
egorized as IGC. Ultimately, clinical data from 85 DGC 
samples and 191 IGC samples were collected, including 
variables such as age, sex, and survival time. For CNV 
data generated using Affymetrix Genome-Wide Human 
SNP Array 6.0 platform, GISTIC 2.0 was applied to the 
CNV data at level 3 segmentation [19]. In this study, only 
homozygous deletions and high-level amplifications were 
considered reliable CNVs, whereas the remaining CNVs 
were deemed insignificant and excluded from further 
analysis. Gene expression profiles for mRNAs, lncR-
NAs, and miRNAs were obtained from Illumina HiSeq 
sequencing data (Illumina HiSeq_RNASeqV2 for mRNAs 
and lncRNAs and Illumina HiSeq_miRNASeq for miR-
NAs). All fragments per kilobase of transcript per mil-
lion mapped reads (FPKM) data were log2-transformed 

https://portal.gdc.cancer.gov/
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for subsequent analysis. Any mRNA, lncRNA, or miRNA 
was excluded if its nondetection frequency exceeded 
30% or if its average expression level was less than 0.1. 
To ensure data completeness, only samples containing all 
three types of data (mRNA, lncRNA, and miRNA) were 
retained. In the end, 73 DGC samples and 163 IGC sam-
ples were included.

Collection of ceRNA interactions
A total of 423,975 miRNA-mRNA interactions and 
35,459 miRNA-lncRNA interactions associated with gas-
tric cancer (GC) were retrieved from the StarBase v2.0 
database (https:// rnasy su. com/ encori/) [20]. Addition-
ally, 22,286 miRNA-lncRNA interactions related to GC 
were obtained from the lnCeDB database (http:// gyanx 
et- beta. com/ lncedb) [21].

Identification of driver CNV genes
We developed a comprehensive method to identify genes 
that influence the heterogeneity of gastric cancer, where 
CNVs of these genes specifically affect the related ceRNA 
networks, thereby influencing the heterogeneity of sub-
types (Fig. 1). First, genes with a high frequency of CNVs 
(> 8%) and a significant impact on gene expression were 
identified as candidate genes. The samples were sub-
sequently stratified into two groups based on the CNV 
status of each candidate gene: CNV-positive and CNV-
negative. For each group, ceRNA networks were con-
structed by integrating interactions among mRNAs, 
miRNAs, and lncRNAs while excluding interactions with 
an absolute correlation coefficient less than 0.25. A com-
parative analysis of the ceRNA networks between the two 
groups was then conducted. If a candidate gene-associ-
ated ceRNA network was exclusively observed in one 
group, the CNV of the candidate gene was inferred to 
influence the ceRNA network. Finally, genes with CNVs 
that significantly altered the ceRNA network were desig-
nated as driver CNV genes (Supplementary Table 1).

Validation of driver CNV genes through external datasets 
and methods
To evaluate the consistency of our method with other 
approaches, we reanalysed our data using previously 
published methodologies and performed comparative 
analyses. First, as described by Xu et  al., the chi-square 
test was used to construct CNV-related ceRNA networks 
[22]. Next, as demonstrated by Ding et al., we integrated 
CNV data with gene expression alterations to identify 
CNV-driven lncRNA-associated ceRNAs [23]. Finally, 
following the method of Wang et al., a multivariate mul-
tiple regression model was applied to investigate whether 
specific CNV events regulate the expression of ceRNA 

