
Clarke et al. Journal of Translational Medicine          (2025) 23:149  
https://doi.org/10.1186/s12967-025-06146-6

REVIEW Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if 
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by- nc- nd/4. 0/.

Journal of 
Translational Medicine

The search for a blood-based biomarker 
for Myalgic Encephalomyelitis/ Chronic Fatigue 
Syndrome (ME/CFS): from biochemistry 
to electrophysiology
Krista S. P. Clarke2, Caroline C. Kingdon3, Michael Pycraft Hughes4, Eliana Mattos Lacerda3, Rebecca Lewis5, 
Emily J. Kruchek2, Robert A. Dorey2 and Fatima H. Labeed1,2*   

Abstract 

Background Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disease of unknown aetiology 
characterised by symptoms of post-exertional malaise (PEM) and fatigue leading to substantial impairment in func-
tioning. Other key symptoms include cognitive impairment and unrefreshing sleep, with many experiencing pain. To 
date there is no complete understanding of the triggering pathomechanisms of disease, and no quantitative bio-
marker available with sufficient sensitivity, specificity, and adoptability to provide conclusive diagnosis. Clinicians thus 
eliminate differential diagnoses, and rely on subjective, unspecific, and disputed clinical diagnostic criteria—a process 
that often takes years with patients being misdiagnosed and receiving inappropriate and sometimes detrimental 
care. Without a quantitative biomarker, trivialisation, scepticism, marginalisation, and misunderstanding of ME/CFS 
continues despite the significant disability for many. One in four individuals are bed-bound for long periods of time, 
others have difficulties maintaining a job/attending school, incurring individual income losses of thousands, while few 
participate in social activities.

Main body Recent studies have reported promising quantifiable differences in the biochemical and electrophysi-
ological properties of blood cells, which separate ME/CFS and non-ME/CFS participants with high sensitivities 
and specificities—demonstrating potential development of an accessible and relatively non-invasive diagnostic 
biomarker. This includes profiling immune cells using Raman spectroscopy, measuring the electrical impedance 
of blood samples during hyperosmotic challenge using a nano-electronic assay, use of metabolomic assays, and cer-
tain techniques which assess mitochondrial dysfunction. However, for clinical application, the specificity of these 
biomarkers to ME/CFS needs to be explored in more disease controls, and their practicality/logistics considered. 
Differences in cytokine profiles in ME/CFS are also well documented, but finding a consistent, stable, and replicable 
cytokine profile may not be possible. Increasing evidence demonstrates acetylcholine receptor and transient receptor 
potential ion channel dysfunction in ME/CFS, though how these findings could translate to a diagnostic biomarker 
are yet to be explored.
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Conclusion Different biochemical and electrophysiological properties which differentiate ME/CFS have been identi-
fied across studies, holding promise as potential blood-based quantitative diagnostic biomarkers for ME/CFS. How-
ever, further research is required to determine their specificity to ME/CFS and adoptability for clinical use.

Keywords ME/CFS, Peripheral blood mononuclear cell, Natural killer cell, Mitochondrial dysfunction, Raman 
spectroscopy, Metabolomic assay, Acetylcholine receptor, Transient receptor potential, Electrical impedance

Background
Despite endeavours to identify a reliable diagnostic bio-
marker, there is still no effective and validated quantita-
tive clinical test to diagnose Myalgic Encephalomyelitis/ 
Chronic Fatigue Syndrome (ME/CFS) [1–3]. ME/CFS 
is a complex multisystemic disease characterised by 
profound, unexplained, disabling fatigue which is not 
relieved by rest and is exacerbated by mental or physi-
cal activities [4–8]. The hallmark symptom of ME/CFS 
is post-exercise malaise (PEM), which does not occur in 
other malaise or fatigue disorders [9]. PEM is character-
ised by a worsening of symptoms, which may be delayed, 
following cognitive or physical exertion that was toler-
ated before disease onset, such as difficulty breathing, 
sleeping, headaches, and severe tiredness, with a slow 
return to baseline not caused by sedentary lifestyle or 
deconditioning [10, 11]. Other key symptoms include 
cognitive impairment, sleep abnormalities, deep pain in 
muscle and joints, orthostatic intolerance, headaches, 
digestive issues, and immune dysfunction [5, 12].

For many ME/CFS patients, their symptoms repre-
sent a significant disability [3]. The quality of life of indi-
viduals with ME/CFS is usually poor; functional and 
health-related scores are lower in ME/CFS than in mul-
tiple sclerosis, cancer, osteoarthritis, and heart disease 
[13–15]. At least one in four people with ME/CFS remain 
bed- or house-bound for long periods of time [16–19]. In 
some very severe ME/CFS cases, the patient is physically 
incapable of sitting up or swallowing, relies on tube feed-
ing, in-home assistance, and may be so sensitive to light 
and sound that they require a dark and quiet environ-
ment  [19–21]. Suicide risk is high due to poor quality of 
life, with one example of a patient completely bed-bound 
for years who felt isolated, struggled with severe exhaus-
tion and pain, often unable to speak or have the cogni-
tive energy to focus, consequently deciding to end her 
life [19]. The reduced ability to perform daily tasks (for 
example, showering or preparing food) results in difficul-
ties maintaining a job or attending school and partici-
pating in social activities [16]. As such, between 35 and 
69% of people with ME/CFS are unemployed [22, 23] 
with only 19% working full-time [24] to the detriment of 
social activities or interests due to the need to rest when 
not working [25]. Individual income losses amount to 
approximately $20 000 for each household per year [23], 

and the economic burden due to loss of productivity and 
medical bills is estimated to cost €40 billion annually in 
Europe [26].

In the absence of a diagnostic biomarker for ME/CFS, 
differential diagnosis is performed using clinical guide-
lines, physical examinations, medical histories, and blood 
tests to eliminate other conditions which share similar 
symptom presentation, such as anaemia, underactive 
thyroid, kidney, and liver problems [7, 27]. The British 
National Institute for Health and Care Excellence (NICE) 
advise exploration of a ME/CFS diagnosis when an indi-
vidual has experienced unexplained tiredness for more 
than three months, with decreased ability to undertake 
occupational, educational, social, or personal activities 
from pre-illness levels, and only when differential diag-
noses have been excluded [12, 27]. Doctors then follow 
different sets of diagnostic criteria developed through 
expert consensus which specify mandatory symptoms to 
confirm a diagnosis, including the Canadian Consensus 
Criteria (CCC) (outlined in Fig. 1), the Fukuda CFS crite-
ria (1994), NICE Clinical Guidelines for CFS/ME (2007), 
Revised Canadian ME/CFS criteria (2010), and ME-
International Consensus Criteria (2011)      [12, 28, 29], as 
summarised in Table 1. Although consensus-based defi-
nitions are necessary when no diagnostic tests are avail-
able, drawbacks include high subjectivity, questionable 
specificity, and uncertain external validity [7, 30]. 

