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Abstract

Background Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disease of unknown aetiology
characterised by symptoms of post-exertional malaise (PEM) and fatigue leading to substantial impairment in func-
tioning. Other key symptoms include cognitive impairment and unrefreshing sleep, with many experiencing pain. To
date there is no complete understanding of the triggering pathomechanisms of disease, and no quantitative bio-
marker available with sufficient sensitivity, specificity, and adoptability to provide conclusive diagnosis. Clinicians thus
eliminate differential diagnoses, and rely on subjective, unspecific, and disputed clinical diagnostic criteria—a process
that often takes years with patients being misdiagnosed and receiving inappropriate and sometimes detrimental
care. Without a quantitative biomarker, trivialisation, scepticism, marginalisation, and misunderstanding of ME/CFS
continues despite the significant disability for many. One in four individuals are bed-bound for long periods of time,
others have difficulties maintaining a job/attending school, incurring individual income losses of thousands, while few
participate in social activities.

Main body Recent studies have reported promising quantifiable differences in the biochemical and electrophysi-
ological properties of blood cells, which separate ME/CFS and non-ME/CFS participants with high sensitivities

and specificities—demonstrating potential development of an accessible and relatively non-invasive diagnostic
biomarker. This includes profiling immune cells using Raman spectroscopy, measuring the electrical impedance

of blood samples during hyperosmotic challenge using a nano-electronic assay, use of metabolomic assays, and cer-
tain techniques which assess mitochondrial dysfunction. However, for clinical application, the specificity of these
biomarkers to ME/CFS needs to be explored in more disease controls, and their practicality/logistics considered.
Differences in cytokine profiles in ME/CFS are also well documented, but finding a consistent, stable, and replicable
cytokine profile may not be possible. Increasing evidence demonstrates acetylcholine receptor and transient receptor
potential ion channel dysfunction in ME/CFS, though how these findings could translate to a diagnostic biomarker
are yet to be explored.
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Conclusion Different biochemical and electrophysiological properties which differentiate ME/CFS have been identi-
fied across studies, holding promise as potential blood-based quantitative diagnostic biomarkers for ME/CFS. How-
ever, further research is required to determine their specificity to ME/CFS and adoptability for clinical use.

Keywords ME/CFS, Peripheral blood mononuclear cell, Natural killer cell, Mitochondrial dysfunction, Raman
spectroscopy, Metabolomic assay, Acetylcholine receptor, Transient receptor potential, Electrical impedance

Background

Despite endeavours to identify a reliable diagnostic bio-
marker, there is still no effective and validated quantita-
tive clinical test to diagnose Myalgic Encephalomyelitis/
Chronic Fatigue Syndrome (ME/CES) [1-3]. ME/CES
is a complex multisystemic disease characterised by
profound, unexplained, disabling fatigue which is not
relieved by rest and is exacerbated by mental or physi-
cal activities [4—8]. The hallmark symptom of ME/CES
is post-exercise malaise (PEM), which does not occur in
other malaise or fatigue disorders [9]. PEM is character-
ised by a worsening of symptoms, which may be delayed,
following cognitive or physical exertion that was toler-
ated before disease onset, such as difficulty breathing,
sleeping, headaches, and severe tiredness, with a slow
return to baseline not caused by sedentary lifestyle or
deconditioning [10, 11]. Other key symptoms include
cognitive impairment, sleep abnormalities, deep pain in
muscle and joints, orthostatic intolerance, headaches,
digestive issues, and immune dysfunction [5, 12].

For many ME/CES patients, their symptoms repre-
sent a significant disability [3]. The quality of life of indi-
viduals with ME/CEFS is usually poor; functional and
health-related scores are lower in ME/CFES than in mul-
tiple sclerosis, cancer, osteoarthritis, and heart disease
[13-15]. At least one in four people with ME/CFS remain
bed- or house-bound for long periods of time [16—19]. In
some very severe ME/CES cases, the patient is physically
incapable of sitting up or swallowing, relies on tube feed-
ing, in-home assistance, and may be so sensitive to light
and sound that they require a dark and quiet environ-
ment [19-21]. Suicide risk is high due to poor quality of
life, with one example of a patient completely bed-bound
for years who felt isolated, struggled with severe exhaus-
tion and pain, often unable to speak or have the cogni-
tive energy to focus, consequently deciding to end her
life [19]. The reduced ability to perform daily tasks (for
example, showering or preparing food) results in difficul-
ties maintaining a job or attending school and partici-
pating in social activities [16]. As such, between 35 and
69% of people with ME/CES are unemployed [22, 23]
with only 19% working full-time [24] to the detriment of
social activities or interests due to the need to rest when
not working [25]. Individual income losses amount to
approximately $20 000 for each household per year [23],

and the economic burden due to loss of productivity and
medical bills is estimated to cost €40 billion annually in
Europe [26].

In the absence of a diagnostic biomarker for ME/CFS,
differential diagnosis is performed using clinical guide-
lines, physical examinations, medical histories, and blood
tests to eliminate other conditions which share similar
symptom presentation, such as anaemia, underactive
thyroid, kidney, and liver problems [7, 27]. The British
National Institute for Health and Care Excellence (NICE)
advise exploration of a ME/CFS diagnosis when an indi-
vidual has experienced unexplained tiredness for more
than three months, with decreased ability to undertake
occupational, educational, social, or personal activities
from pre-illness levels, and only when differential diag-
noses have been excluded [12, 27]. Doctors then follow
different sets of diagnostic criteria developed through
expert consensus which specify mandatory symptoms to
confirm a diagnosis, including the Canadian Consensus
Criteria (CCC) (outlined in Fig. 1), the Fukuda CFS crite-
ria (1994), NICE Clinical Guidelines for CFS/ME (2007),
Revised Canadian ME/CFS criteria (2010), and ME-
International Consensus Criteria (2011)  [12, 28, 29], as
summarised in Table 1. Although consensus-based defi-
nitions are necessary when no diagnostic tests are avail-
able, drawbacks include high subjectivity, questionable
specificity, and uncertain external validity [7, 30].

A quantifiable biomarker is urgently required to
assist in and accelerate a correct ME/CES diagno-
sis. Although ME/CES often causes severe disability,
the lack of a clearly understood aetiology and corre-
sponding diagnostic biomarker fuel a significant level
of scepticism, trivialisation, marginalisation and mis-
understanding of ME/CFS in wider society, includ-
ing among medical personnel [19, 21]. As routine
blood tests of individuals with ME/CEFES often return
nothing outside of normal limits, ME/CES is often
misdiagnosed as psychiatric in origin [19, 21, 31], or
dismissed by medical personnel, employers and educa-
tors [25]. Diagnosis is thus a lengthy and costly process
often taking years [1, 25], and it is estimated 84—91%
of patients affected by ME/CFS remain undiagnosed
[3, 32]. Dismissal or misdiagnosis of ME/CFS means
that individuals do not receive the correct care from
health and welfare services for prolonged periods of
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Fig. 1 Overview of the symptoms required for an ME/CFS diagnosis using the CCC. See also Table 1. (Created with BioRender.com)

time [25]. This is a significant problem in ME/CES
care, where patient prognosis is substantially affected
by the standard of early management of the condition
[23]. For example, one patient was dismissed or misdi-
agnosed with conditions such as depression or meno-
pause for over ten years. Doctors disbelieved her and
told her she was the “epitome of good health” due to
normal blood test results leading to mismanagement
of her condition. She became a yoga instructor in an
attempt to improve her energy levels, which instead
exacerbated her symptoms of undiagnosed ME/CES.
Earlier diagnosis and correct management of her con-
dition could have prevented her deterioration; today
she is severely disabled, spending 21-23 h a day in bed,
with no career or independence, fully reliant on her
parents to be caregivers [19].