axes [24]. The three methods mentioned above were used 
to validate the stability of our approach by applying other 
techniques to our data. To further assess the robustness 
of the driver CNV genes, we applied our method to iden-
tify these genes in three independent public GC data-
sets and performed a comparative analysis. Independent 
validation datasets, including GSE51575 [25], GSE26899 
[26], and GSE62717 [27] (Supplementary Table 2), were 
obtained from the GEO database (https:// www. ncbi. nlm. 
nih. gov/ geo/). Specifically, in the GSE51575 and GS26899 
datasets, differentially expressed genes (DEGs) between 
DGC/IGC and normal samples were identified. These 
DEGs were then subjected to a hypergeometric test to 
assess their overlap with the driver CNV genes of DGC 
or IGC, thereby validating the robustness of these genes. 
Additionally, in the GS62717 dataset, CNV genes in DGC 
or IGC samples were selected and compared with the 
driver CNV genes of DGC or IGC using the hypergeo-
metric test. Furthermore, we cross-referenced our iden-
tified CNV genes with GC-related gene sets from the 
GeneCards database to explore their potential relevance 
in GC pathogenesis [28]. Previous studies have classified 
DGC into two subtypes based on transcriptomic analy-
sis: the intestinal-like (INT) subtype and the core diffuse-
type (COD) subtype [29]. The corresponding expression 
matrices were obtained from the GSE113255 dataset 
(Supplementary Table 2), which included 44 INT samples 
and 55 COD samples.

Construction and visualisation of networks
The protein–protein interaction (PPI) networks of driver 
CNVs were constructed using the STRING database 
(https:// cn. string- db. org/) [30]. And the visualisation of 
the ceRNA networks was performed using Cytoscape 
v3.9.1.

Functional analysis of driver CNV genes
To further investigate the biological processes influenced 
by the driver CNV genes, the R package clusterProfiler 
(v4.12.0) was used to associate these genes with cancer-
related pathways and characteristics. A total of 50 cancer-
related features were curated from the MsigDB database 
(https:// www. gsea- msigdb. org/ gsea/ msigdb) [31].

Calculation of immune cell infiltration and immune 
evasion scores
To verify the relationship between different GC sub-
types and the TME, CIBERSORT was used to predict 
the infiltration of immune cells. Furthermore, TIDE 
(http:// tide. dfci. harva rd. edu/ login/) was used to calcu-
late the immune evasion score of each sample based on 
the normalized expression matrix [32]. Specifically, the 

https://rnasysu.com/encori/
http://gyanxet-beta.com/lncedb
http://gyanxet-beta.com/lncedb
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://cn.string-db.org/
https://www.gsea-msigdb.org/gsea/msigdb
http://tide.dfci.harvard.edu/login/
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normalization method involved subtracting the average 
expression value of each gene across all samples from its 
expression value in each sample. The normalized expres-
sion matrix was then uploaded to the website to obtain 
the immune evasion score, T-cell dysfunction score, and 
T-cell exclusion score.

Consensus clustering based on ICR‑related genes
We used 5 clustering methods (hclust, kmeans, skmeans, 
pam, and mclust) to infer potential stable consensus sub-
groups of 2–6 clusters. The most stable partitions were 

selected from all methods based on an inspection of the 
membership matrix.

Identification and analysis of GC cell subpopulations
Single-cell data for GC were obtained from the GEO 
database (GSE183904, Supplementary Table 2) [33]. First, 
genes that were expressed in fewer than 5 cells and cells 
that expressed fewer than 300 genes were excluded. Then, 
cells with more than 200 and fewer than 2500 expressed 
genes and a mitochondrial content less than 0.05 were 
excluded. Finally, mitochondrial genes beginning with 
“MT” were excluded. The final expression profiles 
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included 20,974 genes from 9,619 cells in 6 DGC sam-
ples and 22,758 genes from 29,860 cells in 14 IGC sam-
ples. The R package Seurat (v4.4.0) was used to identify 
the cell subpopulations, whereas CellMarker 2.0 (http:// 
bio- bigda ta. hrbmu. edu. cn/ CellM arker/) [34] was used 
for the annotation of these cell subpopulations. CIBER-
SORTx (https:// ciber sortx. stanf ord. edu/ upload. php) was 
used to estimate the proportion of cell subpopulations in 
each sample.

Calculation of driver CNV gene activity
The R package AUCell (v1.18.0) was used for calculations 
to assess the activity of driver CNV genes across differ-
ent cell types, with gene activity levels quantified by AUC 
values. In general, a positive correlation was observed 
between activity and the AUC value.

Construction of risk score models
Considering the synergistic impact of multiple driver 
CNV genes on the prognosis of INT and COD patients, a 
risk score model was constructed based on CNV to esti-
mate patient prognosis.

where ei represents the expression of the driver CNV 
gene and cnvi represents the CNV status of the driver 
CNV gene (−2 or 2). An elevated risk score was indica-
tive of a worse prognosis.