A quantifiable biomarker is urgently required to 
assist in and accelerate a correct ME/CFS diagno-
sis. Although ME/CFS often causes severe disability, 
the lack of a clearly understood aetiology and corre-
sponding diagnostic biomarker fuel a significant level 
of scepticism, trivialisation, marginalisation and mis-
understanding of ME/CFS in wider society, includ-
ing among medical personnel [19, 21]. As routine 
blood tests of individuals with ME/CFS often return 
nothing outside of normal limits, ME/CFS is often 
misdiagnosed as psychiatric in origin [19, 21, 31], or 
dismissed by medical personnel, employers and educa-
tors [25]. Diagnosis is thus a lengthy and costly process 
often taking years [1, 25], and it is estimated 84–91% 
of patients affected by ME/CFS remain undiagnosed 
[3, 32]. Dismissal or misdiagnosis of ME/CFS means 
that individuals do not receive the correct care from 
health and welfare services for prolonged periods of 
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time [25]. This is a significant problem   in ME/CFS 
care,  where patient prognosis is substantially affected 
by the standard of early management of the condition 
[23]. For example, one patient was dismissed or misdi-
agnosed with conditions such as depression or meno-
pause for over ten years. Doctors disbelieved her and 
told her she was the “epitome of good health” due to 
normal blood test results leading to mismanagement 
of her condition. She became a yoga instructor in an 
attempt to improve her energy levels, which instead 
exacerbated her symptoms of undiagnosed ME/CFS. 
Earlier diagnosis and correct management of her con-
dition could have prevented her deterioration; today 
she is severely disabled, spending 21–23 h a day in bed, 
with no career or independence, fully reliant on her 
parents to be caregivers [19].

Developments towards a blood‑based diagnostic 
biomarker
Not only is a quantitative diagnostic biomarker for ME/
CFS urgently needed for disease diagnosis and manage-
ment, but it would also provide longitudinal insights into 
an individual’s response to ME/CFS treatment, help to 
better understand ME/CFS pathophysiology, as well as to 
track and understand the onset of severe symptoms [33]. 
Identification of a blood-based diagnostic biomarker is 
attractive, as blood-based biomarkers are accessible, rel-
atively non-invasive, and pose minimal risks to patients 
[34].

Blood-based pathological changes are well docu-
mented in ME/CFS, including blood and plasma abnor-
malities [1], immunological dysfunction (including 
lymphocytes [35–37], natural killer cells [38–42],  the 

Fig. 1 Overview of the symptoms required for an ME/CFS diagnosis using the CCC. See also Table 1. (Created with BioRender.com)
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complement  system [4], auto-antibodies [43–45], 
cytokine dysfunction[2, 46–49]), gene expression [50–
53], metabolic dysfunction [54–57], and circulating 
microRNAs in plasma [58–60]. However, these biological 
differences are not validated, adoptable, accurate, or spe-
cific enough for a  diagnostic application; the efficiency, 
quality, and translatability differ between identified ME/
CFS biomarkers, with limited reproducibility of findings 
between studies [23, 61]. In a disease as heterogeneous as 
ME/CFS, it is difficult to find a reproducible biomarker. 
However, a significant number of studies have demon-
strated that there are widespread differences in the bio-
chemical and electrophysiological properties of blood 
cells which show promise as diagnostic biomarkers.

The aim of this literature review is to outline cur-
rent developments in the identification of biochemical 
and electrophysiological biomarkers for ME/CFS. Here 
we evaluate studies which have reported observed dif-
ferences between ME/CFS patients and healthy con-
trols, the techniques used to quantify them, and discuss 

future work directions. Studies which recruited patients 
with ME/CFS or CFS (CFS, as opposed to ME/CFS, 
refers to patients diagnosed using the Fukuda criteria) 
were included, while other fatigue disorders have not 
been discussed. Emphasis has been drawn to studies 
which recruited larger sample sizes and have reported 
diagnostic biomarker sensitivities and specificities 
(whereas  many studies have not investigated diagnostic 
sensitivity or specificity). Biochemical dysfunction dis-
cussed  here include mitochondrial dysfunction [62–64] 
(such as adenosine triphosphate (ATP) production) [37, 
65–69], impaired biochemical pathways (the kynurenine 
pathway [70–73] and the itaconate shunt [74–77]), chem-
ical composition of cells (Raman spectroscopy [33, 58, 78] 
and metabolomic analysis [79–81]), and the production 
of cytokines [47–49]. Electrophysiological dysfunction 
is also  discussed here and  include ion channel dysfunc-
tion (acetylcholine channels [82–84] and transient recep-
tor potential ion channels [62, 63, 85–87]), and electrical 
changes to osmotic challenge [1]. This review assesses the 

Table 1 A comparison of the symptoms required to obtain a ME/CFS diagnosis across five different diagnostic criteria

The variability in the symptoms required to make a diagnosis between different criteria attest to the heterogeneity of ME/CFS patients, and lack of reliability, 
questionable specificity, and high subjectivity (Adapted from: Open Medicine Foundation Canada, 2023 [241])

Holmes CDC, 1988 Fukuda CDC, 1994 Canadian Consensus 
Criteria, 2003

International 
Consensus Criteria, 
2011

Institute of Medicine, 
2015

CFS CFS ME/CFS ME SEIN

Persistent fatigue Required Required Required Required

Cognition problems Two symptoms 
from these categories

One symptom 
from these categories

This or orthostatic 
intolerance

Motor-sensory prob-
lems

Short-term memory 
problems

Pain Eight symptoms 
required from these 
categories

Four symptoms 
required from these 
categories

Required Required

Disturbed sleep Required Required Required

PEM Required One symptom 
from these categoriesFlu-like symptoms One symptom 

from these categoriesSusceptibility to infec-
tion

Food intolerance

Gastro-intestinal 
problems

One symptom 
from these categories

Genitourinary prob-
lems

Orthostatic intolerance One symptom 
from these categories

This or cognition 
problems

Respiratory problems One symptom 
from these categoriesCardiovascular prob-

lems

Temperature intoler-
ance

Thermostatic instability
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clinical applicability of potential biomarkers in terms of 
cost, expertise required, repeatability between studies, 
and logistics.

Biochemical dysfunction
Mitochondrial dysfunction
Mitochondria are bioenergetic and biosynthetic orga-
nelles in the cell, with one of their many roles being the 
synthesis of cellular ATP via oxidative phosphorylation 
[88]. Based on symptoms of fatigue and PEM, many 
studies have investigated whether deficiencies in cellular 
energy metabolism and mitochondrial dysfunction are 
involved in the pathogenesis of ME/CFS. Although mito-
chondrial dysfunction and increased oxidative stress [54, 
56, 89–95] is evident across studies [37, 65–69], direct 
investigation into specific parameters have reported con-
tradictory results, impacting the development of a diag-
nostic test [37].