Developments towards a blood-based diagnostic
biomarker

Not only is a quantitative diagnostic biomarker for ME/
CEFS urgently needed for disease diagnosis and manage-
ment, but it would also provide longitudinal insights into
an individual’s response to ME/CES treatment, help to
better understand ME/CEFES pathophysiology, as well as to
track and understand the onset of severe symptoms [33].
Identification of a blood-based diagnostic biomarker is
attractive, as blood-based biomarkers are accessible, rel-
atively non-invasive, and pose minimal risks to patients
[34].

Blood-based pathological changes are well docu-
mented in ME/CFS, including blood and plasma abnor-
malities [1], immunological dysfunction (including
lymphocytes [35-37], natural killer cells [38—42], the
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Table 1 A comparison of the symptoms required to obtain a ME/CFS diagnosis across five different diagnostic criteria

Holmes CDC, 1988 Fukuda CDC, 1994

Canadian Consensus International Institute of Medicine,

Criteria, 2003 Consensus Criteria, 2015
2011
CFS CFS ME/CFS ME SEIN
Persistent fatigue Required Required Required Required
Cognition problems Two symptoms One symptom This or orthostatic
from these categories  from these categories  intolerance
Motor-sensory prob-
lems
Short-term memory
problems
Pain Eight symptoms Four symptoms Required Required
Disturbed sleep required from these required from these Required Required Required
categories categories i
PEM Required One symptom

Flu-like symptoms
Susceptibility to infec-
tion

Food intolerance

Gastro-intestinal
problems

Genitourinary prob-
lems

Orthostatic intolerance

Respiratory problems

Cardiovascular prob-
lems

Temperature intoler-
ance

Thermostatic instability

One symptom from these categories

from these categories

One symptom
from these categories

This or cognition
problems

One symptom

from these categories
One symptom
from these categories

The variability in the symptoms required to make a diagnosis between different criteria attest to the heterogeneity of ME/CFS patients, and lack of reliability,
questionable specificity, and high subjectivity (Adapted from: Open Medicine Foundation Canada, 2023 [241])

complement system [4], auto-antibodies [43-45],
cytokine dysfunction[2, 46-49]), gene expression [50—
53], metabolic dysfunction [54-57], and circulating
microRNAs in plasma [58-60]. However, these biological
differences are not validated, adoptable, accurate, or spe-
cific enough for a diagnostic application; the efficiency,
quality, and translatability differ between identified ME/
CFS biomarkers, with limited reproducibility of findings
between studies [23, 61]. In a disease as heterogeneous as
ME/CES, it is difficult to find a reproducible biomarker.
However, a significant number of studies have demon-
strated that there are widespread differences in the bio-
chemical and electrophysiological properties of blood
cells which show promise as diagnostic biomarkers.

The aim of this literature review is to outline cur-
rent developments in the identification of biochemical
and electrophysiological biomarkers for ME/CFS. Here
we evaluate studies which have reported observed dif-
ferences between ME/CES patients and healthy con-
trols, the techniques used to quantify them, and discuss

future work directions. Studies which recruited patients
with ME/CES or CFES (CFS, as opposed to ME/CES,
refers to patients diagnosed using the Fukuda criteria)
were included, while other fatigue disorders have not
been discussed. Emphasis has been drawn to studies
which recruited larger sample sizes and have reported
diagnostic biomarker sensitivities and specificities
(whereas many studies have not investigated diagnostic
sensitivity or specificity). Biochemical dysfunction dis-
cussed here include mitochondrial dysfunction [62-64]
(such as adenosine triphosphate (ATP) production) [37,
65—69], impaired biochemical pathways (the kynurenine
pathway [70-73] and the itaconate shunt [74—77]), chem-
ical composition of cells (Raman spectroscopy [33, 58, 78]
and metabolomic analysis [79-81]), and the production
of cytokines [47-49]. Electrophysiological dysfunction
is also discussed here and include ion channel dysfunc-
tion (acetylcholine channels [82-84] and transient recep-
tor potential ion channels [62, 63, 85-87]), and electrical
changes to osmotic challenge [1]. This review assesses the
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clinical applicability of potential biomarkers in terms of
cost, expertise required, repeatability between studies,
and logistics.

Biochemical dysfunction

Mitochondrial dysfunction

Mitochondria are bioenergetic and biosynthetic orga-
nelles in the cell, with one of their many roles being the
synthesis of cellular ATP via oxidative phosphorylation
[88]. Based on symptoms of fatigue and PEM, many
studies have investigated whether deficiencies in cellular
energy metabolism and mitochondrial dysfunction are
involved in the pathogenesis of ME/CES. Although mito-
chondrial dysfunction and increased oxidative stress [54,
56, 89-95] is evident across studies [37, 65-69], direct
investigation into specific parameters have reported con-
tradictory results, impacting the development of a diag-
nostic test [37].

Evidence of mitochondrial dysfunction in ME/CES and
CES includes impaired oxidative phosphorylation [66,
69]. Tomas et al. [66] reported consistently lower meas-
ures of oxidative phosphorylation in thawed peripheral
blood mononuclear cell (PBMC) samples from individu-
als with ME/CFS compared with healthy controls. Of
several parameters measured, reduced maximal respira-
tion (p<0.003) best differentiated mitochondrial func-
tion between both cohorts. Reduced maximal respiration
suggests that the mitochondria of PBMCs in ME/CES
are unable to fulfil their basal cellular energy demands
and elevate their respiration rate to compensate for high
metabolic demands during increased physiological stress
[66]. However, Nguyen et al. [96] found there was no sta-
tistical difference in mitochondrial respiration in natu-
ral killer (NK) cells of ME/CFS patients compared with
age and sex-matched non-fatigued healthy controls. The
sample size was limited, with only six in each cohort.

Glycolysis studies in ME/CES have also produced vary-
ing results. Nguyen et al. [96] identified a significant
reduction in the ability of NK cell mitochondria in ME/
CES to increase glycolytic flux, similar to Mandarano
et al. [97] who found basal glycolysis to be reduced in
both CD4" and CD8" T cells in ME/CFS. These results
contrast with other studies which found normal function-
ing of the glycolysis pathway in PBMCs [66] and skeletal
muscle cells [98]. Tomas et al. [67] found that both mod-
erate and severe ME/CFS have reduced mitochondrial
function, and severe ME/CEFS also have glycolytic impair-
ments with higher rates of respiratory acidification.