Evaluation of resistance to targeted drugs
We collected data on drugs that are highly resistant or 
highly sensitive in DGC and IGC from published studies 
[35] and evaluated their efficacy using the half maximal 
inhibitory concentration (IC50) values. Specifically, the 
IC50 values of DGC samples for different targeted drugs 
were calculated using the R package OncoPredict (v1.2) 
based on the expression data of driver CNV genes. The 
IC50 refers to the concentration of a drug that results 
in 50% inhibition of a specific biological or biochemical 
function based on the dose–response curve. It is com-
monly used to assess a drug’s pharmacodynamic activity, 
selectivity, toxicity, and resistance. A lower IC50 value 
typically indicates greater efficacy in cancer inhibition.

Statistics
All comparative analyses were conducted using the 
hypergeometric test, t-test, and Wilcoxon rank-sum 
test, as appropriate. Pearson correlation analysis was 
used to assess the relationship between driver CNV 
genes and immune checkpoint signature genes (Sup-
plementary Table  3). Moreover, the same method was 

Riskscore =

17∑

i=1

ei × cnvi,

used to assess the correlation between driver CNV 
genes and senescence signature genes (Supplementary 
Table  4) [36]. Survival analyses were conducted using 
the Kaplan–Meier method, and differences were tested 
using the log-rank test. P < 0.05 was considered statis-
tically significant. All the statistical analyses were per-
formed in the R4.2.3 software environment.

Results
Distinct driver CNV genes influence divergent 
developmental mechanisms in GC subtypes
The comparison and identification of driver CNV genes 
and their ceRNA networks in DGC and IGC facilitate 
an understanding of the developmental mechanisms 
of GC subtypes. Here, a comprehensive method was 
developed to identify driver CNV genes in different GC 
subtypes based on the dysregulated ceRNA network 
(Fig.  1). A total of 17 and 22 driver CNV genes were 
found in DGC and IGC, respectively (Fig. 2A, Supple-
mentary Table  1). To validate the robustness of these 
genes, we first used other published methods to re-
identify key genes. Our findings revealed that most GC 
subtype-specific CNV genes identified by our method 
were validated by other methods (Fig. 2B). Next, using 
a hypergeometric test, we demonstrated that the driver 
CNV genes identified by our method were signifi-
cantly enriched among the differentially expressed and 
CNV-altered genes from three independent public GC 
datasets (Fig.  2B, C). Furthermore, we observed a sig-
nificant overlap between the driver CNV genes and the 
experimentally validated GC-related genes in the Gen-
eCards database (Fig.  2B, C). Notably, many of these 
CNV genes were identified as potential drug targets for 
GC, suggesting their possible roles in GC pathogenesis 
and their potential therapeutic relevance (Fig. 2B).

Interestingly, the number of candidate genes in DGC 
was significantly lower than that in IGC at each step of 
identification of the driver CNV genes (Fig.  2A). The 
number of DGC-specific mRNAs, miRNAs, and lncR-
NAs was relatively high across the entire ceRNA net-
work (Fig.  2D). These findings indicated the presence 
of genetic and biological differences between DGC 
and IGC. The majority of driver CNV genes in DGC 
exhibited high-level amplification, except for MTAP 
and PPIF. Similarly, MTAP, ITGAV, IRF2, and CDKN2B 
were homozygously deleted in IGC samples, whereas 
the remaining driver CNV genes exhibited high-level 
amplification (Fig. 2E). These findings highlight genetic 
and biological differences between DGC and IGC, with 
high-level amplification being a dominant phenomenon 
in both subtypes.

