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Abstract 

Background  Immune checkpoint inhibitors (ICIs) are emerging promising agents for the treatment of patients 
with esophageal squamous cell carcinoma (ESCC), however, there are only a small proportion respond to ICI therapy. 
Therefore, selecting candidate patients who will benefit the most from these drugs is critical. However, validated 
biomarkers for predicting immunotherapy response and overall survival are lacking. As the fundamental principle 
of ICI therapy is T cell-mediated tumor killing (TTK), we aimed to develop a unique TTK-related gene prognostic index 
(TTKPI) for predicting survival outcomes and responses to immune-based therapy in ESCC patients.

Methods  Transcriptomic and clinical information of ESCC patients were from the GSE53625, GSE53624, GSE47404 
and TCGA datasets. TTK-related genes were from the TISIDB database. The LASSO Cox regression model was employed 
to create the TTKPI. The prediction potential of the TTKPI was evaluated using the KM curve and time-dependent ROC 
curve analysis. Finally, the relationship between TTKPI and immunotherapy efficacy was investigated in clinical trials 
of ICIs (GSE91061, GSE135222, IMvigor210 cohort). The role of KIF11 in accelerating tumor progression was validated 
via a variety of functional experiments, including western blot, CCK-8, colony formation, wound healing scratch, 
and xenograft tumor model. The KIF11 expression was detected by multiplex fluorescent immunohistochemistry 
on tissue microarray from ESCC patients.

Results  We constructed the TTKPI based on 8 TTK-related genes. The TTKPI low-risk patients exhibited better over-
all survival. TTKPI was significantly and positively correlated with the main immune checkpoint molecules levels. 
Furthermore, the low-risk patients were more prone to reap the benefits of immunotherapy in the cohort undergoing 
anti-PD-L1 therapy. Moreover, we performed functional experiments on KIF11, which ranked as the most significant 
prognostic risk gene among the 8 TTK-related genes. Our findings identified that KIF11 knockdown significantly 
hindered cell proliferation and mobility in ESCC cells. The KIF11 expression was negatively related with CD8+ T cell 
infiltration in ESCC patient samples.
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Conclusions  The TTKPI is a promising biomarker for accurately determining survival and predicting the effectiveness 
of immunotherapy in ESCC patients. This risk indicator can help patients receive timely and precise early intervention, 
thereby advancing personalized medicine and facilitating precise immuno-oncology research. KIF11 plays a crucial 
role in driving tumor proliferation and migration and may act as a potential tumor biomarker of ESCC.
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Background
Esophageal cancer is one of the most prevalent digestive 
malignancies and the 6th most common cause of cancer 
death worldwide [1]. China accounts for over 70% of all 
global cases, with esophageal squamous cell carcinoma 
(ESCC) presenting as the most common type [1]. Owing 
to lacking effective early diagnosis and management tech-
niques, the 5-year survival rate of ESCC patients is as low 
as 20% [2–4]. At present, immunotherapy has become a 
novel important treatment for ESCC [5].

Cancer immunotherapies utilizing immune checkpoint 
inhibitors (ICIs) assist the immune system in recognizing 
and attacking tumor cells [6, 7]. Programmed death pro-
tein 1 (PD-1), programmed death-ligand 1 (PD-L1), and 
cytotoxic T-lymphocyte-associated protein 4 (CTLA4) 
are primary targets of ICI therapy [8–10]. The clinical use 
of immunotherapies targeting immune checkpoints has 
recently significantly improved the clinical effects and 
changed the ESCC treatment paradigm [11, 12]. None-
theless, the clinical prognosis tends to be unfavorable due 
to a high incidence of recurrence, metastasis, and drug 
resistance [13–17].

Several biomarkers, including PD-L1 expression and 
tumor mutation features, are frequently employed in 
clinical settings to predict immunotherapy response 
[18–20]. However, only a minority of patients benefit 
from immunotherapy [19]. Some studies demonstrated 
that the immune-related status could serve as a primary 
prognostic indicator, further enhancing targeted therapy 
efficacy [21]. Several immune-related gene signatures 
have been developed to predict treatment outcomes in 
patients with ESCC [22]. However, the accuracy of pre-
dicting outcomes is often insufficient for clinical appli-
cation. Therefore, a more comprehensive and reliable 
signature is urgently needed to accurately predict over-
all survival  (OS) and immunotherapy efficacy of ESCC 
patients accurately.

Given the vital roles of T cells in immunity, earlier 
research has explored the molecular features of T cells 
in infectious diseases and cancers; however, a compre-
hensive molecular analysis of T cell-mediated tumor 
killing (TTK) in ESCC is devoid [23]. TTK-related genes 
have been identified using CRISPR screening and high-
throughput experimental methods [23, 24]. Hence, 
developing a TTK-related gene signature that is closely 

associated with the immune status is both appropriate 
and viable for predicting immunotherapy efficacy.