Evidence of mitochondrial dysfunction in ME/CFS and 
CFS includes impaired oxidative phosphorylation [66, 
69]. Tomas et al. [66] reported consistently lower meas-
ures of oxidative phosphorylation in thawed peripheral 
blood mononuclear cell (PBMC) samples from individu-
als with ME/CFS compared with healthy controls. Of 
several parameters measured, reduced maximal respira-
tion (p < 0.003) best differentiated mitochondrial func-
tion between both cohorts. Reduced maximal respiration 
suggests that the mitochondria of PBMCs in ME/CFS 
are unable to fulfil their basal cellular energy demands 
and elevate their respiration rate to compensate for high 
metabolic demands during increased physiological stress 
[66]. However, Nguyen et al. [96] found there was no sta-
tistical difference in mitochondrial respiration in natu-
ral killer (NK) cells of ME/CFS patients compared with 
age and sex-matched non-fatigued healthy controls. The 
sample size was limited, with only six in each cohort.

Glycolysis studies in ME/CFS have also produced vary-
ing results. Nguyen et  al. [96] identified a significant 
reduction in the ability of NK cell mitochondria in ME/
CFS to increase glycolytic flux, similar to Mandarano 
et  al. [97] who found basal glycolysis to be reduced in 
both  CD4+ and  CD8+ T cells in ME/CFS. These results 
contrast with other studies which found normal function-
ing of the glycolysis pathway in PBMCs [66] and skeletal 
muscle cells [98]. Tomas et al. [67] found that both mod-
erate and severe ME/CFS have reduced mitochondrial 
function, and severe ME/CFS also have glycolytic impair-
ments with higher rates of respiratory acidification.

Decreased ATP production in PBMCs [56, 66, 97] and 
neutrophils [99] have also been reported in ME/CFS. 
Missailidis et al. [68] reported the rate of ATP synthesis 
by Complex V (involved in oxidative phosphorylation) is 
significantly reduced in ME/CFS lymphoblasts, which is 

supported by the increased expression of a large number 
of mitochondrial proteins in ME/CFS. It was suggested 
that this may occur to compensate for deficiencies in 
ATP production and mitochondrial function. Sweetman 
et  al. [65] used Sequential Window Acquisition of All 
Theoretical Mass Spectra (SWATH-MS) and identified 
the differential expression of proteins involved in oxida-
tive phosphorylation (Complex V), the electron transport 
chain (Complex 1), and the oxidative stress response in 
ME/CFS. However, Lawson et al. [100] found mitochon-
drial ATP levels to be unchanged in CFS whilst non-
mitochondrial ATP increased, and suggest problems with 
ATP utilisation as opposed to ATP production.

Protein expression of the ATP synthase subunit beta 
(ATPB) is significantly increased in ME/CFS, proposed 
to be in attempt to increase ATP production [100]. Cire-
gia et  al. [100] measured the expression of ATPB and 
aconitate hydratase (ACON; the enzyme which converts 
citrate to isocitrate in the Krebs cycle) in saliva samples 
of CFS and healthy control donors, and reported both 
to be upregulated in CFS donors. They found combining 
the differential expression of both ATPB and ACON pro-
duced a diagnostic biomarker with a sensitivity of 85%, 
specificity of 72% and area under the receiver-operator 
characteristic (ROC) curve (AUC) of 0.793. Although 
this shows potential as a diagnostic biomarker, this needs 
to be investigated in a larger cohort of ME/CFS patients 
as opposed to CFS, requires validation with cohorts, and 
necessitates recruitment of disease-controls to assess 
specificity.

Missailidis et  al. [37] investigated the diagnostic 
potential of abnormal mitochondrial respiratory func-
tion, activity of the cellular stress-sensing kinase Target 
of Rapamycin Complex 1 (TORC1) and increased lym-
phocyte-death rate in culture of ME/CFS lymphoblasts 
compared with healthy controls. The sensitivity of these 
three parameters as individual diagnostic biomarkers was 
very high, each at over 90%, and the specificity of each 
parameter ranged from 70 to 76%. Combining all three 
parameters together using multiple logistic-regression 
to one cell-based biomarker provided a sensitivity and 
specificity of almost 100% and an AUC of 0.98—show-
ing promise as a diagnostic biomarker for ME/CFS. 
However, limitations of combining all three biomarkers 
includes the time, expense and expertise required to test 
all three parameters. Furthermore, it is unknown how 
specific these parameters are to other illnesses which 
cause chronic fatigue [37]. For example, increased 48-h 
lymphocyte death could also occur in paediatric Dengue 
fever, which has been shown to decrease frozen PBMC 
viability [101].

Reported differences in mitochondrial function and 
cell bioenergetics in ME/CFS compared with healthy 
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controls (HCs) demonstrates certain markers have 
potential as diagnostic biomarker for ME/CFS. However, 
one limitation of using mitochondrial dysfunction as a 
diagnostic biomarker for ME/CFS is that other diseases 
such as fibromyalgia [56, 102], metabolic syndrome, car-
diovascular diseases, cancer [103] and neurological dis-
orders (such as Parkinsons [104] and Alzheimer’s disease 
[105–107]) are also  associated with mitochondrial dys-
function. Depending on the disease the precise molecular 
mechanisms may be different, so it is important that the 
specificity of a biomarker to ME/CFS is investigated. For 
example, although mitochondrial dysfunction is involved 
in the pathophysiology of both ME/CFS and fibromyal-
gia, differences in mitochondrial citrate synthase activity 
[56] have been reported. The previously mentioned stud-
ies have not recruited sufficient disease controls to assess 
biomarker specificity—future studies investigating the 
diagnostic potential of mitochondrial dysfunction in ME/
CFS must recruit more disease control groups.

The kynurenine pathway
Impaired metabolism of the essential amino acid tryp-
tophan has been proposed to be involved in the patho-
genesis of ME/CFS [70–73, 108]. Approximately 6% of 
tryptophan is used to produce serotonin, melatonin, and 
protein synthesis [109]. The remaining tryptophan is 
catabolised via the main pathway of tryptophan metab-
olism—the kynurenine pathway. Under normal physi-
ological conditions, the kynurenine pathway catalyses 
tryptophan for de novo synthesis of the essential cofactor 
nicotinamide adenine dinucleotide  (NAD+) [71].  NAD+ 
is a crucial cellular energy source, required for the Krebs 
cycle, glycolysis, and oxidative phosphorylation for mito-
chondrial ATP production [110]. The first step of trypto-
phan catabolism via the kynurenine pathway is mediated 
by the enzymes tryptophan 2,3-dioxygenase (TDO), and 
indoleamine 2,3-dioxygenase (IDO) to produce kynure-
nine. The pathway subsequently produces several neuro-
active intermediate metabolites including kynurenic acid 
(KYNA), quinolinic acid (QUIN), 3-hydroxykynurenine 
(3-HK), and 3-hydroxyanthranilic acid (3HAA). Whereas 
KYNA is neuroprotective, QUIN, 3-HK, and 3HAA are 
neurotoxic [109]. Dysregulation of the kynurenine path-
way has been hypothesised to contribute to ME/CFS 
symptoms [70–73, 108, 109]. Reduced  NAD+ has been 
associated with ME/CFS, with supplementation reported 
to improve symptoms [111–114].