http://bio-bigdata.hrbmu.edu.cn/CellMarker/
http://bio-bigdata.hrbmu.edu.cn/CellMarker/
https://cibersortx.stanford.edu/upload.php
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Driver CNV genes affect the TME by targeting 
the corresponding ceRNA networks
Despite their distinct pathophysiology and clinical fea-
tures, DGC and IGC share interconnected mechanisms. 
A PPI network of driver CNV genes was constructed 
based on the STRING database, revealing interactions 
among their encoded proteins (Fig. 3A). The association 
between DGC and IGC was represented in the ceRNA 
network in two ways. One way was that the same driver 
CNV genes were identified in both DGC and IGC. For 
example, MTAP could influence the ceRNA network in 
IGC through hsa-miR-30a-3p and affect the ceRNA net-
work in DGC via hsa-miR-195-5p (Fig.  3B). The other 
way was that the same miRNA regulated distinct driver 
CNV genes in DGC and IGC. For example, hsa-miR-
155-5p targeted ZKSCAN1 in IGC and TRIM44 in DGC 
(Fig. 3C). Numerous physiological and pathological pro-
cesses, including the inhibition of viral infection and 
tumour proliferation, are mediated by hsa-miR-155-5p 
[37]. Similarly, several different driver CNV genes of IGC 
and DGC were found to be regulated by identical miR-
NAs (Supplementary Fig.  1). These findings illustrated 
the complexity of the ceRNA network and its poten-
tial significance in tumour development. In addition, 
enrichment analysis of the driver CNV genes in IGC 
and DGC revealed both common and subtype-specific 
pathways (Fig.  3D). Notably, the IGC-specific pathway 
"IL6_JAK_STAT3_SIGNALING" and the DGC-specific 
pathway "Wnt_BETA_CATENIN_SIGNALING" were 
both immune related [38, 39], suggesting that differences 
in the tumour microenvironment (TME) between DGC 
and IGC are driven by distinct driver CNV genes.

IGC is more sensitive to immunotherapy than DGC
The investigation of the differences in the TME between 
DGC and IGC provides a theoretical basis for under-
standing their distinct biological behaviours and poten-
tial therapeutic strategies. CIBERSORT was used to 
quantify the infiltration of immune cells in DGC and 
IGC, revealing significant differences in the infiltration 
scores of distinct immune cell types between the two 
groups (Fig.  4A). Furthermore, the immune cell types 
identified through CIBERSORT were classified into four 
functional groups based on a previous study [40], and 
these group-based differences in immune cell infiltra-
tion scores between DGC and IGC remained consistent 
(Fig. 4B). Notably, compared with DGC, IGC presented 
a greater number of driver CNV genes associated with 
immune cell infiltration scores (Fig.  4C), suggesting 
that IGC is more likely to benefit from immune check-
point therapies. Compared with IGC, DGC had signifi-
cantly greater T-cell dysfunction scores, T-cell exclusion 
scores, and TIDE scores, indicating a less favourable 

immune microenvironment for immunotherapy efficacy 
(Fig.  4D). Additionally, the immune rejection constant 
(ICR), a modular immune gene signature associated 
with immunotherapy responsiveness in cancer [41], was 
used to stratify IGC samples into three immune subtypes 
(Fig. 4E). Among the 22 driver CNV genes identified in 
IGC, IRF2 was significantly upregulated in the ICR-high 
subtype, whereas HSP90AB1, AARS2, ZKSCAN1, and 
FAM91A1 were markedly downregulated (Fig.  4F). The 
ICR-high subtype, characterized as a “hot tumour,” exhib-
ited elevated expression of immune regulatory genes 
(Fig.  4G) and was more likely to respond positively to 
immunotherapy. Therefore, the combination of high IRF2 
expression and low expression of HSP90AB1, AARS2, 
ZKSCAN1, and FAM91A1 may serve as a predictive bio-
marker for improved prognosis in IGC patients receiving 
immune checkpoint inhibition therapy [42, 43].

Driver gene CNVs in monocytes contribute 
to immunotherapeutic resistance in DGC
Modifications at the cellular level typically reflect the 
effects of immune checkpoint therapy. Comparing the 
differences at the single-cell level between IGC and DGC 
may reveal the mechanisms underlying DGC resistance 
to immune therapy, providing valuable insights for fur-
ther screening and optimizing treatment strategies for 
DGC. A total of 10 and 9 cell clusters were identified in 
DGC and IGC based on single-cell data from the GEO 
database (Fig. 5A, B). Interestingly, the DGC driver CNV 
gene CCT2 and the IGC driver CNV gene HSP90AB1 
were highly expressed across a range of cell clusters. In 
contrast, the DGC driver CNV gene PPIF was specifically 
expressed in monocytes, whereas the IGC driver CNV 
gene ATAD2 was specifically highly expressed in gastric 
isthmus cells (Fig. 5C, D).