The kinesin superfamily (KIF), microtubule-based 
molecular motors, comprises 14 families (Kinesin 1–14A/
B) mediating intracellular transport [25, 26]. KIF11, 
also known as Eg5, exerts vital cellular functions and is 
required for chromosome positioning and separation, 
mitotic spindle formation as well as maintenance, and 
mitosis drivers [27–29]. Recently, an emerging number of 
studies have proven that KIF11 is aberrantly upregulated 
in different cancers, accelerating tumor development and 
progression. KIF11 was demonstrated to drive glioblas-
toma invasion, proliferation, and self-renewal [30]. High 
KIF11 expression enhances the proliferation of gallblad-
der cancer cells through ERBB2-mediated activation of 
downstream signaling pathway [31]. Furthermore, inhi-
bition of KIF11 can inhibit pancreatic ductal adenocarci-
noma cell proliferation, promote apoptosis, and increase 
sensitivity to chemotherapy [32]. However, there is lim-
ited research discussing the correlation between KIF11 
and ESCC.

In this study, we developed a prognostic index termed 
TTKPI (TTK-related gene prognostic index) and demon-
strated its predictive potential as an indicator for evalu-
ating the effectiveness of immunotherapy. The newly 
developed TTKPI could be a valuable tool for guiding 
cancer immunotherapy for patients with ESCC. In addi-
tion, KIF11 was ultimately identified as the most signifi-
cant prognostic risk gene and was verified to promote the 
proliferation, invasion, and growth in ESCC. All results 
suggest that KIF11 has great potential as a valuable pre-
dictive biomarker and therapeutic target.

Methods
Data acquisition and preprocessing
TTK-related genes were curated from the TISIDB data-
base and compiled to form a gene set referred to as TTKs 
[24], and details are shown in Supplementary Table  1. 
The data of ESCC samples was collected from the Gene 
Expression Omnibus (GEO) (https://​www.​ncbi.​nlm.​nih.​
gov/​geo) and The Cancer Genome Atlas (TCGA) (https://​
www.​cancer.​gov/​tcga/), including GSE53625 cohort 
(n = 179), GSE53624 (n = 119), GSE47404 (n = 68) and the 
TCGA-ESCC cohort (n = 83) [33, 34]. The GSE53625 was 
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served as the training set. The GSE53624, GSE47404 and 
TCGA cohort were served as the external validation sets. 
A detailed overview of the sample characteristics and 
clinical data for GSE53625 is presented in Supplementary 
Table 2.

Differentially expressed TTK‑related genes
Differentially expressed genes (DEGs) in 179 ESCC pre-
cancerous and cancerous tissues were discovered utiliz-
ing the "limma" package [35] (|log2FC|> 1 and adjusted 
P < 0.05). To construct and visualize TTK-related DEGs, 
we intersected these DEGs with TTK-related genes to 
generate volcano plots by package "ggplot2" [36] and a 
Venn diagram via a webtool (https://​bioin​forma​tics.​psb.​
ugent.​be/​webto​ols/​Venn/).

Pathway and function enrichment analysis
Enrichment analysis for investigating the biological func-
tions of TTK-related DEGs was conducted via the "clus-
terProfiler" package [37]. The functional enrichment of 
GO terms and the KEGG signaling pathways were deter-
mined using a 5% false discovery rate. Significant enrich-
ment was defined based on P < 0.05.

TTK‑related gene prognostic signature construction 
and validation
The impact of TTK-related DEGs on ESCC survival was 
examined by the Univariate Cox regression analysis with 
P < 0.05. Consequently, 10 TTK-related DEGs signifi-
cantly affecting OS were identified. The candidates were 
further narrowed down, and an optimal signature was 
constructed using The LASSO Cox regression [38]. Spe-
cifically, we utilized the "lambda.min" value, determined 
by the "glmnet" package [39]. Following the analysis, the 
model ultimately generated and exported the TTKPI for 
each patient using the following formula:

where βi represents the risk coefficient; Ei represents 
the expression of each gene. A linear transformation was 
applied to the TTKPI to improve the intuitiveness of the 
plots. The package "MaxStat"  was utilized to calculate 
the best threshold for separating ESCC patients into two 
groups (low- and high-risk) [40]; the ideal cutoff point 
was 0.61. The "stats" package was used to conduct princi-
pal component analysis. Furthermore, the R packages of 
"survival" and "survminer" were employed to conduct a 
Kaplan–Meier (KM) analysis to futher explore the rela-
tionship between TTKPI and OS [41, 42].

TTKPI =

∑8

i=1
(βi × Ei)

Establishment of the prognostic nomogram
A prognostic nomogram was constructed by integrating 
clinical characteristics (sex, age, grade, stage, and alcohol 
consumption) with TTKPI using the "rms" and "regplot" 
packages in R, following the multivariable stepwise Cox 
regression analysis results [43]. Time-dependent receiver 
operating characteristic (ROC) curves were generated 
to assess the prognostic models. The "timeROC" pack-
age was employed to plot the ROC curve analysis, and 
the area under the curve (AUC) values were calculated 
to determine the predictive performance of each model. 
Additionally, calibration curves were generated by the 
"rms" package to assess the predictive performance of the 
nomogram and compare predicted survival with actual 
survival.