Decreased ATP production in PBMCs [56, 66, 97] and
neutrophils [99] have also been reported in ME/CFS.
Missailidis et al. [68] reported the rate of ATP synthesis
by Complex V (involved in oxidative phosphorylation) is
significantly reduced in ME/CFES lymphoblasts, which is
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supported by the increased expression of a large number
of mitochondrial proteins in ME/CES. It was suggested
that this may occur to compensate for deficiencies in
ATP production and mitochondrial function. Sweetman
et al. [65] used Sequential Window Acquisition of All
Theoretical Mass Spectra (SWATH-MS) and identified
the differential expression of proteins involved in oxida-
tive phosphorylation (Complex V), the electron transport
chain (Complex 1), and the oxidative stress response in
ME/CFS. However, Lawson et al. [100] found mitochon-
drial ATP levels to be unchanged in CFS whilst non-
mitochondrial ATP increased, and suggest problems with
ATP utilisation as opposed to ATP production.

Protein expression of the ATP synthase subunit beta
(ATPB) is significantly increased in ME/CFS, proposed
to be in attempt to increase ATP production [100]. Cire-
gia et al. [100] measured the expression of ATPB and
aconitate hydratase (ACON; the enzyme which converts
citrate to isocitrate in the Krebs cycle) in saliva samples
of CFS and healthy control donors, and reported both
to be upregulated in CFS donors. They found combining
the differential expression of both ATPB and ACON pro-
duced a diagnostic biomarker with a sensitivity of 85%,
specificity of 72% and area under the receiver-operator
characteristic (ROC) curve (AUC) of 0.793. Although
this shows potential as a diagnostic biomarker, this needs
to be investigated in a larger cohort of ME/CEFS patients
as opposed to CFS, requires validation with cohorts, and
necessitates recruitment of disease-controls to assess
specificity.

Missailidis et al. [37] investigated the diagnostic
potential of abnormal mitochondrial respiratory func-
tion, activity of the cellular stress-sensing kinase Target
of Rapamycin Complex 1 (TORC1) and increased lym-
phocyte-death rate in culture of ME/CES lymphoblasts
compared with healthy controls. The sensitivity of these
three parameters as individual diagnostic biomarkers was
very high, each at over 90%, and the specificity of each
parameter ranged from 70 to 76%. Combining all three
parameters together using multiple logistic-regression
to one cell-based biomarker provided a sensitivity and
specificity of almost 100% and an AUC of 0.98—show-
ing promise as a diagnostic biomarker for ME/CES.
However, limitations of combining all three biomarkers
includes the time, expense and expertise required to test
all three parameters. Furthermore, it is unknown how
specific these parameters are to other illnesses which
cause chronic fatigue [37]. For example, increased 48-h
lymphocyte death could also occur in paediatric Dengue
fever, which has been shown to decrease frozen PBMC
viability [101].

Reported differences in mitochondrial function and
cell bioenergetics in ME/CFS compared with healthy
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controls (HCs) demonstrates certain markers have
potential as diagnostic biomarker for ME/CFS. However,
one limitation of using mitochondrial dysfunction as a
diagnostic biomarker for ME/CES is that other diseases
such as fibromyalgia [56, 102], metabolic syndrome, car-
diovascular diseases, cancer [103] and neurological dis-
orders (such as Parkinsons [104] and Alzheimer’s disease
[105-107]) are also associated with mitochondrial dys-
function. Depending on the disease the precise molecular
mechanisms may be different, so it is important that the
specificity of a biomarker to ME/CES is investigated. For
example, although mitochondrial dysfunction is involved
in the pathophysiology of both ME/CFS and fibromyal-
gia, differences in mitochondrial citrate synthase activity
[56] have been reported. The previously mentioned stud-
ies have not recruited sufficient disease controls to assess
biomarker specificity—future studies investigating the
diagnostic potential of mitochondrial dysfunction in ME/
CFS must recruit more disease control groups.

The kynurenine pathway

Impaired metabolism of the essential amino acid tryp-
tophan has been proposed to be involved in the patho-
genesis of ME/CFS [70-73, 108]. Approximately 6% of
tryptophan is used to produce serotonin, melatonin, and
protein synthesis [109]. The remaining tryptophan is
catabolised via the main pathway of tryptophan metab-
olism—the kynurenine pathway. Under normal physi-
ological conditions, the kynurenine pathway catalyses
tryptophan for de novo synthesis of the essential cofactor
nicotinamide adenine dinucleotide (NAD™) [71]. NAD*
is a crucial cellular energy source, required for the Krebs
cycle, glycolysis, and oxidative phosphorylation for mito-
chondrial ATP production [110]. The first step of trypto-
phan catabolism via the kynurenine pathway is mediated
by the enzymes tryptophan 2,3-dioxygenase (TDO), and
indoleamine 2,3-dioxygenase (IDO) to produce kynure-
nine. The pathway subsequently produces several neuro-
active intermediate metabolites including kynurenic acid
(KYNA), quinolinic acid (QUIN), 3-hydroxykynurenine
(3-HK), and 3-hydroxyanthranilic acid (3HAA). Whereas
KYNA is neuroprotective, QUIN, 3-HK, and 3HAA are
neurotoxic [109]. Dysregulation of the kynurenine path-
way has been hypothesised to contribute to ME/CFS
symptoms [70-73, 108, 109]. Reduced NAD* has been
associated with ME/CFS, with supplementation reported
to improve symptoms [111-114].

Some research groups hypothesise chronic/hyperacti-
vation of the kynurenine pathway as a potential mecha-
nism underlying ME/CES progression [70, 71, 109]. The
kynurenine pathway is highly induced by elevated pro-
inflammatory cytokines, well-documented in ME/CES
[46, 48, 49, 115-118]. Moreover, the composition of gut
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microbiota has been reported to affect tryptophan levels
in the systemic circulation. For example some commen-
sal species favour tryptophan metabolism to increase
QUIN and KYNA synthesis [119], and gut microbiota
alterations are well-documented in ME/CFS [120-124].
Using ultra-high-performance liquid chromatography
and high-performance liquid chromatography of sera,
Kavyani et al. [109] reported significant differences
in plasma levels of kynurenine pathway metabolites
between ME/CES patients and healthy controls. Kynure-
nine and Kynurenine/Tryptophan were significantly
increased in ME/CFS patients compared with healthy
controls, and kynurenine production significantly corre-
lated with ME/CEFS symptom severity. In contrast, levels
of kynurenine pathway metabolites 3-HK, 3-AA, QUIN,
and PIC were decreased in ME/CFS [109]. Reduced lev-
els of QUIN may signify reduced intracellular NAD", due
to saturation of the converting enzyme and an increase
in oxidative activity [71]. However, whether kynurenine
pathway metabolites could act as biomarkers of ME/CES
requires further investigation. Simonato et al. [125] also
reported significantly increased Kynurenine/Tryptophan
ratio in ME/CEFS [125], but in contrast to Kavyani et al.
[109], found levels of kynurenine were decreased, and
3-HK increased in ME/CEFS [125]. In contrast again, Rus-
sell et al. [126] reported lower Kynurenine/Tryptophan
ratios and reduced 3-HK in CFS cohorts compared with
control.