Some research groups hypothesise chronic/hyperacti-
vation of the kynurenine pathway as a potential mecha-
nism underlying ME/CFS progression [70, 71, 109]. The 
kynurenine pathway is highly induced by elevated pro-
inflammatory cytokines, well-documented in ME/CFS 
[46, 48, 49, 115–118]. Moreover, the composition of gut 

microbiota has been reported to affect tryptophan levels 
in the systemic circulation. For example some commen-
sal species favour tryptophan metabolism to increase 
QUIN and KYNA synthesis [119], and gut microbiota 
alterations are well-documented in ME/CFS [120–124]. 
Using ultra-high-performance liquid chromatography 
and high-performance liquid chromatography of sera, 
Kavyani et  al. [109] reported significant differences 
in plasma levels of kynurenine pathway metabolites 
between ME/CFS patients and healthy controls. Kynure-
nine and Kynurenine/Tryptophan were significantly 
increased in ME/CFS patients compared with healthy 
controls, and kynurenine production significantly corre-
lated with ME/CFS symptom severity. In contrast, levels 
of kynurenine pathway metabolites 3-HK, 3-AA, QUIN, 
and PIC were decreased in ME/CFS [109]. Reduced lev-
els of QUIN may signify reduced intracellular  NAD+, due 
to saturation of the converting enzyme and an increase 
in oxidative activity [71]. However, whether kynurenine 
pathway metabolites could act as biomarkers of ME/CFS 
requires further investigation. Simonato et al. [125] also 
reported significantly increased Kynurenine/Tryptophan 
ratio in ME/CFS [125], but in contrast to Kavyani et  al. 
[109], found levels of kynurenine were decreased, and 
3-HK increased in ME/CFS [125]. In contrast again, Rus-
sell et  al. [126] reported lower Kynurenine/Tryptophan 
ratios and reduced 3-HK in CFS cohorts compared with 
control.

In contrast, Kashi et  al. [72] proposed an alternative 
hypothesis of ME/CFS pathology referred to as the IDO 
metabolic trap. Developed using a mathematical model, 
the IDO metabolic trap hypothesis suggests that IDO2 
damaging mutations are a genetic predisposition found 
in ME/CFS patients, which result in a dysfunctional 
IDO2 enzyme. As previously mentioned, IDO1 and IDO2 
enzymes catalyse tryptophan metabolism in the first and 
rate-limiting step of the kynurenine pathway. High cyto-
solic levels of tryptophan cause IDO1 to decrease pro-
duction of kynurenine, and IDO2 to increase production 
of kynurenine. However, dysfunction of IDO2 in com-
bination with tryptophan inhibition of IDO1 results in 
increased cytosolic tryptophan, reduced kynurenine pro-
duction and downstream metabolites including quinoli-
nate and  NAD+. This is the IDO metabolic trap, where 
cells are trapped in an abnormal state as IDO1 stops 
making kynurenine and tryptophan levels remain high. 
Mutations in IDO2 are common in the population, but 
the elevation in tryptophan, likely triggered by multi-
ple factors such as stressors and pathogens, is rarer and 
is the potential   cause of   ME/CFS. The hypothesis pro-
poses cells at risk of being driven into the IDO metabolic 
trap include antigen-presenting cells, serotonergic neu-
rons in the midbrain raphe nuclei, serotonin-producing 
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enterochromaffin cells in the intestinal mucosa, and 
melatonin-producing pinealocytes. Once trapped in an 
abnormal state, this can lead to body-wide problems [72].

Itaconate shunt
ME/CFS has long been hypothesised to be associated 
with innate immune system activation, thought to be 
triggered by viruses e.g. enterovirus, influenza [127], 
Epstein-Barr Virus [128–131], bacteria e.g. Borrelia burg-
dorferi [127] and mycobacterium tuberculosis [132], 
stress [133], injury, surgery, and childbirth [13, 134]. It 
is known that activation of the innate immune system 
results in production of interferon-alpha (IFN-α). IFN-α 
triggers an intracellular signalling pathway in the mito-
chondria called the itaconate pathway. Normally, within 
the tricarboxylic acid (TCA) cycle cis-aconitate is con-
verted to isocitrate. However, in the itaconate pathway, 
cis-aconitate decarboxylase (CAD) instead diverts most 
of the conversion of cis-aconitate to itaconate—bypass-
ing many of the steps in the TCA cycle where ATP is 
generated. This pathway functions to down-regulate ATP 
energy production to prevent pathogens acquiring energy 
for their own survival. However, the itaconate shunt 
hypothesis, developed by Phair, Armstrong, and Davis, 
proposes the itaconate pathway does not turn off in indi-
viduals with ME/CFS [74–77]. It is proposed that in ME/
CFS patients the itaconate pathway is not turned on in 
every cell, but perhaps macrophages, monocytes, and 
muscle cells. Furthermore, the more cells which are acti-
vated, the more severe the ME/CFS symptoms [74–77].

The ATP profile test
The “ATP Profile test”, developed by Dr John McLaren 
Howard, is a commercially available laboratory test 
which was designed to determine the mitochondrial 
function of neutrophils for clinical application in 
patients with fatigue. The test uses quantitative bio-
luminescent measurements of ATP to measure the 
concentration of ATP in neutrophils in excess magne-
sium, the ADP to ATP conversion efficacy via oxidative 
phosphorylation, and the effectiveness of translocator 
protein adenosine nucleotide translocase. From these 
measurements, Myhill et al. [69] developed a mitochon-
drial energy score (MES) to quantify neutrophil mito-
chondrial dysfunction. Several studies have reported 
the score of neutrophil mitochondrial dysfunction 
using the device to correlate with ME/CFS severity [69, 
99, 135]. This test (and commercial supplements based 
on the results) have been offered by private clinics and 
is commercially available. However, Tomas et  al. [136] 
reported two independent research teams did not find 
significant differences in the MES test between ME/
CFS patients and healthy controls in neutrophils and 

PBMCs [136]. The lack of reliability and reproducibil-
ity of this test demonstrate this should not be used as a 
diagnostic tool, and it is not recommended by the UK 
National Health Service or ME Association UK [137]. 
Tomas et al. [136] have suggested differences from the 
Myhill studies [69, 99, 135] could be attributed to dif-
ferences in the time between sample collection and 
processing between ME/CFS and healthy control 
cohorts [136].