Analysis of immunotherapy efficacy
GSE91061, GSE135222, IMvigor210 were used to con-
firm the feasibility and reliability of the TTKPI to predict 
the ICI therapy response [44–47]. Patients were classified 
into two categories—responders and non-responders—
for comparison based on treatment outcomes. Respond-
ers reached complete response, very good partial 
response or stable disease, while non-responders experi-
enced progressive disease.

Cell lines and cell culture
The human ESCC cell lines YES2, KYSE30, KYSE150, 
KYSE410, KYSE450, and KYSE510 were authenticated by 
short tandem repeat analysis. Cells were maintained in 
RPMI-1640 medium (Lonza, Switzerland) with 10% fetal 
bovine serum (Gibco, USA) and 1% penicillin/streptomy-
cin (Gibco, USA), under standard conditions in a humidi-
fied incubator at 37 °C and 5% CO2.

Lentivirus infections
For KIF11 knockdown, lentivirus encoding specific short 
hairpin RNA (shRNA) was developed by Shanghai Jikai 
Gene Chemical Technology. After lentiviral infection, 
stable clones were selected by treatment of the cells with 
puromycin (2 μg/mL, Sigma-Aldrich, USA). The shRNA 
information are listed as follows: sh1: 5′- TAC​AGC​AGA​
AAT​CTA​AGG​ATA −3′; sh2: 5′- CGT​AAC​AAG​AGA​
GGA​GTG​ATA −3′; NC: 5′- TTC​TCC​GAA​CGT​GTC​
ACG​T −3′.

Western blotting
All cells used in our study were lysed using 1% NP-40 
lysis buffer containing protease inhibitor cocktail 
(Roche, Mannheim, Germany). Extracted protein sam-
ples were then separated through SDS-PAGE and elec-
trophoretically transferred to PVDF membranes, which 
were blocked in 5% bovine serum albumin (BSA) and 
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incubated overnight at 4 °C with the primary antibodies. 
This was followed by 1-h incubation with secondary anti-
bodies at room temperature. Signals were detected with 
chemiluminescence and imaged using the Amersham 
Imager 600 (GE Healthcare, USA). Following antibodies 
were used for Western blotting: KIF11 (A7907, Abclonal, 
China) and β-actin (Ab8226, Abcam, USA).

Colony‑formation assay
ESCC cells were seeded in 6-well plates at a density of 
1 × 103 cells per well. After 10  days, cells were washed 
with cold PBS (3 times), fixed with ice-cold methanol 
(10  min), and stained with 0.1% crystal violet (10  min). 
The cultures were then rinsed with deionized water and 
imaged under a microscope.

CCK‑8 assay
Cell viability was evaluated by the CCK-8 assay kit 
(K1018, Apexbio, USA). 1 × 104 cells/well were plated in 
a 96-well plate. At indicated time intervals (0, 24, 48, and 
72 h), 10 µL CCK-8 solution was then added to each well, 
followed by 2 h incubation at 37 ℃. Then, absorbance was 
measured at 450  nm by a microplate reader (Bio-Rad, 
Hercules, CA, USA).

Wound‑healing scratch assay
Cells were grown on 6-well plates until confluence and 
then scratched using a 200-µL pipette tip to create a 
straight "wound" path. Next, PBS was applied to remove 
the dislodged cells. Subsequently, the cells were incu-
bated with culture medium with 2% FBS for 20  h. All 
wounds were captured and measured at the start (0  h) 
and 20 h post-wounding.

Xenograft tumor model
Female BALB/c nude mice were purchased from Bei-
jing Vital River Laboratories (aged 5  weeks, China). 
Cell suspensions containing 5 × 106 stable transfected 
KYSE30 cells in 100 µL PBS premixed with Matrigel 
gel were subcutaneously injected into the right lower 
flanks of the nude mice (n = 8 mice/group). Tumor 
measurements began 7 days after injection and were 
recorded every 2  days to track growth. Xenograft 
tumors were harvested and measured after 24 days. 
Tumor volumes were calculated by a standard formula: 
volume = 1/2 × length × width2. All experiments were 
conducted following the approval from the Institutional 
Animal Care and Use Committee of Peking University 
Cancer Hospital and Institute.

Multiplex fluorescent immunohistochemistry (mIHC)
Tissue microarray slides from ESCC patients were pur-
chased from Zhongke Guanghua Biotech Co., Ltd (Xi’ an, 

China). mIHC staining of KIF11 (Abclonal, Cat#: A7907), 
CD8 (Abcam, Cat#: ab101500), and S100 (Abcam, Cat#: 
ab52642) was performed using TG TSA Multiplex IHC 
Assay Kits (TissueGnostics Asia–Pacific Ltd.). The visu-
alization of various fluorophores was conducted using 
the TissueFAXS Spectra System (TissueGnostics GmbH, 
Vienna, Austria) along with StrataQuest analysis soft-
ware (Version 7.1.129, TissueGnostics GmbH, Vienna, 
Austria).