To accurately assess the enrichment of driver CNV 
genes in DGC or IGC cells, AUCell was used to calcu-
late the activity of these genes across different cell types. 
Among them, the activity of DGC driver CNV genes was 
notably greater in DGC monocytes (Fig. 5E). Monocytes 
potentially influence the effectiveness of tumour immu-
notherapy through immune evasion mechanisms [44]. In 
our study, we further performed enrichment analysis of 
DEGs between DGC and IGC monocytes. These genes 
are involved in processes such as antigen presentation 
and processing and proton transmembrane transport 
(Fig.  5F). Moreover, the AUCell scores of DGC mono-
cytes were significantly greater than those of other cell 
types (Fig.  5G). These findings suggest that the driver 
CNV genes in DGC influence monocytes in the TME, 
thereby affecting the immune response and ultimately 
limiting the effectiveness of immunotherapy in DGC. 
Additionally, the significant difference in AUCell scores 
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between B cells and other cell types in IGC (Fig. 5H) sug-
gests that B cells might play a distinct role in immune 
responses within IGC.

DGC might benefit from adjuvant chemotherapy 
or targeted therapy
Next, we identified suitable treatments for DGC patients 
through analysis of the mechanism of DGC anti-immune 
checkpoint therapy. First, 178 immune checkpoint 
related genes were manually gathered (Supplementary 
Table 3), and they were screened for immune checkpoint 
genes that correlated with driver CNV genes (Fig.  6A, 
Supplementary Figs.  2 and 3). The DGC driver CNV 
gene ZMIZ1 was found to be negatively correlated with 
PD-L1 expression and to be targeted by the greatest 
number of miRNAs within its dysregulated ceRNA net-
work. Although PD-L1 expression does not necessarily 
indicate the efficacy of immunotherapy, it typically indi-
cates a high level of PD-L1 antibody targets expressed in 
the tumour, which is correlated with comparatively bet-
ter efficacy [45]. Therefore, the high level of amplification 
of ZMIZ1 in DGC was identified as a potential factor 
contributing to the poor immunotherapeutic efficacy of 
DGC.

Furthermore, identifying efficacious therapeutic strat-
egies for DGC is critical. A previous study classified 
DGC into two subtypes: the INT and the COD. The 
COD was responsive to immunotherapy and engaged 
in EMT-related processes, whereas the INT subtype 
was associated with DNA repair and the cell cycle and 
was responsive to adjuvant chemotherapy. In our study, 
the ceRNA network mediated by PPIF was significantly 
enriched for the DNA repair pathway, which was consist-
ent with the INT subtype, whereas the ceRNA network 
mediated by SLC1A2 was significantly enriched for the 
TGF-beta signaling pathway, which was consistent with 
the COD subtype (Fig. 6B). Moreover, a significant differ-
ence in PPIF expression was observed between INT and 
COD subtypes, however, no variation in SLC1A2 expres-
sion was detected (Fig.  6C). Furthermore, a risk score 
based on CNV was constructed, which revealed that the 
COD subtype had a worse prognosis than the INT sub-
type, as indicated by a higher risk score (Fig. 6D). Conse-
quently, DGC patients with homozygous deletion of PPIF 
might benefit from adjuvant chemotherapy.

To develop effective targeted therapeutic strategies, 
identifying potential targets that are specifically overex-
pressed in DGC is essential. Previous studies have identi-
fied drugs that are highly resistant or highly sensitive in 
DGC and IGC (Fig.  6E), with their effectiveness evalu-
ated by IC50 values. By comparing the differences in 
IC50 values across samples with varying expression levels 
of driver CNV genes, precise and personalized treatment 
strategies can be provided for DGC patients. Specifically, 
the expression of MDM2 exhibited a significant positive 
correlation with the IC50 values of afatinib, AZD4547, 
and trametinib, indicating a worsened drug response 
with increased MDM2 levels (Fig. 6F). Similarly, a signifi-
cant negative correlation was observed between the IC50 
value of ibrutinib and MTAP expression, suggesting that 
increased MTAP levels were associated with increased 
medication efficacy (Fig. 6F).