Metabolomic analysis/ statistical principal component 
analyses
Metabolomic analyses, using techniques such as nuclear 
magnetic resonance (NMR) and mass spectrometry, 
have shown significant differences in the levels of differ-
ent metabolites in plasma or serum samples from donors 
with ME/CFS compared with healthy controls [57, 81, 
109, 138–143]. Yagin et  al. [79] used a combination of 
explainable artificial intelligence and machine learning 
to analyze  metabolomics data of ME/CFS and healthy 
controls, to identify discriminative metabolites. They 
found C-glycosyltryptophan, oleocholine, cortisone, and 
3-hydroxydecanoate to be important metabolites [79]. 
Their model achieved accuracies of 98% and AUC of 
0.99, showing potential as diagnostic biomarker. Naviaux 
et al. [80] used hydrophilic interaction liquid chromatog-
raphy, electron ionization, and tandem mass spectrom-
etry to target 612 metabolites in plasma, and identified 
disturbances across 20 biochemical metabolic pathways. 
Metabolite differences between CFS and healthy con-
trols achieved diagnostic accuracies of 94% in males, and 
96% in females. Nagy-Szakal et al. [81] used targeted and 
untargeted mass spectrometry of 562 molecules, and 
achieved an AUC of 0.82 for metabolomic data. Huang 
et al. [141] applied machine learning to high-throughput 
NMR metabolomic profile data, and identified nine NMR 
biomarkers and 19 baseline characteristics which could 
diagnose ME/CFS with an AUC = 0.83.

Metabolomic profiling has demonstrated high accu-
racies and AUCs in diagnosing ME/CFS. Mass spec-
trometry and NMR are the main methods used for 
metabolomic analysis—both of which can be high 
throughput, and collect accurate, and specific data. How-
ever, from a clinical application perspective, both tech-
niques require expensive machines that take up a lot of 
space and require expertise. Additionally, it is worth not-
ing that the specificity of metabolomic profiles need to 
be investigated in disease controls, and the heterogenous 
nature of ME/CFS may mean different ME/CFS sub-
types could have different metabolomic profiles, which 
requires further investigation for diagnostic application.
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Raman spectroscopy
Raman spectroscopy is a non-invasive, label-free, low-
cost technique which uses the interaction of light with 
molecular bonds to determine the structural fingerprint 
of biomolecules in the cell [144–146]. In a pilot study of 
10 individuals, Xu et al. [78] demonstrated the potential 
of single-cell Raman spectroscopy and machine learning 
for ME/CFS diagnosis [78]. In a larger cohort study, Xu 
et  al. [33] reported using a single-cell Raman platform, 
confocal microscopy, and artificial intelligence profiling 
of PBMCs to differentiate ME/CFS patients from healthy 
controls and MS disease controls with a high accuracy of 
91%. Moreover, the Raman profiles differentiated mild, 
moderate, and severe patients with an accuracy of 84%. 
Taking less than one hour to analyse a sample, this is a 
rapid diagnostic technique which only requires small 
numbers of PBMCs isolated from patient blood and 
could be developed as a point-of-care test. However, the 
single-cell Raman spectroscopic approach is not cur-
rently available in certified diagnostic laboratories. Due 
to the cost and space of the Raman microscope equip-
ment, it may be better to fix locally collected cell samples 
and transfer them to selected centres for testing. Xu et al. 
demonstrated samples can be stored in liquid nitrogen 
or −80˚C for prolonged times before analysis, reporting 
robust results from frozen PBMC samples which were 
fixed before analysis. Experiments on freshly fixed sam-
ples have not been performed [33].

González-Cebrián et al. [58] found that Raman spectral 
profiles of extracellular vesicles could differentiate severe 
ME/CFS donors and healthy controls (AUC = 0.7), but 
to achieve a rate of 100% true positives, classifiers would 
also allow a high rate of false positives. However, Raman 
data could be used with partial least squares-discrimi-
nant model to achieve an AUC = 1. [58]. Whether there 
are differences in the Raman spectral profile of plasma 
and PBMC samples, both at baseline and after the induc-
tion of PEM, is currently under investigation by Moreau 
et al. [147].

Cytokine assays
Cytokines facilitate the activation and proliferation of 
leukocytes, direct migration, and influence leukocyte 
function [46]. It is known that the profile of cytokines 
and chemokines change during ME/CFS, including an 
increase in pro-inflammatory cytokines in patients [49, 
115, 116]. This accords with observations that adminis-
tering pro-inflammatory cytokines causes characteristic 
severe fatigue, fever, impaired cognitive processing, mus-
culoskeletal achiness, and disturbed sleep—all symptoms 
of ME/CFS [148]. However, the use of cytokines as a 
diagnostic biomarker is controversial.

The repertoire of cytokines measured, and their results 
vary greatly between studies. Fletcher et  al. [49] identi-
fied IL-4, IL-5, LTα, and IL-12 to be elevated in ME/CFS 
donors compared with healthy controls and possess large 
areas under curves using Receiver-Operator Charac-
teristic (ROC) curve analyses, indicating good potential 
as biomarkers [49]. Like Fletcher et  al. [49], Khaiboul-
lina et  al. [46] also identified IL-4 to increase in ME/
CFS donors. In contrast, Landi et al. [47] found levels of 
plasma IL-4 to decrease and Groven et  al. [117] found 
IL-4 to significantly decrease in ME/CFS donors when 
compared to controls. Groven et  al. [117] also reported 
IL-1β, IL-10, IL-17 and TNFα to significantly decrease in 
ME/CFS patients, contrasting with other studies which 
have found these cytokines to increase in ME/CFS [48, 
118].

Finding a consistent, stable, and replicable circulating 
cytokine profile to act as a specific ME/CFS diagnostic 
has proven difficult to achieve, due to the sensitivity of 
cytokines to biological mechanisms, and widespread dif-
ferences in cytokine laboratory methodology [49, 115, 
149, 150]. For example, Bioassay, ELISA and multiplex 
assay results are not comparable, even when using kits 
of the same assay [150]. When comparing the ability of 
four multiplex kits and multiple lots of the same kit to 
detect 13 cytokines from the same sample at six different 
laboratories, Breen et al. [151] found at least one signifi-
cant laboratory or lot effect for each cytokine. There was 
also variance both within the same laboratory and across 
laboratories [151]. Directly measuring cytokine levels is 
influenced by measuring levels in plasma vs. serum, time 
between blood draw and separation of plasma or serum, 
repeated freezing and thawing, and storage temperature. 
Measuring cytokine levels of PBMCs stimulated in vitro 
varies with stimulants used and culture conditions [49].