In contrast, Kashi et al. [72] proposed an alternative
hypothesis of ME/CES pathology referred to as the IDO
metabolic trap. Developed using a mathematical model,
the IDO metabolic trap hypothesis suggests that IDO2
damaging mutations are a genetic predisposition found
in ME/CES patients, which result in a dysfunctional
IDO2 enzyme. As previously mentioned, IDO1 and IDO2
enzymes catalyse tryptophan metabolism in the first and
rate-limiting step of the kynurenine pathway. High cyto-
solic levels of tryptophan cause IDO1 to decrease pro-
duction of kynurenine, and IDO2 to increase production
of kynurenine. However, dysfunction of IDO2 in com-
bination with tryptophan inhibition of IDO1 results in
increased cytosolic tryptophan, reduced kynurenine pro-
duction and downstream metabolites including quinoli-
nate and NAD™. This is the IDO metabolic trap, where
cells are trapped in an abnormal state as IDO1 stops
making kynurenine and tryptophan levels remain high.
Mutations in IDO2 are common in the population, but
the elevation in tryptophan, likely triggered by multi-
ple factors such as stressors and pathogens, is rarer and
is the potential cause of ME/CFS. The hypothesis pro-
poses cells at risk of being driven into the IDO metabolic
trap include antigen-presenting cells, serotonergic neu-
rons in the midbrain raphe nuclei, serotonin-producing
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enterochromaffin cells in the intestinal mucosa, and
melatonin-producing pinealocytes. Once trapped in an
abnormal state, this can lead to body-wide problems [72].

Itaconate shunt

ME/CES has long been hypothesised to be associated
with innate immune system activation, thought to be
triggered by viruses e.g. enterovirus, influenza [127],
Epstein-Barr Virus [128—-131], bacteria e.g. Borrelia burg-
dorferi [127] and mycobacterium tuberculosis [132],
stress [133], injury, surgery, and childbirth [13, 134]. It
is known that activation of the innate immune system
results in production of interferon-alpha (IFN-a). IFN-a
triggers an intracellular signalling pathway in the mito-
chondria called the itaconate pathway. Normally, within
the tricarboxylic acid (TCA) cycle cis-aconitate is con-
verted to isocitrate. However, in the itaconate pathway,
cis-aconitate decarboxylase (CAD) instead diverts most
of the conversion of cis-aconitate to itaconate—bypass-
ing many of the steps in the TCA cycle where ATP is
generated. This pathway functions to down-regulate ATP
energy production to prevent pathogens acquiring energy
for their own survival. However, the itaconate shunt
hypothesis, developed by Phair, Armstrong, and Davis,
proposes the itaconate pathway does not turn off in indi-
viduals with ME/CES [74-77]. It is proposed that in ME/
CES patients the itaconate pathway is not turned on in
every cell, but perhaps macrophages, monocytes, and
muscle cells. Furthermore, the more cells which are acti-
vated, the more severe the ME/CFS symptoms [74-77].

The ATP profile test

The “ATP Profile test”, developed by Dr John McLaren
Howard, is a commercially available laboratory test
which was designed to determine the mitochondrial
function of neutrophils for clinical application in
patients with fatigue. The test uses quantitative bio-
luminescent measurements of ATP to measure the
concentration of ATP in neutrophils in excess magne-
sium, the ADP to ATP conversion efficacy via oxidative
phosphorylation, and the effectiveness of translocator
protein adenosine nucleotide translocase. From these
measurements, Myhill et al. [69] developed a mitochon-
drial energy score (MES) to quantify neutrophil mito-
chondrial dysfunction. Several studies have reported
the score of neutrophil mitochondrial dysfunction
using the device to correlate with ME/CEFS severity [69,
99, 135]. This test (and commercial supplements based
on the results) have been offered by private clinics and
is commercially available. However, Tomas et al. [136]
reported two independent research teams did not find
significant differences in the MES test between ME/
CES patients and healthy controls in neutrophils and
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PBMCs [136]. The lack of reliability and reproducibil-
ity of this test demonstrate this should not be used as a
diagnostic tool, and it is not recommended by the UK
National Health Service or ME Association UK [137].
Tomas et al. [136] have suggested differences from the
Myhill studies [69, 99, 135] could be attributed to dif-
ferences in the time between sample collection and
processing between ME/CES and healthy control
cohorts [136].

Metabolomic analysis/ statistical principal component
analyses

Metabolomic analyses, using techniques such as nuclear
magnetic resonance (NMR) and mass spectrometry,
have shown significant differences in the levels of differ-
ent metabolites in plasma or serum samples from donors
with ME/CFS compared with healthy controls [57, 81,
109, 138-143]. Yagin et al. [79] used a combination of
explainable artificial intelligence and machine learning
to analyze metabolomics data of ME/CFS and healthy
controls, to identify discriminative metabolites. They
found C-glycosyltryptophan, oleocholine, cortisone, and
3-hydroxydecanoate to be important metabolites [79].
Their model achieved accuracies of 98% and AUC of
0.99, showing potential as diagnostic biomarker. Naviaux
et al. [80] used hydrophilic interaction liquid chromatog-
raphy, electron ionization, and tandem mass spectrom-
etry to target 612 metabolites in plasma, and identified
disturbances across 20 biochemical metabolic pathways.
Metabolite differences between CFS and healthy con-
trols achieved diagnostic accuracies of 94% in males, and
96% in females. Nagy-Szakal et al. [81] used targeted and
untargeted mass spectrometry of 562 molecules, and
achieved an AUC of 0.82 for metabolomic data. Huang
et al. [141] applied machine learning to high-throughput
NMR metabolomic profile data, and identified nine NMR
biomarkers and 19 baseline characteristics which could
diagnose ME/CES with an AUC=0.83.

Metabolomic profiling has demonstrated high accu-
racies and AUCs in diagnosing ME/CFS. Mass spec-
trometry and NMR are the main methods used for
metabolomic analysis—both of which can be high
throughput, and collect accurate, and specific data. How-
ever, from a clinical application perspective, both tech-
niques require expensive machines that take up a lot of
space and require expertise. Additionally, it is worth not-
ing that the specificity of metabolomic profiles need to
be investigated in disease controls, and the heterogenous
nature of ME/CFS may mean different ME/CES sub-
types could have different metabolomic profiles, which
requires further investigation for diagnostic application.
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Raman spectroscopy

Raman spectroscopy is a non-invasive, label-free, low-
cost technique which uses the interaction of light with
molecular bonds to determine the structural fingerprint
of biomolecules in the cell [144-146]. In a pilot study of
10 individuals, Xu et al. [78] demonstrated the potential
of single-cell Raman spectroscopy and machine learning
for ME/CES diagnosis [78]. In a larger cohort study, Xu
et al. [33] reported using a single-cell Raman platform,
confocal microscopy, and artificial intelligence profiling
of PBMC:s to differentiate ME/CEFS patients from healthy
controls and MS disease controls with a high accuracy of
91%. Moreover, the Raman profiles differentiated mild,
moderate, and severe patients with an accuracy of 84%.
Taking less than one hour to analyse a sample, this is a
rapid diagnostic technique which only requires small
numbers of PBMCs isolated from patient blood and
could be developed as a point-of-care test. However, the
single-cell Raman spectroscopic approach is not cur-
rently available in certified diagnostic laboratories. Due
to the cost and space of the Raman microscope equip-
ment, it may be better to fix locally collected cell samples
and transfer them to selected centres for testing. Xu et al.
demonstrated samples can be stored in liquid nitrogen
or —80°C for prolonged times before analysis, reporting
robust results from frozen PBMC samples which were
fixed before analysis. Experiments on freshly fixed sam-
ples have not been performed [33].