Statistical analysis
All data was analysed with R (version 4.0.2) and Graph-
Pad Prism (version 8.0). Student’s t-test and Wilcoxon 
test were applied to compare two independent groups. 
KM survival plots were generated to visualize survival 
curves and comparisons were made using the Log-rank 
statistical analysis. P < 0.05 was assumed to indicate sta-
tistical significance.

Results
Identification of TTK‑related DEGs
The study flowchart was shown in Fig.  1a. In the 
GSE53625 cohort, we identified 2,322 DEGs (adjusted 
P < 0.05 and |log2FC|> 1) between tumor and healthy 
samples. Overall, 924 genes were upregulated, whereas 
1,398 genes were downregulated in ESCC group com-
pared to the healthy group (Fig.  1b, Supplementary 
Figs.  1a, b). After intersecting 1,109 TTK-related genes 
with 2,322 DEGs, 98 TTK-related DEGs were identified 
for further analysis (Fig. 1c). Among these 98 DEGs, 56 
genes were upregulated and 42 were downregulated 
in the tumor samples (Fig.  1d). The landscape of TTK-
related DEGs between healthy and tumor tissues was 
clearly shown by hierarchical clustering (Fig.  1e). Fur-
thermore, the GO analysis on these 98 genes revealed 
that the most enriched term was "mitotic sister chroma-
tid segregation" (Fig. 1f ). We also investigated the genes 
associated with the top terms, the functions of which 
require further exploration (Supplementary Fig.  1c). 
Moreover, the KEGG analysis indicated that the upregu-
lated gene set was primarily associated with "measles" 
and the "transforming growth factor-beta signaling path-
way", while the downregulated gene set was mostly asso-
ciated with "biosynthesis of nucleotides sugars"(Fig. 1g). 
In summary, the identification and analysis of 98 TTK-
related DEGs revealed significant gene expression differ-
ences between tumor and healthy tissues, with enriched 
pathways providing potential insights into ESCC devel-
opment and progression.

TTK‑related prognostic signature construction
To create a biomarker for predicting the prognosis of 
ESCC patients based on TTK-related DEGs, a risk score 
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Fig. 1  Investigation of TTK-related DEGs. a The flowchart of this study. b Volcano plot shows 2322 of 15,145 genes that were differentially 
expressed in patients with ESCC from the GSE53625 cohort (blue: down-regulated; red: up-regulated; grey: unchanged). c Venn diagram visualizing 
the intersections between DEGs and TTK-related genes. d Volcano plot of 98 TTK-related DEGs. e The expression heatmap of all 98 TTK-related DEGs 
is displayed. (Blue: down-regulated; red: up-regulated; each row representing differentially expressed genes; each column representing samples). 
f GO analysis of 98 TTK-related DEGs. g The top upregulated and downregulated pathways derived from KEGG analysis of 98 TTK-related DEGs 
is shown
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prediction model was developed. Initially, univariate 
Cox regression analysis was applied to identify genes 
significantly associated with survival outcomes. In the 
GSE53625 cohort, 10 TTK-related DEGs met the sig-
nificance threshold of P < 0.05. Subsequently, LASSO 
regression analysis and cross-validation were performed, 
yielding LASSO regression curves and cross-validation 
plots (Figs.  2a, b). Finally, an 8-gene signature (KIF11, 
SLC2A1, KCNMA1, BARHL2, CA9, TIMP1, MAGEC3, 
and PDZK1IP1) was constructed using the following 
LASSO cox regression approach:

TTKPI: (0.0552283605 × KIF11 exp.) + (− 0.007040801
7 × SLC2A1 exp.) + (0.0194419232 × KCNMA1 exp.) + (− 
0.0231625843 × BARHL2 exp.) + (− 0.0214342225 × CA9 
exp.) + (0.0161917634 × TIMP1 exp.) + (− 0.0712586182 
× MAGEC3 exp.) + (− 0.0004431282 × PDZK1IP1 exp.).

Furthermore, the prognostic significance of 8 TTK 
genes was evaluated through uvivariate Cox regression 
analysis, identifying KIF11 as the most significant prog-
nostic factor. Forest plots were used to visually illus-
trate the relationship between each of the 8 genes and 

the prognosis of ESCC patients (Fig.  2c). Additionally, 
using the optimal cutoff point of TTKPI calculated from 
the above formula, 179 ESCC patients in the GSE53625 
cohort were stratified into two distinct risk groups: low-
risk and high-risk (Fig. 2d). To assess the stability of key 
molecule expression, we examined the 8 specific genes 
expression in the two groups (Fig.  2e). Taken together, 
an 8-gene TTK-related signature was established as a 
risk score prediction model, effectively stratifying ESCC 
patients into low-risk and high-risk groups and demon-
strating its potential as a reliable prognostic biomarker.