Furthermore, the heterogenous nature of ME/CFS 
associated with ME/CFS subtypes, severity, and duration, 
in addition to inconsistencies in cytokine methodolo-
gies and repeatability suggests that cytokine profiling as a 
quantitative diagnostic biomarker harbours a lot of limi-
tations and may not ultimately be feasible. A multi-centre 
study by Hornig et  al. [2] identified markedly different 
plasma immune signatures in early ME/CFS patients 
(less than 3-year duration) compared with healthy con-
trols. However, these distinct alterations were not pre-
sent in longer duration (more than 3-year duration) ME/
CFS patients. Early ME/CFS had prominent activation 
of pro-inflammatory cytokines such as TNFα and IL-1α, 
and anti-inflammatory cytokines such as IL-1, com-
pared with controls. However, the same cytokines were 
lower in long-duration ME/CFS cases than healthy con-
trols. Stronger correlations in cytokine alterations were 
found with the duration of illness than severity of illness, 
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indicative of ME/CFS possessing a non-static immuno-
pathology [2]. Furthermore, evidence suggests ME/CFS 
patients with varying clinical presentations and comor-
bidities may have distinct differences in cytokine and 
chemokine levels [152].

Table  2 summarises studies which have investigated 
biochemical dysfunction in ME/CFS and/or CFS.

Electrophysiological dysfunction in ME/CFS
All cells, including non-excitable cells such as PBMCs, 
possess intrinsic electrical properties [153]. Dysfunction 
in properties such as ion channel function, ion channel 
expression, and cell signalling is encompassed by the 
term electrophysiological dysfunction. Since it was first 
suggested that the symptoms of ME/CFS are secondary 
to acquired abnormalities in voltage-gated or ligand-
gated ion channels [154, 155], growing evidence supports 
intracellular secondary messenger signalling and ion 
channel dysfunction in ME/CFS pathophysiology. Levels 
of magnesium in red blood cells have been reported to be 
reduced in ME/CFS [156]. Most recently, several studies 
have implicated acetylcholine (ACh) receptors (both nic-
otinic and muscarinic) [82, 83, 85] and transient receptor 
potential (TRP) channel [63, 64, 157] dysfunction in the 
peripheral blood mononuclear cells (PBMCs) of ME/CFS 
donors.

ACh channel dysfunction
The neurotransmitter acetylcholine (ACh) is a ubiquitous 
signalling molecule well characterised within the central 
and peripheral cholinergic nervous system. Evidence sug-
gests there is dysregulation of the autonomic sympathetic 
and parasympathetic nervous system in ME/CFS, includ-
ing sensitivity to pain and sensory stimuli [158, 159], and 
abnormal peripheral cholinergic function during acetyl-
choline (ACh) challenge [160, 161]. The parasympathetic 
nervous system partly regulates the interaction between 
the nervous and immune systems [162], with ACh 
involved and important in inflammation and immune 
responses [163–165].

ACh present in whole blood [166] has been demon-
strated to mainly originate from peripheral blood mono-
nuclear cells (PBMCs) rather than polymorphonuclear 
lymphocytes [167]. ACh and choline acetyltransferase 
(ChAT), the enzyme which catalyses the synthesis of 
ACh from choline and acetyl coenzyme A, is present 
in immune cells including T lymphocytes [168, 169], 
B lymphocytes and NK (natural killer) cells [163, 170, 
171]. Immunocytochemical analysis, specific ligand 
binding and mRNA expression studies confirmed mus-
carinic and nicotinic acetylcholine receptors (mAChRs 
and nAChRs respectively) are expressed in immune cells 

[165, 172–175], with expression varying with cell type 
and activation status [176, 177].

AChRs are important for  Ca2+ signalling and conse-
quently immune cell function. mAChRs are G-protein 
coupled receptors (metabotropic), of which there are 
five subtypes, M1-M5 [163, 178]. M1, M3 and M5 cou-
ple with  Gq, and when stimulated mediate the activation 
of phospholipase C resulting in an increase in  [Ca2+]i and 
protein kinase C activation. Stimulation of M3 or M5 
mAChRs in T-lymphocytes facilitate the release of  Ca2+ 
from intracellular stores via inositol trisphosphate  (IP3), 
resulting in calcium release activated (CRAC) chan-
nel  Ca2+ influx and sustained  [Ca2+]i oscillations which 
enhances the expression of c-fos and IL-2 [179]. In con-
trast, M2 and M4 couple to  Gi/0, which when activated 
mediate the inhibition of adenylyl cyclase and a decrease 
in cyclic adenosine monophosphate (cAMP) synthesis 
[174, 178]. nAChRs are fast ligand-gated (ionotropic) cat-
ion channels and homo- or heteropentameric structures, 
which when activated increase membrane permeability 
to  Na+,  K+ and  Ca2+ leading to membrane depolarisa-
tion and excitation [172, 174]. Activation of mAChRs 
and nAChRs are important for immune cell function, 
including increased cytotoxicity, cell proliferation and 
the activation of B and T lymphocytes [174]. In B-lym-
phocytes, activation of AChRs has been shown to medi-
ate cell development, activation, and antibody immune 
responses [165, 180–183]. B-lymphocyte-produced 
ACh inhibits the local recruitment of neutrophils [171] 
and limits steady-state haematopoiesis [184]. In mac-
rophages, activation of AChRs modulates the expression 
of cytokines [185]. T-lymphocytes up-regulate the syn-
thesis of ACh in the blood when activated [162].

Given the importance of ACh and  Ca2+ signalling in 
immune cell function, the impaired immune cell func-
tion and sensitivities reported by patients with ME/CFS 
to environmental irritants suggest dysfunction of AChRs 
channels in ME/CFS, for which there is clear and grow-
ing evidence. Single nucleotide polymorphism (SNP) and 
genotype analysis of DNA extracted from whole blood 
samples identified seventeen SNPs in AChRs significantly 
associated with ME/CFS, nine of which were associated 
with mAChRM3 [83]. Autoantibodies to mAChM1 [84], 
mAChM3 [159, 186] and mAChM4 [159] have been 
shown to be significantly elevated in ME/CFS patients 
compared with controls. However, as autoantibodies to 
AChR are found in the majority of individuals with myas-
thenia gravis [187, 188], the specificity of this as a diag-
nostic biomarker needs to be investigated further.

Transient receptor potential channel dysfunction
The Australian National Centre for Neuroimmunology 
and Emerging Diseases (NCNED) reported ME/CFS 
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is a Transient Receptor Potential (TRP) channelopathy 
class of metabolic disorders [189]. TRP ion channels are 
homo- or hetero-tetrameric cation-permeable pores 
preferentially selective to  Ca2+, assembled from six-
transmembrane polypeptide subunits [190–192]. How-
ever, the permeation profile depends on the splice variant 
of the gene [63]. Based on the TRP channel amino acid 
sequences and structural similarities they can be divided 
into six subsets: TRP canonical (TRPC), TRP vanilloid 
(TRPV), TRP melastatin (TRPM), TRPA, TRP mucolipin 
(TRPML), and TRP polycystic (TRPP) channels [85, 
193]. TRP channels are widely expressed on almost all 
cell types of the body [193] including lymphocytes, DCs, 
macrophages, neutrophils and mast cells [190], neu-
rones [194], and skeletal muscle [195]. TRP channels are 
localised to plasma membrane and intracellular orga-
nelle membranes, and are activated by extracellular and 
intra-cellular stimuli [192]. They function as transduction 
molecules, responding to a range of physical and chemi-
cal stimuli including changes in shear stress, tempera-
ture, osmolarity, pH and reactive molecules [190]. The 
sensitivities reported by patients with ME/CFS to envi-
ronmental irritants and toxins, are consistent with TRP 
channel dysfunction.