Gonzélez-Cebridn et al. [58] found that Raman spectral
profiles of extracellular vesicles could differentiate severe
ME/CES donors and healthy controls (AUC=0.7), but
to achieve a rate of 100% true positives, classifiers would
also allow a high rate of false positives. However, Raman
data could be used with partial least squares-discrimi-
nant model to achieve an AUC=1. [58]. Whether there
are differences in the Raman spectral profile of plasma
and PBMC samples, both at baseline and after the induc-
tion of PEM, is currently under investigation by Moreau
et al. [147].

Cytokine assays

Cytokines facilitate the activation and proliferation of
leukocytes, direct migration, and influence leukocyte
function [46]. It is known that the profile of cytokines
and chemokines change during ME/CEFS, including an
increase in pro-inflammatory cytokines in patients [49,
115, 116]. This accords with observations that adminis-
tering pro-inflammatory cytokines causes characteristic
severe fatigue, fever, impaired cognitive processing, mus-
culoskeletal achiness, and disturbed sleep—all symptoms
of ME/CES [148]. However, the use of cytokines as a
diagnostic biomarker is controversial.
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The repertoire of cytokines measured, and their results
vary greatly between studies. Fletcher et al. [49] identi-
fied IL-4, IL-5, LT, and IL-12 to be elevated in ME/CES
donors compared with healthy controls and possess large
areas under curves using Receiver-Operator Charac-
teristic (ROC) curve analyses, indicating good potential
as biomarkers [49]. Like Fletcher et al. [49], Khaiboul-
lina et al. [46] also identified IL-4 to increase in ME/
CEFES donors. In contrast, Landi et al. [47] found levels of
plasma IL-4 to decrease and Groven et al. [117] found
IL-4 to significantly decrease in ME/CES donors when
compared to controls. Groven et al. [117] also reported
IL-1pB, IL-10, IL-17 and TNFa to significantly decrease in
ME/CES patients, contrasting with other studies which
have found these cytokines to increase in ME/CFES [48,
118].

Finding a consistent, stable, and replicable circulating
cytokine profile to act as a specific ME/CFS diagnostic
has proven difficult to achieve, due to the sensitivity of
cytokines to biological mechanisms, and widespread dif-
ferences in cytokine laboratory methodology [49, 115,
149, 150]. For example, Bioassay, ELISA and multiplex
assay results are not comparable, even when using kits
of the same assay [150]. When comparing the ability of
four multiplex kits and multiple lots of the same kit to
detect 13 cytokines from the same sample at six different
laboratories, Breen et al. [151] found at least one signifi-
cant laboratory or lot effect for each cytokine. There was
also variance both within the same laboratory and across
laboratories [151]. Directly measuring cytokine levels is
influenced by measuring levels in plasma vs. serum, time
between blood draw and separation of plasma or serum,
repeated freezing and thawing, and storage temperature.
Measuring cytokine levels of PBMCs stimulated in vitro
varies with stimulants used and culture conditions [49].

Furthermore, the heterogenous nature of ME/CES
associated with ME/CES subtypes, severity, and duration,
in addition to inconsistencies in cytokine methodolo-
gies and repeatability suggests that cytokine profiling as a
quantitative diagnostic biomarker harbours a lot of limi-
tations and may not ultimately be feasible. A multi-centre
study by Hornig et al. [2] identified markedly different
plasma immune signatures in early ME/CES patients
(less than 3-year duration) compared with healthy con-
trols. However, these distinct alterations were not pre-
sent in longer duration (more than 3-year duration) ME/
CES patients. Early ME/CFS had prominent activation
of pro-inflammatory cytokines such as TNFa and IL-1a,
and anti-inflammatory cytokines such as IL-1, com-
pared with controls. However, the same cytokines were
lower in long-duration ME/CEFS cases than healthy con-
trols. Stronger correlations in cytokine alterations were
found with the duration of illness than severity of illness,
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indicative of ME/CFS possessing a non-static immuno-
pathology [2]. Furthermore, evidence suggests ME/CFS
patients with varying clinical presentations and comor-
bidities may have distinct differences in cytokine and
chemokine levels [152].

Table 2 summarises studies which have investigated
biochemical dysfunction in ME/CES and/or CES.

Electrophysiological dysfunction in ME/CFS

All cells, including non-excitable cells such as PBMCs,
possess intrinsic electrical properties [153]. Dysfunction
in properties such as ion channel function, ion channel
expression, and cell signalling is encompassed by the
term electrophysiological dysfunction. Since it was first
suggested that the symptoms of ME/CES are secondary
to acquired abnormalities in voltage-gated or ligand-
gated ion channels [154, 155], growing evidence supports
intracellular secondary messenger signalling and ion
channel dysfunction in ME/CFS pathophysiology. Levels
of magnesium in red blood cells have been reported to be
reduced in ME/CFS [156]. Most recently, several studies
have implicated acetylcholine (ACh) receptors (both nic-
otinic and muscarinic) [82, 83, 85] and transient receptor
potential (TRP) channel [63, 64, 157] dysfunction in the
peripheral blood mononuclear cells (PBMCs) of ME/CES
donors.

ACh channel dysfunction

The neurotransmitter acetylcholine (ACh) is a ubiquitous
signalling molecule well characterised within the central
and peripheral cholinergic nervous system. Evidence sug-
gests there is dysregulation of the autonomic sympathetic
and parasympathetic nervous system in ME/CEFS, includ-
ing sensitivity to pain and sensory stimuli [158, 159], and
abnormal peripheral cholinergic function during acetyl-
choline (ACh) challenge [160, 161]. The parasympathetic
nervous system partly regulates the interaction between
the nervous and immune systems [162], with ACh
involved and important in inflammation and immune
responses [163-165].

ACh present in whole blood [166] has been demon-
strated to mainly originate from peripheral blood mono-
nuclear cells (PBMCs) rather than polymorphonuclear
lymphocytes [167]. ACh and choline acetyltransferase
(ChAT), the enzyme which catalyses the synthesis of
ACh from choline and acetyl coenzyme A, is present
in immune cells including T lymphocytes [168, 169],
B lymphocytes and NK (natural killer) cells [163, 170,
171]. Immunocytochemical analysis, specific ligand
binding and mRNA expression studies confirmed mus-
carinic and nicotinic acetylcholine receptors (mAChRs
and nAChRs respectively) are expressed in immune cells
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[165, 172-175], with expression varying with cell type
and activation status [176, 177].