Overall, targeted therapy, immunotherapy, and chemo-
therapy have facilitated the implementation of precision 
medicine for DGC and IGC on a personalized basis. Our 
research has enhanced the efficacy and relevance of treat-
ment by facilitating the development of individualized 
treatment regimens.

Driver CNV genes lead to age‑ or sex‑specific survival 
differences in IGC and DGC
Genomic and cellular alterations ultimately result in 
modified clinical characteristics. Therefore, the differ-
ences in clinical characteristics between DGC and IGC 
patients were further investigated (Fig. 7A). Notably, IGC 
patients who were less than or equal to 60  years of age 
exhibited significantly prolonged survival compared with 
that in IGC patients who were greater than 60  years of 
age (Fig. 7B), suggesting that aging has an impact on the 
prognosis of IGC. A total of 125 genes and their corre-
sponding status associated with senescence were sub-
sequently assembled (Supplementary Table  4), and the 
correlations between driver CNV genes of IGC and these 
senescence genes were calculated (Fig. 7C). In the case of 
gene types such as growth factors and protease inhibi-
tors, there was a strong correlation between driver CNV 
genes and senescence genes (R > 0.5), implying that IGC 
driver CNV genes may play an important role in gene 
expression, tissue development, and cell growth within 
the regulatory network.

(See figure on next page.)
Fig. 4 Quantitative analysis of tumour-infiltrating immune cells. A Boxplot of the differences in the infiltration of 22 immune cell types 
between DGC and IGC ("***": P < 0.001; "**": P < 0.01; "*": P < 0.05). B Differences in the infiltration of the 4 major immune cell types. C Heatmap 
of the correlation between the expression of driver CNV genes and the degree of immune cell infiltration in DGC and IGC. D Differences in TIDE 
scores between DGC and IGC. E Consistent clustering of IGC based on ICR-related genes. F Differential expression of driver CNV genes in the ICR 
subtype. G Heatmap of immune-related gene expression patterns across ICR subtypes
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Fig. 5 Single-cell level analysis of driver CNV genes. A, B Dimensionality reduction (UMAP) of cells in DGC (A) and IGC (B). C, D Average expression 
and proportion of driver CNV genes in DGC (C) and IGC (D) among different cell clusters. E Distribution of AUC values in DGC cell clusters. F LogFC 
values (inside) and enrichment analyses (outside) of DEGs between DGC and IGC in monocytes. G, H Box plots of AUC values for driver CNV genes 
in DGC (G) and IGC (H) among cell clusters ("****": P < 0.001, "**": P < 0.01)

(See figure on next page.)
Fig. 6 Therapeutic targets of DGC. A Correlations of immune checkpoint-related genes with driver CNV genes in DGC and IGC and miRNAs 
associated with driver CNV genes. The left column represents the 5 common immune checkpoints. In the middle column, blue represents the driver 
CNV genes in IGC, and brown represents the driver CNV genes in DGC. The right column represents the miRNAs associated with each driver CNV 
gene. B The ceRNA networks regulated by specific driver CNV genes in DGC or IGC are functionally identical to those in the INT or COD subtypes. 
C Boxplots of differences in the expression of specific driver CNV genes between INT and COD subtypes. D Boxplots of differences in risk scores 
between INT and COD subtypes. E Heatmap of drug sensitivity between DGC and IGC. Drugs are clustered according to their known target. F 
Comparison of IC50 values for drugs in DGC samples with different driver CNV gene expression levels ("**": P < 0.01, "*": P < 0.05)
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In addition, the prognosis for male patients with DGC 
was worse than that for those with IGC (Fig. 7D), which 
might be attributed to the complex interplay between cel-
lular characteristics and clinical characteristics. Accord-
ingly, we observed that the proportion of monocytes in 
male DGC patients was significantly greater than that in 
male IGC patients (Fig.  7E). As a result, the expression 
of driver CNV genes enriched in monocytes of DGC 
was increased, which significantly affects the associ-
ated ceRNA networks, ultimately resulting in a poorer 
prognosis.