Train and validate the risk score model for ESCC patients
We analyzed the OS of ESCC patients with different 
TTKPI levels. High TTKPI levels correlated with shorter 
survival times (P < 0.05; Fig.  3a, b). The ROC curve in 
the GSE53625 cohort also indicated that the devel-
oped TTKPI had a high potential to monitor the OS of 
ESCC patients (Fig. 3c, the AUC at 1-year: 0.69, 3-year: 
0.67, and 5-year: 0.70). In addition, we performed vali-
dation in three external datasets separately, including 

Fig. 2  Construction and validation of an immune-related gene signature prediction model. a LASSO regression analysis to identify signature 
genes. b Cross-validation of the constructed signature. c Forest plot presenting the univariate cox regression analysis results of each TTKPI-related 
gene. d Distribution of risk scores and (e) Expression levels of 8 selected genes between the high-risk and low-risk ESCC patients. Statistical analysis 
is performed with Log-rank test (c) and Student’s t-test (e). ****P < 0.0001 
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Fig. 3  Training and validation of the gene signature prognostic mode. a Risk score distribution, survival status, and expression of the 8 model genes 
for ESCC patients in the low-risk and high-risk groups b KM survival analysis and c ROC analysis of the survival rates of patients in the GSE53625 
cohort (n = 179) (Internally validated). d, f, h Externally validated KM survival analysis for the high-risk and low-risk groups in the GSE53624 cohort 
(d), GSE47404 cohort (f) and TCGA-ESCC cohort (h). e, g, i Externally validated ROC analysis for the high-risk and low-risk groups in GSE53624 cohort 
(e), GSE47404 cohort (g) and TCGA-ESCC cohort (i). Statistical analysis is performed with Fisher’s exact test (f, h, i) and Log-rank test (d, g, i). AUC: 
area under the curve; ROC: receiver operating characteristic
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GSE53624 (n = 119), GSE47404 (n = 68) and the TCGA-
ESCC cohort (n = 83). KM curve indicated that high-risk 
patients had shorter OS and a worse prognosis (P < 0.05, 
Fig. 3d, f, h). Furthermore, the AUC values for 1-, 3-, and 
4-year survival rates in the three external validation sets 
respectively demonstrated that TTKPI has good prog-
nostic predictive capability (Fig. 3e, g, i). This result indi-
cated that the TTKPI had a high accuracy in predicting 
the survival of ESCC patients.

Establish and assess the nomogram model forecasting 
survival
To assess the predictive value of TTKPI, both univari-
ate and multivariate analyses were employed using Cox 
regression analysis. (Fig. 4a and Supplementary Fig. 1d). 
The TTKPI was observed as an independent prognostic 
factor after adjusting for other clinicopathological factors 
(HR: 60.51, 95% confidence interval [CI]: 8.869–412.907, 
P < 0.001) in patients with ESCC. Moreover, we devel-
oped a predictive nomogram using multivariable Cox and 
stepwise regression analyses based on the TTKPI and 
several clinicopathological characteristics to offer a quan-
titative analytical tool to forecast individual patients’ OS 
rates. The model included age, sex, grade, stage, alcohol 
consumption, and the TTKPI (Fig.  4b). The model pre-
diction accuracy of the 1-, 3-, and 5-year survival prob-
abilities was validated with calibration curves, further 
supporting its clinical utility in forecasting patient out-
comes (Fig. 4c). In summary, these analyses demonstrate 
that TTKPI serves as a robust independent prognostic 
factor for ESCC patients. The development of a predic-
tive nomogram incorporating TTKPI alongside key clin-
icopathological characteristics offers a valuable tool for 
personalized survival predictions.

TTKPI predicts the clinical response to immunotherapy
Improving immunotherapeutic efficacy via immune 
checkpoint inhibition significantly advances cancer treat-
ment. Therefore, we explored the immune checkpoint 
expressions of the two groups and found that the risk 
score value was positively correlated with the levels of 
the main immune checkpoint molecules (PD-1, CTLA-
4, and PD-L2), indicating that the developed TTKPI 
may play an essential role in predicting the response to 
immunotherapy (Fig. 5a). Furthermore, we found that the 
expressions of the 8 genes (KIF11, SLC2A1, KCNMA1, 
BARHL2, CA9, TIMP1, MAGEC3, and PDZK1IP1) were 
significantly correlated with levels of immune checkpoint 
molecules, especially TIMP1 and KIF11 (Fig. 5b, c).