AChRs are important for Ca®* signalling and conse-
quently immune cell function. mAChRs are G-protein
coupled receptors (metabotropic), of which there are
five subtypes, M1-M5 [163, 178]. M1, M3 and M5 cou-
ple with G, and when stimulated mediate the activation
of phospholipase C resulting in an increase in [Ca®*], and
protein kinase C activation. Stimulation of M3 or M5
mAChRs in T-lymphocytes facilitate the release of Ca**
from intracellular stores via inositol trisphosphate (IP;),
resulting in calcium release activated (CRAC) chan-
nel Ca®* influx and sustained [Ca?']; oscillations which
enhances the expression of c-fos and IL-2 [179]. In con-
trast, M2 and M4 couple to G/, which when activated
mediate the inhibition of adenylyl cyclase and a decrease
in cyclic adenosine monophosphate (cAMP) synthesis
[174, 178]. nAChRs are fast ligand-gated (ionotropic) cat-
ion channels and homo- or heteropentameric structures,
which when activated increase membrane permeability
to Na*, K™ and Ca®* leading to membrane depolarisa-
tion and excitation [172, 174]. Activation of mAChRs
and nAChRs are important for immune cell function,
including increased cytotoxicity, cell proliferation and
the activation of B and T lymphocytes [174]. In B-lym-
phocytes, activation of AChRs has been shown to medi-
ate cell development, activation, and antibody immune
responses [165, 180-183]. B-lymphocyte-produced
ACh inhibits the local recruitment of neutrophils [171]
and limits steady-state haematopoiesis [184]. In mac-
rophages, activation of AChRs modulates the expression
of cytokines [185]. T-lymphocytes up-regulate the syn-
thesis of ACh in the blood when activated [162].

Given the importance of ACh and Ca®* signalling in
immune cell function, the impaired immune cell func-
tion and sensitivities reported by patients with ME/CES
to environmental irritants suggest dysfunction of AChRs
channels in ME/CEFS, for which there is clear and grow-
ing evidence. Single nucleotide polymorphism (SNP) and
genotype analysis of DNA extracted from whole blood
samples identified seventeen SNPs in AChRs significantly
associated with ME/CES, nine of which were associated
with mAChRM3 [83]. Autoantibodies to mAChM1 [84],
mAChM3 [159, 186] and mAChM4 [159] have been
shown to be significantly elevated in ME/CES patients
compared with controls. However, as autoantibodies to
ACHhR are found in the majority of individuals with myas-
thenia gravis [187, 188], the specificity of this as a diag-
nostic biomarker needs to be investigated further.

Transient receptor potential channel dysfunction
The Australian National Centre for Neuroimmunology
and Emerging Diseases (NCNED) reported ME/CES
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is a Transient Receptor Potential (TRP) channelopathy
class of metabolic disorders [189]. TRP ion channels are
homo- or hetero-tetrameric cation-permeable pores
preferentially selective to Ca’', assembled from six-
transmembrane polypeptide subunits [190-192]. How-
ever, the permeation profile depends on the splice variant
of the gene [63]. Based on the TRP channel amino acid
sequences and structural similarities they can be divided
into six subsets: TRP canonical (TRPC), TRP vanilloid
(TRPV), TRP melastatin (TRPM), TRPA, TRP mucolipin
(TRPML), and TRP polycystic (TRPP) channels [85,
193]. TRP channels are widely expressed on almost all
cell types of the body [193] including lymphocytes, DCs,
macrophages, neutrophils and mast cells [190], neu-
rones [194], and skeletal muscle [195]. TRP channels are
localised to plasma membrane and intracellular orga-
nelle membranes, and are activated by extracellular and
intra-cellular stimuli [192]. They function as transduction
molecules, responding to a range of physical and chemi-
cal stimuli including changes in shear stress, tempera-
ture, osmolarity, pH and reactive molecules [190]. The
sensitivities reported by patients with ME/CES to envi-
ronmental irritants and toxins, are consistent with TRP
channel dysfunction.

Thirteen SNPs significantly associated with ME/CFS
were identified in TRP ion channel genes, nine of which
were located within the gene sequences of TRPM3 (the
others in TRPC4, TRPA1) [63]. NK cells isolated from
ME/CES donors have been shown to possess numerous
SNPs and genotypes in nAChRs, TRPM3 and TRPMS
[62]. SNPs have also been identified in isolated B-lym-
phocytes of ME/CEFS donors; of 78 SNPs in nAChRs and
mAChRs genes of isolated B-lymphocytes of ME/CEFS, 35
were within mAChM3. SNPs were also found in TRPM3
[85]. Given the interdependence of TRP and mAChRs, it
is possible that specific mAChRM3R and TRPM3 SNP
genotypes contribute to the pathology and heterogenic
phenotypes of ME/CES [82].

Although the location of SNPs (whether they occur in
coding, non-coding or intergenic regions of genes) and
the influence of splicing mechanisms determine whether
they lead to human disease [83], there is substantial evi-
dence demonstrating TRPM3 dysfunction. Immunophe-
notyping assays have demonstrated expression of TRPM3
ion channels to be significantly reduced and significantly
increased in different NK cells and CD19" B-cells sub-
sets, respectively, in ME/CFS donors compared with
healthy controls [86, 87]. Furthermore, the activity and
function of TRPM3 in NK cells is impaired in ME/CES.
When opened, TRP channels induce depolarisation of
the cell and Ca®" influx, resulting in the activation of
intracellular signalling pathways [85]. Whole-cell patch
clamp demonstrated the amplitude of TRPM3 currents
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after stimulation with pregnenolone sulphate (a fast
reversible TRPM3 activator) is significantly reduced in
isolated NK cells from ME/CES patients compared with
healthy controls [64, 157]. TRPM3-associated impair-
ments in the mobilisation, influx, and storage of intra-
cellular Ca** have also been reported in B-lymphocytes
and NK cell subtypes [86, 87]. It has been suggested that
the upregulation of TRPM3 in B-cells and NK cell sub-
sets is a compensation mechanism to impaired Ca**
influx, mobilisation and storage [86]. As Ca®" is required
for many NK cell functions, including cytotoxic activity,
formation of the immune synapse, the granule-depend-
ent pathway of apoptosis, microtubule reorganisation
and cytokine gene transcription [62, 196], impaired
TRPM3-dependent Ca®* signalling may contribute to
the NK cell dysfunction seen in ME/CEFS. Furthermore,
TRPM3 is involved in the transmission of heat and pain,
nociception, thermoregulation and has been implicated
in inflammatory pain syndromes and proinflammatory
cytokine secretion, seen in ME/CEFS [63].

p-opioid receptors (LOR) are a family of G-protein cou-
pled receptors (GPCRs) whose subunits can directly bind
and inhibit TRPM3. Naltrexone hydrochloride (NTX)
is a long-lasting antagonist of pOR, and acts to negate
TRPM3 inhibition [197]. Low-dose NTX (LDN) is taken
in ME/CES patients to treat pain attributable to insuffi-
cient opioid peptide secretion and excess release of pro-
inflammatory cytokines, with 73.9% of patients reporting
improved symptoms [198]. Interestingly, using whole-cell
patch clamp it was shown that TRPM3 channel activity,
when modulated with the TRPM3-agonist pregnenolone
sulphate, is restored in IL-2 stimulated NK cells of ME/
CES donors following 24-h incubation with NTX [199].
Moreover, the function of TRPM3 channels in ME/CFS
patients taking LDN is similar to that of healthy controls,
with TRPM3-like ionic currents in NK cells [200]. More-
over, restoration of TRPM3 function following in vitro
overnight treatment of NK cells with naltrexone hydro-
chloride has been shown to translate to re-established
TRPM3-dependent Ca" influx [197].

Dysfunction of other TRP channels have also been
identified, including the increased expression of the sen-
sory ion channel TRPV1 [201] and TRPM2 [202] in ME/
CFES. TRPM7 may also be implicated [203], with cross-
talk between IL-2 and TRPM7 [204], and alterations of
TRPM7-dependent Ca?" influx in ME/CFS [205].