To summarize, alterations in samples at various levels 
ultimately influence clinical outcomes. Therefore, com-
prehending the molecular mechanisms underlying these 
variations is critical to facilitate the development of per-
sonalized therapeutic strategies.

Discussion
Previous studies have shown that CNV plays a vital role 
in cancer development. However, the impact of CNV 
on the ceRNA network and its relationship with tumour 
heterogeneity, especially in the context of DGC and IGC, 
has not been thoroughly investigated. Therefore, investi-
gating genomic variation to identify driver CNV genes of 
different GC subtypes will generate novel findings, which 
is conducive to further revealing the pathogenesis of GC. 
To fill this gap, comprehensive techniques were used to 
identify specific driver CNV genes in DGC and IGC. By 
analysing the differences and associations between DGC 
and IGC at the genomic, transcriptomic, and cellular lev-
els, potential molecular mechanisms responsible for the 
heterogeneity of GC were illustrated. For example, genes 
such as MTAP and PPIF in DGC and IGC showed dif-
ferent CNV patterns, which may lead to different biologi-
cal behaviours of the two subtypes. This knowledge can 
potentially lead to the identification of specific driver 
CNV genes as potential therapeutic targets, thereby 
providing novel results for personalized treatment and 
improving the prognosis of GC patients.

A total of 17 and 22 identical or different driver CNV 
genes in DGC and IGC, respectively, suggested biologi-
cal and genetic similarities or differences between the 
two gastric cancer subtypes. These differences might 
lead to alterations in cancer proliferation, clinical char-
acteristics, and prognosis. Notably, the DGC-specific 
pathway “Wnt_BETA_CATENIN_SIGNALING” and 
the IGC-specific pathway “IL6_JAK_STAT3_SIGNAL-
ING” were highly correlated with immunity. There-
fore, an analysis of immune cell infiltration in DGC and 
IGC was conducted, which revealed that the majority 
of immune cells were significantly different between 
the two subtypes. Moreover, a strong correlation was 
observed between immune cell infiltration and driver 

CNV genes in IGC, suggesting that IGC patients might 
benefit from immunotherapy. Furthermore, PPIF was 
activated in monocytes, which have been associated 
with immune evasion, confirming that immunotherapy 
was not applicable to DGC. To identify potential thera-
peutic strategies for DGC, DGC samples were classified 
into two subtypes based on previous studies. The INT 
subtype was enriched in DNA repair-related pathways 
and was deemed suitable for adjuvant chemotherapy. 
Moreover, DGC patients with high-level amplification 
of MTAP might benefit from targeted therapy.

There is a growing body of literature that uses multi-
omics data to investigate cancer heterogeneity [46–48], 
and our study contributes novel and pertinent insights 
to this field. By integrating transcriptomic and genomic 
data, we identified driver CNV genes associated with 
GC subtypes and identified personalized therapeu-
tic strategies based on the relationship between these 
genes and therapeutic targets. Moreover, the screening 
process for driver CNV genes could be used to iden-
tify specific genes in other cancer types, facilitating the 
study of other types of cancer. Nevertheless, there are 
several limitations to this study. One limitation is that 
although the treatment response was assessed using 
IC50 values, the lack of real data could bias our results. 
Future studies should include more comprehensive 
treatment response data to validate the identified thera-
peutic targets. Additionally, our study is limited to the 
analysis of transcriptomic, genomic, and immune cell 
infiltration data. The incorporation of more data, such 
as epigenomic and proteomic data, could provide a 
more comprehensive understanding of the heterogene-
ity of GC [49, 50].

Conclusion
In conclusion, our multiomics analysis revealed that dif-
ferent gastric cancer subtypes exhibit different molecular 
mechanisms and TMEs. The driver CNV genes identified 
through our analyses have prognostic implications and 
might serve as potential therapeutic targets for immuno-
therapy or targeted therapy. These findings provide new 
insights into the basic biology of gastric cancer and may 
have an impact on the development of personalized ther-
apies for gastric cancer patients.
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