Furthermore, the TTKPI was tested for predicting 
the response to ICIs therapy in the IMvigor210 group 
(urothelial cancer, n = 298), GSE91061 (melanoma, 
n = 39) and GSE135222 (non-small cell lung cancer, 

NSCLC, n = 24). KM analysis indicated high-risk patients 
had poor OS following immunotherapy (Fig. 5d, g, i). The 
low-risk score was related to a positive response to anti-
PD-L1 therapy (Fig.  5e and Supplementary Figs.  2a, b). 
The high-risk individuals also had a considerably worse 
clinical response to PD-L1 blocking medication than 
those with low-risk scores (14% vs. 31%, odds ratio [OR]: 
2.66; 95% CI 1.50–4.99; P < 0.001, Fig.  5f). Similar trend 
was also identified in the validation cohort GSE91061 
(11.1% vs. 54.5%, OR: 8.856856; 95% CI 1.366439, 
75.086191; P < 0.01, Fig. 5h) as well as GSE135222 (7.7% 
vs. 45.5%, OR: 12.69929; 95% CI 1.118841–712.230160; 
P < 0.05, Fig. 5j). These results show that the low-risk indi-
viduals are more prone to benefit, and the TTKPI may 
serve as a valuable predictive biomarker for stratifying 
ESCC patients who may benefit from immunotherapy.

Identification of prognostic risk genes
To further determine the primary regulatory genes of 
TTK, we analyzed the correlations among 8 risk genes 
of TTKPI and observed significant synergistic effects 
(Fig. 6a). In the GSE53625 database, a general correlation 
was detected among these prognostic risk genes. Given 
our previous identification of KIF11 as the most potent 
prognostic factor (Fig.  2c), we subsequently concen-
trated our research on assessing the impact of KIF11 on 
ESCC prognosis. In survival analysis, the group with high 
KIF11 expression showed a poorer prognosis (Fig.  6b). 
Additionally, the differences in immune cell infiltration 
between high-risk and low-risk groups were explored 
using EPIC immune cell infiltration assessment meth-
ods from the TIMER 2.0 website [48]. In ESCC samples, 
KIF11 mRNA expression showed a negative correlation 
with CD8+ T cell infiltration (Fig.  6c). The purity index 
suggested that KIF11 expression increases with the 
proportion of tumor cells in tumor samples within the 
tumor microenvironment (TME) (Fig. 6c). This indicates 
that high KIF11 expression in tumor cells may suppress 
immune cell infiltration through specific mechanisms, 
thereby reducing the presence of non-tumor cells within 
the TME. To further investigate the relationship between 
KIF11 and CD8+ T cell infiltration in clinical samples, 
we performed mIHC staining on a tissue microarray 
from ESCC patients. The results showed that patients 
with high KIF11 expression had lower levels of CD8+ T 
cell infiltration (Fig.  6d). Taken together, these obser-
vations suggest that KIF11 is a key regulatory gene of 
TTK in ESCC, warranting further investigation. KIF11, 
a well-known kinesin superfamily member, is a protein-
coding gene holding a critical position in various can-
cers, including breast, liver, gallbladder, and glioblastoma 
[49–52]. However, its involvement in ESCC has been 
relatively underreported. Thus, it emerged as the focal 
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Fig. 4  Establishment and assessment of a TTKPI-based survival prediction nomogram. a Multivariate cox regression analysis of the clinical 
characteristics and TTKPI in the GSE53625 cohort. The green square indicates the HR value, and the error bars represent 95% confidence intervals. b 
A nomogram determining the prognostic of patients with ESCC. The blue plot shows a representative patient. c Calibration curves of the prognostic 
nomogram showing the consistency between the predicted and actually observed 1‐, 3‐, and 5-year OS. The 45-degree dashed line represents 
a perfect prediction, and the actual performances of our nomogram are shown by blue lines. Statistical analysis is performed with a Log-rank test 
(a). *P < 0.05, ****P < 0.0001 
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Fig. 5  Role of the TTKPI in predicting immunotherapeutic benefits. a Association between risk score signature and immune checkpoint 
molecules. b Association between the 8 genes and immune checkpoint molecules. c Correlation among TIMP1, KIF11, and CTLA4 expression. 
Correlation among TIMP1, KIF11, and PD-L2 expression. d KM survival curve in the IMvigor210 group (urothelial cancer, n = 298). e Risk scores 
in groups with different anti-PD-L1 clinical response status in the IMvigor210 group. f Proportion of patients with response to PD-L1 blockade 
therapy in the high-risk and low-risk score groups in the IMvigor210 group. g KM survival curve in the GSE91061 (melanoma, n = 39). h 
Proportion of patients with response to PD-L1 blockade therapy in the high-risk and low-risk score groups in the GSE91061. i KM survival curve 
in the GSE135222 (NSCLC, n = 24). j Proportion of patients with response to PD-L1 blockade therapy in the high-risk and low-risk score groups 
in the GSE135222. Statistical analysis is performed with Pearson correlation analysis (a–c), Log-rank test (d, g, i), Student’s t-test (e) and Fisher’s exact 
test (f, h, i). ns: no significance, **P < 0.01, ***P < 0.001. CR: complete remission, PR: partial response, SD: stable disease, PD: progressive disease, DCB: 
durable clinical benefit, NDB: non-durable benefit
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point of this study aiming to capture a full and nuanced 
understanding.