Whilst evidence of the role TRPM3 ion channel dys-
function in NK cells plays in ME/CFS pathophysiology
has the potential to demonstrate a biological (as opposed
to psychological) etiology, there are presently limitations
to applying this as a potential diagnostic tool. The studies
conducted so far have recruited a limited number of par-
ticipants (often between 12 and 40 donors in total) and
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did not have diseased controls to determine specificity.
Epigenetic and genetic diagnostic biomarkers require val-
idation and repeatability of specific SNPs, as well as con-
sistency as to which cell type to quantify. Furthermore,
quantification of TRPM3 function to diagnose ME/CES
using patch-clamp is a low-throughput method requiring
high expertise, time, and expense. Greater optimisation
of a diagnostic protocol is required.

Given the reported differences in the electrophysi-
ological properties of PBMCs and NK cells, Maksoud
et al. [34] postulated a multi-factorial pathway of ME/
CES. They hypothesised that following an environmental
trigger such as a viral infection or trauma, activation of
intracellular signalling pathways involving SNPs in TRP
channels and cholinergic muscarinic receptors result in
altered gene expression. This may cause upregulation of
defected and disrupted Ca’*-dependent downstream
signalling pathways, causing dysregulated homeostasis—
impacting natural killer cell cytotoxicity (NKCC) and
mitochondrial regulation. Disrupted signalling pathways
and reduced cell function would activate inflammatory
pathways and cytokine alterations, initiating widespread
inflammation to cells in all different tissues. This would
result in disrupted cell signalling and function in all cell

types.

Electrophysiological changes to osmotic challenge

A significant breakthrough towards the identification
of a diagnostic biomarker for potential clinical applica-
tion was published in 2019 by Esfandyarpour et al. [1], in
which they found real-time monitoring of the electrical
response of hyperosmotically challenged PBMCs incu-
bated in plasma supplemented with NaCl differentiated
patients with ME/CES from healthy controls. PBMCs
donated by ME/CES patients (mix of moderate and
severe ME/CFS donors), and healthy controls were incu-
bated in the donor’s own plasma, which was increased
to a concentration of 200 mM/L NaCl to impart hyper-
osmotic stress on the cells. They found introduction
of a hyperosmotic stressor to healthy control samples
resulted in a transient decrease in impedance before
returning to baseline, where it did not change for approx-
imately 3 h. Similarly, after the hyperosmotic stressor was
added to the ME/CFS samples, a transient decrease in
impedance was also measured until return to baseline at
around 40 min. However, in contrast to the healthy con-
trols, the impedance continued to markedly rise above
the initial baseline values with an increase in impedance
magnitude of |Z| 74.92% + 0.69, in-phase impedance (Z,,)
of 301.67% +3.55, and out-of-phase impedance (Z;,) of
64.73% +0.62. This significantly different response to
hyperosmotic stress between healthy control and ME/
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CFS donors represents a unique biomarker and indicator
of ME/CES [1].

Interestingly, when PBMCs of ME/CFES patients
were suspended in the plasma of healthy controls, the
impedance pattern resembled that of healthy controls.
Furthermore, when PBMCs from healthy controls
were suspended in plasma from ME/CEFS patients, the
impedance pattern resembled that of ME/CES patients
[1]. This indicates that there is a component of plasma
which contributes to ME/CES pathology. This supports
findings from other research groups which have also
found a factor in the plasma of ME/CES could con-
tribute to ME/CES pathophysiology: Morten’s research
group reported adding plasma from ME/CES patients
decreased the concentration of oxygen in healthy mus-
cle cells [206]; Fluge et al. [57] reported muscle cells
incubated in ME/CFS plasma produced more lactate
than when incubated in plasma from healthy controls
[57].

The nanoelectronic assay Esfandyarpour et al. [1]
used was developed for high-throughput real-time
detection of proteins, nucleic acids and gene quantifi-
cation [207-211]. The low-cost device measures ultra-
sensitive and precise values of impedance in real-time,
possessing a sampling frequency of 5 Hz and collect-
ing ~ 40,000 data points over 3 h. However, although
their experimental procedure has the potential to act
as a low-cost, real-time ultrasensitive assay capable of
measuring impedance patterns for point-of-care diag-
nostics of ME/CFS, the nanoelectronic assay was not
developed for routine use and requires further instru-
mentational development to be deployed for clini-
cal application. Additionally, the experiment did not
include recruitment of disease controls, so the specific-
ity of the technique to ME/CEFS is unknown.

The measured values of impedance represent the
lumped combination of all the separate and resistive
components of the PBMCs and plasma, including the
overall cell impedance (consisting of membrane capaci-
tance and o), as well as the impedances caused by
media-sensor surface interactions, cell-cell interac-
tions, cell-sensor surface adhesion, solution resist-
ance and other plasma components such as proteins,
exosomes, and lipids [1].

In contrast to the nano-needle assay, Martinez-Rodri-
guez et al. [212] found differences in the bioimpedance
response of PBMCs after 1M NaCl hyperosmotic chal-
lenge, in a small cohort of four ME/CEFS and 4 HCs, using
bioimpedance spectroscopy. At 1.36 kHz, real and imagi-
nary values of impedance were higher by~15% in ME/
CES vs HC:s.

This opens a path to new avenues of electrophysi-
ological investigation in the future. An overview of
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experiments which have investigated electrophysiological
dysfunction in blood cells is displayed in Table 3.

Important considerations for a diagnostic biomarker
Disease control

The specificity of a diagnostic biomarker is the percent-
age defining the number of individuals who have a cor-
rect negative test result out of the total subjects who do
not have the disease [213]. To determine the specificity
of a diagnostic biomarker for ME/CES, it is important
to assess their performance in disease controls [69, 214].
For example, mitochondrial dysfunction is associated
with many diseases including neurodegenerative diseases
such as Parkinson’s disease [215], cardiovascular diseases
[216], autoimmune diseases such as multiple sclerosis
(MS) [217], and psychiatric disorders including schizo-
phrenia [218].

Similarly, changes in cytokine levels are not neces-
sarily specific for ME/CFS, and more likely indicative
of immune activation with chronic inflammation, sup-
ported by observed elevation in the pro-inflammatory
cytokines LTa, IL-1a, IL-1p and IL-6 in ME/CFS com-
pared with controls [49]. The chronic condition fibromy-
algia shares similar symptomology to ME/CES [60], and
Groven et al. [117] found no difference in the cytokines
and chemokines immune markers they investigated
between ME/CES and fibromyalgia patients [117]. Gulf-
War Illness (GWI) has similar symptom presentation
to that of ME/CFS [219, 220], and similar to ME/CES,
plasma IL-5 [221] and IL-6 [222] has been reported to
be elevated in GWI compared with controls. However,
Khaiboullina et al. [46] has found evidence towards dif-
ferent immune profiles in ME/CFS compared with GW1,
even though symptoms overlap.