Thirteen SNPs significantly associated with ME/CFS 
were identified in TRP ion channel genes, nine of which 
were located within the gene sequences of TRPM3 (the 
others in TRPC4, TRPA1) [63]. NK cells isolated from 
ME/CFS donors have been shown to possess numerous 
SNPs and genotypes in nAChRs, TRPM3 and TRPM8 
[62]. SNPs have also been identified in isolated B-lym-
phocytes of ME/CFS donors; of 78 SNPs in nAChRs and 
mAChRs genes of isolated B-lymphocytes of ME/CFS, 35 
were within mAChM3. SNPs were also found in TRPM3 
[85]. Given the interdependence of TRP and mAChRs, it 
is possible that specific mAChRM3R and TRPM3 SNP 
genotypes contribute to the pathology and heterogenic 
phenotypes of ME/CFS [82].

Although the location of SNPs (whether they occur in 
coding, non-coding or intergenic regions of genes) and 
the influence of splicing mechanisms determine whether 
they lead to human disease [83], there is substantial evi-
dence demonstrating TRPM3 dysfunction. Immunophe-
notyping assays have demonstrated expression of TRPM3 
ion channels to be significantly reduced and significantly 
increased in different NK cells and  CD19+ B-cells sub-
sets, respectively, in ME/CFS donors compared with 
healthy controls [86, 87]. Furthermore, the activity and 
function of TRPM3 in NK cells is impaired in ME/CFS. 
When opened, TRP channels induce depolarisation of 
the cell and  Ca2+ influx, resulting in the activation of 
intracellular signalling pathways [85]. Whole-cell patch 
clamp demonstrated the amplitude of TRPM3 currents 

after stimulation with pregnenolone sulphate (a fast 
reversible TRPM3 activator) is significantly reduced in 
isolated NK cells from ME/CFS patients compared with 
healthy controls [64, 157]. TRPM3-associated impair-
ments in the mobilisation, influx, and storage of intra-
cellular  Ca2+ have also been reported in B-lymphocytes 
and NK cell subtypes [86, 87]. It has been suggested that 
the upregulation of TRPM3 in B-cells and NK cell sub-
sets is a compensation mechanism to impaired  Ca2+ 
influx, mobilisation and storage [86]. As  Ca2+ is required 
for many NK cell functions, including cytotoxic activity, 
formation of the immune synapse, the granule-depend-
ent pathway of apoptosis, microtubule reorganisation 
and cytokine gene transcription [62, 196], impaired 
TRPM3-dependent  Ca2+ signalling may contribute to 
the NK cell dysfunction seen in ME/CFS. Furthermore, 
TRPM3 is involved in the transmission of heat and pain, 
nociception, thermoregulation and has been implicated 
in inflammatory pain syndromes and proinflammatory 
cytokine secretion, seen in ME/CFS [63].

µ-opioid receptors (µOR) are a family of G-protein cou-
pled receptors (GPCRs) whose subunits can directly bind 
and inhibit TRPM3. Naltrexone hydrochloride (NTX) 
is a long-lasting antagonist of µOR, and acts to negate 
TRPM3 inhibition [197]. Low-dose NTX (LDN) is taken 
in ME/CFS patients to treat pain attributable to insuffi-
cient opioid peptide secretion and excess release of pro-
inflammatory cytokines, with 73.9% of patients reporting 
improved symptoms [198]. Interestingly, using whole-cell 
patch clamp it was shown that TRPM3 channel activity, 
when modulated with the TRPM3-agonist pregnenolone 
sulphate, is restored in IL-2 stimulated NK cells of ME/
CFS donors following 24-h incubation with NTX [199]. 
Moreover, the function of TRPM3 channels in ME/CFS 
patients taking LDN is similar to that of healthy controls, 
with TRPM3-like ionic currents in NK cells [200]. More-
over, restoration of TRPM3 function following in  vitro 
overnight treatment of NK cells with naltrexone hydro-
chloride has been shown to translate to re-established 
TRPM3-dependent  Ca2+ influx [197].

Dysfunction of other TRP channels have also been 
identified, including the increased expression of the sen-
sory ion channel TRPV1 [201] and TRPM2 [202] in ME/
CFS. TRPM7 may also be implicated [203], with cross-
talk between IL-2 and TRPM7 [204], and alterations of 
TRPM7-dependent  Ca2+ influx in ME/CFS [205].

Whilst evidence of the role TRPM3 ion channel dys-
function in NK cells plays in ME/CFS pathophysiology 
has the potential to demonstrate a biological (as opposed 
to psychological) etiology, there are presently limitations 
to applying this as a potential diagnostic tool. The studies 
conducted so far have recruited a limited number of par-
ticipants (often between 12 and 40 donors in total) and 
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did not have diseased controls to determine specificity. 
Epigenetic and genetic diagnostic biomarkers require val-
idation and repeatability of specific SNPs, as well as con-
sistency as to which cell type to quantify. Furthermore, 
quantification of TRPM3 function to diagnose ME/CFS 
using patch-clamp is a low-throughput method requiring 
high expertise, time, and expense. Greater optimisation 
of a diagnostic protocol is required.

Given the reported differences in the electrophysi-
ological properties of PBMCs and NK cells, Maksoud 
et  al. [34] postulated a multi-factorial pathway of ME/
CFS. They hypothesised that following an environmental 
trigger such as a viral infection or trauma, activation of 
intracellular signalling pathways involving SNPs in TRP 
channels and cholinergic muscarinic receptors result in 
altered gene expression. This may cause upregulation of 
defected and disrupted  Ca2+-dependent downstream 
signalling pathways, causing dysregulated homeostasis—
impacting natural killer cell cytotoxicity (NKCC) and 
mitochondrial regulation. Disrupted signalling pathways 
and reduced cell function would activate inflammatory 
pathways and cytokine alterations, initiating widespread 
inflammation to cells in all different tissues. This would 
result in disrupted cell signalling and function in all cell 
types.