KIF11 promotes cell proliferation and migration in vivo 
and in vitro
To confirm the significant role of KIF11 in ESCC, we 
measured the expression levels of KIF11 in six ESCC 
cell lines (Fig.  7a), and selected KYSE30 and KYSE450, 
which exhibited high expression level, for further study. 
Subsequently, we stably transfected two independ-
ent shRNAs targeting KIF11 in KYSE30 and KYSE450 
(Figs.  7b, c). We observed a substantial decrease of cell 
viability upon KIF11 knockdown compared to the con-
trol group (Fig.  7d, e). Consistently, KIF11 inhibition 
led to a significantly decreased colony-forming rate 
in the colony formation assay (Fig.  7f, i). These results 
revealed the depletion of KIF11 significantly impaired 
ESCC cell proliferation. Additionally, a significant reduc-
tion of migration distance in wound-healing assay was 
observed in KIF11 knockdown group. A significant 
reduction in migration distance was observed following 
sh1 and sh2 transfections in ESCC cells, demonstrating 
a decreased metastatic potential upon KIF11 knockdown 
(Fig.  7g-j). To further investigate the effect of KIF11 on 

tumor formation in vivo, KIF11-knockdown and control 
KYSE30 cells were subcutaneously injected into BALB/C 
nude mice. The results revealed that the tumor sizes and 
weights in KIF11 depletion group were markedly smaller 
than those in control group (Fig. 8a-c). In conclusion, our 
study suggests that KIF11 enhances the malignant pro-
liferation and migration of ESCC cells both in vitro and 
in vivo.

Discussion
ICI therapy has been confirmed to be an effective strat-
egy for patients with ESCC; however, the overall response 
rate to ICI in this patient population remains modest [10, 
53–55]. Furthermore, there are no effective biomarkers 
for predicting immunotherapy response and OS in ESCC 
currently [15]. Thus, it is necessary to develop a signature 
to predict the survival of ESCC patients and increase the 
effectiveness of cancer immunotherapy. Immune infiltra-
tion and immunotherapy responses are closely linked, 
and immune cell failure increases the immunosuppres-
sive state of malignancies [7]. However, the functions 
of T-cell activity have not yet received adequate atten-
tion, which may significantly impact the prognosis and 
treatment response, particularly in patients receiving 

Fig. 6  Identification of prognostic risk genes. a Correlation analysis among the 8 best prognostic genes in GSE53625. b KM survival analysis 
displayed high the expression of KIF11correlated with poor prognosis in ESCC patients. c The correlation of KIF11 mRNA expression with tumor 
cell purity (left) and the degree of CD8+ T cell infiltration (right) in ESCC was analyzed with TIMER 2.0. d mIHC stained by a ESCC tissue 
microarray. Representative pictures (left) of mIHC assay and the summarized results (right) are shown (n: 70 patients). The data are presented 
as the means ± standard deviations (SD). Statistical analysis is performed with Pearson correlation analysis (a), Log-rank test (b), Wilcoxon test (c) 
and Student’s t-test (d). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 
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Fig. 7  KIF11 increases proliferation and migration of ESCC in vitro. a Western blot performed to assess KIF11 expression in YES2, KYSE30, KYSE150, 
KYSE410, KYSE450, and KYSE510 cells. (b-c) KIF11 levels in KYSE30 and KYSE450 cells transfected with shRNA (sh1, sh2) and control (NC) were 
analyzed using Western blot. d–e CCK-8 assays evaluating the proliferation capacity of KIF11-depleted KYSE30 and KYSE450 cells. f Colony formation 
assays to demonstrate changes in proliferation in KIF11-depleted KYSE30 and KYSE450 cells. g Statistical analysis of colony formation ability 
in KIF11-depleted KYSE30 and KYSE450 cells. h, i Representative micrographs showed the wound healing efficiency of KYSE30 and KYSE450 cells 
with reduced KIF11 expression using specific shRNA. j Statistical analysis of the scratch wound healing rate in KIF11-depleted KYSE30 and KYSE450 
cells. The data are presented as the means ± standard deviations (SD) of three independent experiments. Statistical analysis is performed 
with Student’s t-test (d, e, g, j). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 
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immunotherapy [7, 56, 57]. Furthermore, T-cell activity is 
linked to the prognosis of individuals with different solid 
malignancies [58]. Here, we developed a signature com-
prising 8 TTK-related genes that can predict the OS and 
disease-free survival of ESCC patients.

The GSE53625 cohort was used as the training data-
set, and its excellent performance was validated in three 
external cohort (GSE53624, GSE47404 and TCGA-ESCC 
cohort). A nomogram comprising clinical features and 
TTKPI was developed; its performance was deemed sat-
isfactory. Moreover, we observed that the TTKPI cor-
related with immunomodulators and immunotherapy. 
These results herald the possibility that the developed 
TTKPI is a reliable model for predicting survival and 
immunotherapeutic responses in ESCC, facilitating the 
development of novel ESCC treatment strategies.