MS is a neuroimmune, demyelinating, chronic debili-
tating disorder which shares a similar symptomology
with ME/CFS. Like ME/CES, MS is most prevalent in
women [223], the specific aetiology is unknown, and
there is evidence of differential TRP channel expression
[224], including TRPM3 expression in PBMCs compared
to healthy controls [225], increased activation [226],
mitochondrial dysfunction and oxidative stress [227, 228]
in PBMCs. Most importantly, individuals with MS expe-
rience severe disabling fatigue [229], with 70% of patients
with MS reporting fatigue—38% of which describe
fatigue to be their most disabling symptom [230]. Fur-
thermore, Jensen et al. [45] recently reported autoan-
tibodies in ME/CES have enzymatic activity which may
cause demyelination in some individuals with ME/CES
[45]. MS has been used as a disease control in several
studies [15, 33, 231]. MS is characterised by altered pro-
inflammatory and anti-inflammatory cytokines result-
ing in a great inflammation within the central nervous
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system [232]. Reale et al. [232] identified serum IL-1p
and IL-17 pro-inflammatory cytokines to be elevated in
both ME/CFS and MS compared with controls. However,
a distinct immune signature identified by Hornig et al.
[233] was able to differentiate donors with MS from ME/
CFS.

Validation

To identify a valid biomarker, it is important that experi-
ments are repeatable, and that different laboratories fol-
low the same protocols and reproduce the same findings,
in addition to different techniques, to validate the same
evidence. The importance of this has been demonstrated
when Tomas et al. [136] were unable to reproduce find-
ings in the ATP Profile Test [136]. However, many bio-
marker studies recruit small sample sizes of less than 60
donors, and are standalone experiments [34]. There is
a great need for larger multi-site validation studies that
recruit disease controls.

It is also important to validate any findings against dif-
ferent populations. ME/CFES affects all ages, genders,
ethnicities, and socioeconomic groups [23]; although the
condition affects two to four times more women than
men [23-25, 234—236]. This could be due to differences
in sex hormones and sex chromosomes [237]. It is not
uncommon for studies to only recruit female participants
[49, 238], or for the majority of participants to be female
[198, 239]. Recruitment of age and gender matched con-
trols is necessary for identifying biomarkers, or differ-
ences in diagnostic biomarker thresholds.

Adoptability
To be highly adoptable, the ideal ME/CES blood-based
biomarker would necessitate minimal preparation time,
such as a finger-prick to provide point-of-care diagno-
sis. Blood sample processing takes time. Based on the
hypothesis that ME/CEFS is an immune-metabolic disor-
der, many studies investigate the use of PBMCs as bio-
markers. However, PBMC isolation from whole blood
is a multi-step isolation process which significantly
increases protocol duration if it were to be adopted for
clinical practice. Where possible, use of whole blood as
opposed to PBMCs would be beneficial in reducing pro-
cessing time. For example, Esfandyarpour et al. [1] first
attempted to measure the impedance of whole blood
as opposed to PBMCs but found there were no reliable
or repeatable patterns [1]. Alternatively, development
of devices which work with whole blood or incorporate
microfluidic systems to isolate specific blood cells would
overcome blood sample processing times [33].

Another consideration is the use of fresh versus frozen
patient samples in assay development. Use of fresh blood
samples would be most appropriate for point-of-care
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diagnostic applications. Additionally, fresh samples elim-
inate potential changes to blood cells caused by damage
to cell morphology during freezing (such as ice crystals
puncturing cell membranes) or damage via the freezing
medium [240]—which is important when also trying to
understand the pathophysiology of the disease. However,
a benefit of using frozen samples as opposed to fresh is
the flexibility with respect to sample collection and stor-
age, or transport to designated test facilities if specialist
or expensive laboratory equipment is required. Being
able to freeze blood samples for analysis later and trans-
port them across the country with less time-sensitivity
increases the flexibility and practicality of sample pro-
cessing in clinical laboratories. It also decreases the risk
that differences in sample processing times are seen
between freshly collected healthy controls and 2-day old
patient samples could be attributable to differences seen
between cohorts, as opposed to pathological differences,
during biomarker development—as has been hypoth-
esised with the ATP Profile test [136].

Whilst optimising and assessing whether their device
could be used on patient samples collected globally,
Esfandyarpour et al. [1] trialled their assay on patient
samples stored in different storage conditions including
4 °C, room temperature, — 20 °C frozen and liquid nitro-
gen storage. After fresh samples, 1-week liquid nitrogen
storage and 24-h storage at room temperature were the
next most successful techniques; they both preserved the
same impedance pattern expressed in fresh samples but
were attenuated [1].

A comparative analysis of the different biochemical and
electrophysiological diagnostic biomarkers for ME/CES
outlined in this review, and considerations for potential
clinical application are outlined in Table 4.

Conclusion
The continued absence of a robust, specific physical or
biochemical biomarker means that those living with ME/
CES have no certainty over their diagnosis, whilst many
in society persistently identifies those with the condi-
tion as malingerers. However, work in the identification
of new markers, both biochemical and electrophysiologi-
cal, offers hope for a better understanding of the ME/CES
pathophysiology and would provide measurable evidence
for the ME/CEFS diagnosis, helping to validate patients
within the health professions and in wider society. The
development of novel analyses, such as that of electrical
impedance and Raman spectroscopy shows great prom-
ise, thus there remains the possibility of rapid, point-of-
care reassurance in the near future, and the possibility of
beginning a path towards effective treatment.

Achieving a high accuracy of 91%, Raman spectroscopy
of PBMCs shows great promise as a rapid, non-invasive,
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label-free, low-cost ME/CES diagnostic technique [33],
as does metabolomic analyses [79-81]. Additionally, the
nanoneedle device used to measure changes in electri-
cal impedance of blood samples to osmotic stress sig-
nificantly differentiates ME/CFS and HCs with high
accuracy, although the specificity of this technique needs
to be investigated [1].

Mitochondrial dysfunction in ME/CES has been well-
documented, but performance as a diagnostic biomarker
requires greater investigation. The commercially avail-
able ATP profile test has previously been used in-clinic,
but the validity of the test has been brought into ques-
tion following the inability of other research laboratories
to replicate published results. Cytokine disruption is also
well-documented, but whether it could be used as a diag-
nostic biomarker is questionable due to the sensitivity of
cytokines to biological mechanisms, and widespread lab-
oratory methodologies. Many studies have reported TRP
ion channel dysfunction, but currently no studies have
investigated the sensitivity or specificity of TRP ion chan-
nel dysfunction as a diagnostic biomarker.

Multiple studies have integrated techniques to aim to
improve biomarker sensitivity and specificity. By combin-
ing individual parameters/protocols (using methods such
as multiple logistic regression) and adopting a multi-
modal diagnostic approach, diagnostic sensitivity and
specificity has been shown to increase in some studies
[37, 100]. This is most beneficial in cases such as quan-
titative metabolomics, where metabolite biomarkers can
be combined during data analysis following a single run
protocol [141]. Whereas, although beneficial in improv-
ing biomarker accuracy, combining two biomarkers
obtained using different experimental protocols does also
increase protocol complexity and time.

When investigating potential diagnostic techniques,
the specificity of biomarkers to ME/CFS needs to be
explored with disease controls, and with more large-scale
studies. Moreover, the time of experiments, specialised
machines, and complexity of techniques (for example,
requires trained laboratory technicians) needs to be con-
sidered for the development of point-of-care diagnostic
tools.
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