Immunotherapy has provided new insights into 
ESCC treatment, with ICIs emerging as potentially 
viable treatments. Targeting immune checkpoint mol-
ecules has been identified as a potential approach 
to enhance antitumor immunity, such as PD-1 and 

CTLA-4 [54]. Moreover, PD-1/PD-L1 inhibitors, such 
as pembrolizumab and nivolumab, have recently been 
approved for first-line treatment [53]. The correla-
tion observed between the risk score signature and 
immune checkpoint molecules suggests that the TTKPI 
can potentially predict patient response to current 
anti-checkpoint immunotherapy. High-risk patients 
may have higher T-cell exclusion levels than low-risk 
patients, and their reduced response to ICI therapy may 
be attributed to immune evasion through T-cell exclu-
sion [8]. The inferior OS observed in high-risk patients 
is potentially attributable to immune cell exhaustion, 
which has also been identified as the primary reason 
for low objective response rates to immunotherapy [59, 
60].

To substantiate the predictive value of TTKPI fur-
ther, we conducted a survival analysis of patients from 
the IMvigor210 cohort (urothelial cancer), GSE91061 
(melanoma) and GSE135222 (NSCLC) who had received 
anti-PD-L1 therapy [44–47]. Our findings revealed that 
TTKPI effectively distinguished different outcomes 
among patients undergoing anti-PD-L1 therapy. Spe-
cifically, we found that patients classified as low-risk 
experienced significant therapeutic benefits more than 
high-risk patients, resulting in an improved clinical 
response. This underscores the potential of TTKPI as a 
valuable tool in identifying specific individuals who are 
more likely to own favorable responses to anti-PD-L1 
therapy.

Understanding the TME may aid in developing novel 
ESCC treatments or increasing the efficacy of immuno-
therapy. TME immune status analysis has gained signifi-
cant attention as a critical immunotherapy component 
[21, 61]. Moreover, among the 8 TTKPI genes, KIF11 
was identified as a crucial prognostic indicator for ESCC 
patients, despite receiving limited attention in the ESCC 
so far. In this study, KIF11, as the most significant gene 
within the TTK signature, is significantly negatively cor-
related with CD8+ T cell infiltration, as observed in both 
EPIC immune cell infiltration analysis and mIHC stain-
ing. This suggests that KIF11 may serve as a marker of 
immune infiltration and could indicate the prognosis for 
immunotherapy of ESCC patients.

Our findings reveal that KIF11 plays a critical role in 
promoting ESCC malignancy by enhancing cell prolifera-
tion, migration, and tumor growth. Knockdown of KIF11 
in KYSE30 and KYSE450 cell lines significantly reduced 
cell viability, colony formation, and migratory capacity, 
highlighting its importance in sustaining ESCC growth 
and metastatic potential. Consistently, in  vivo experi-
ments showed that KIF11 depletion markedly suppressed 
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Fig. 8  KIF11 functions as a determinant regulating the growth 
and metastasis of ESCC cells in vivo. a KIF11-depleted KYSE30 
and control KYSE30 cells were subcutaneously injected 
in BALB/C nude mice. After 4 weeks, the tumors were excised 
and photographed. b Tumor growth curves were plotted 
for the mice bearing KYSE30 cells. c Tumor weights were shown 
for the mice bearing KYSE30 cells. (n = 8). The data are presented 
as the means ± standard deviations (SD). Statistical analysis 
is performed with Student’s t-test (c). ***P < 0.001, ****P < 0.0001 
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tumor growth, further confirming its oncogenic role. 
These results suggest that KIF11 is a key driver of ESCC 
progression and may function as a valuable tumor bio-
marker facilitating the diagnosis and immune-related 
therapy of ESCC. Future studies should investigate the 
underlying mechanisms of KIF11’s function and assess 
the potential of KIF11 inhibitors in preclinical and clini-
cal settings to improve ESCC treatment outcomes.

Our study has considerable clinical applicability, and 
the developed TTKPI may be an effective and independ-
ent biomarker for forecasting the outcomes of ESCC 
patients. Furthermore, our findings may help in select-
ing patients for ICI therapy. Although our model exhib-
ited excellent performance, it is crucial to recognize its 
limitations. Firstly, although the predictive risk score per-
formed well, it still needs to be validated through large-
scale prospective cohort studies. Additionally, while the 
use of dataset-specific cutoffs ensures statistical rigor 
within individual cohorts, the absence of a standardized 
global cutoff for TTKPI restricts its broader applicabil-
ity and complicates cross-dataset validation. To address 
these limitations, future investigations should prioritize 
the development of consensus-driven global cutoff crite-
ria and perform external validation of the TTKPI model 
across diverse datasets. Moreover, further in vivo studies 
on KIF11 are necessary, as the precise molecular mech-
anisms by which KIF11 influences ESCC progression 
remain unknown.

Conclusions
In summary, our integrative analysis established a use-
ful survival predictor, TTKPI, which accurately predicts 
survival in ESCC, reflects the immunotherapy efficacy, 
and impacts clinical outcome evaluation. Importantly, we 
verified the characteristics and roles of the best predic-
tive risk gene KIF11 of TTKPI, which could be a poten-
tial biomarker and therapeutic target in improving ESCC 
precision treatment.
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