Electrophysiological changes to osmotic challenge
A significant breakthrough towards the identification 
of a diagnostic biomarker for potential clinical applica-
tion was published in 2019 by Esfandyarpour et al. [1], in 
which they found real-time monitoring of the electrical 
response of hyperosmotically challenged PBMCs incu-
bated in plasma supplemented with NaCl differentiated 
patients with ME/CFS from healthy controls. PBMCs 
donated by ME/CFS patients (mix of moderate and 
severe ME/CFS donors), and healthy controls were incu-
bated in the donor’s own plasma, which was increased 
to a concentration of 200 mM/L NaCl to impart hyper-
osmotic stress on the cells. They found introduction 
of a hyperosmotic stressor to healthy control samples 
resulted in a transient decrease in impedance before 
returning to baseline, where it did not change for approx-
imately 3 h. Similarly, after the hyperosmotic stressor was 
added to the ME/CFS samples, a transient decrease in 
impedance was also measured until return to baseline at 
around 40 min. However, in contrast to the healthy con-
trols, the impedance continued to markedly rise above 
the initial baseline values with an increase in impedance 
magnitude of |Z| 74.92% ± 0.69, in-phase impedance  (Zre) 
of 301.67% ± 3.55, and out-of-phase impedance  (Zim) of 
64.73% ± 0.62. This significantly different response to 
hyperosmotic stress between healthy control and ME/

CFS donors represents a unique biomarker and indicator 
of ME/CFS [1].

Interestingly, when PBMCs of ME/CFS patients 
were suspended in the plasma of healthy controls, the 
impedance pattern resembled that of healthy controls. 
Furthermore, when PBMCs from healthy controls 
were suspended in plasma from ME/CFS patients, the 
impedance pattern resembled that of ME/CFS patients 
[1]. This indicates that there is a component of plasma 
which contributes to ME/CFS pathology. This supports 
findings from other research groups which have also 
found a factor in the plasma of ME/CFS could con-
tribute to ME/CFS pathophysiology: Morten’s research 
group reported adding plasma from ME/CFS patients 
decreased the concentration of oxygen in healthy mus-
cle cells [206]; Fluge et  al. [57] reported muscle cells 
incubated in ME/CFS plasma produced more lactate 
than when incubated in plasma from healthy controls 
[57].

The nanoelectronic assay Esfandyarpour et  al. [1] 
used was developed for high-throughput real-time 
detection of proteins, nucleic acids and gene quantifi-
cation [207–211]. The low-cost device measures ultra-
sensitive and precise values of impedance in real-time, 
possessing a sampling frequency of 5 Hz and collect-
ing ~ 40,000 data points over 3 h. However, although 
their experimental procedure has the potential to act 
as a low-cost, real-time ultrasensitive assay capable of 
measuring impedance patterns for point-of-care diag-
nostics of ME/CFS, the nanoelectronic assay was not 
developed for routine use and requires further instru-
mentational development to be deployed for clini-
cal application. Additionally, the experiment did not 
include recruitment of disease controls, so the specific-
ity of the technique to ME/CFS is unknown.

The measured  values of impedance represent   the 
lumped combination of all the separate and resistive 
components of the PBMCs and plasma, including the 
overall cell impedance (consisting of membrane capaci-
tance and σcyto), as well as the impedances caused by 
media-sensor surface interactions, cell–cell interac-
tions, cell-sensor surface adhesion, solution resist-
ance and other plasma components such as proteins, 
exosomes, and lipids [1].

In contrast to the nano-needle assay, Martinez-Rodri-
guez et  al. [212] found differences in the bioimpedance 
response of PBMCs after 1M NaCl hyperosmotic chal-
lenge, in a small cohort of four ME/CFS and 4 HCs, using 
bioimpedance spectroscopy. At 1.36 kHz, real and imagi-
nary values of impedance were higher by ~ 15% in ME/
CFS vs HCs.

This opens a path to new avenues of electrophysi-
ological investigation in the future. An overview of 
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experiments which have investigated electrophysiological 
dysfunction in blood cells is displayed in Table 3.

Important considerations for a diagnostic biomarker
Disease control
The specificity of a diagnostic biomarker is the percent-
age defining the number of individuals who have a cor-
rect negative test result out of the total subjects who do 
not have the disease [213]. To determine the specificity 
of a diagnostic biomarker for ME/CFS, it is important 
to assess their performance in disease controls [69, 214]. 
For example, mitochondrial dysfunction is associated 
with many diseases including neurodegenerative diseases 
such as Parkinson’s disease [215], cardiovascular diseases 
[216], autoimmune diseases such as multiple sclerosis 
(MS) [217], and psychiatric disorders including schizo-
phrenia [218].

Similarly, changes in cytokine levels are not neces-
sarily specific for ME/CFS, and more likely indicative 
of immune activation with chronic inflammation, sup-
ported by observed elevation in the pro-inflammatory 
cytokines LTα, IL-1α, IL-1β and IL-6 in ME/CFS com-
pared with controls [49]. The chronic condition fibromy-
algia shares similar symptomology to ME/CFS [60], and 
Groven et al. [117] found no difference in the cytokines 
and chemokines immune markers they investigated 
between ME/CFS and fibromyalgia patients [117]. Gulf-
War Illness (GWI) has similar symptom presentation 
to that of ME/CFS [219, 220], and similar to ME/CFS, 
plasma IL-5 [221] and IL-6 [222] has been reported to 
be elevated in GWI compared with controls. However, 
Khaiboullina et al. [46] has found evidence towards dif-
ferent immune profiles in ME/CFS compared with GWI, 
even though symptoms overlap.

MS is a neuroimmune, demyelinating, chronic debili-
tating disorder which shares a similar symptomology 
with ME/CFS. Like ME/CFS, MS is most prevalent in 
women [223], the specific aetiology is unknown, and 
there is evidence of differential TRP channel expression 
[224], including TRPM3 expression in PBMCs compared 
to healthy controls [225], increased activation [226], 
mitochondrial dysfunction and oxidative stress [227, 228] 
in PBMCs. Most importantly, individuals with MS expe-
rience severe disabling fatigue [229], with 70% of patients 
with MS reporting fatigue—38% of which describe 
fatigue to be their most disabling symptom [230]. Fur-
thermore, Jensen et  al. [45] recently reported autoan-
tibodies in ME/CFS have enzymatic activity which may 
cause demyelination in some individuals with ME/CFS 
[45]. MS has been used as a disease control in several 
studies [15, 33, 231]. MS is characterised by altered pro-
inflammatory and anti-inflammatory cytokines result-
ing in a great inflammation within the central nervous 

system [232]. Reale et  al. [232] identified serum IL-1β 
and IL-17 pro-inflammatory cytokines to be elevated in 
both ME/CFS and MS compared with controls. However, 
a distinct immune signature identified by Hornig et  al. 
[233] was able to differentiate donors with MS from ME/
CFS.

Validation
To identify a valid biomarker, it is important that experi-
ments are repeatable, and that different laboratories fol-
low the same protocols and reproduce the same findings, 
in addition to different techniques, to validate the same 
evidence. The importance of this has been demonstrated 
when Tomas et al. [136] were unable to reproduce find-
ings in the ATP Profile Test [136]. However, many bio-
marker studies recruit small sample sizes of less than 60 
donors, and are standalone experiments [34]. There is 
a great need for larger multi-site validation studies that 
recruit disease controls.

It is also important to validate any findings against dif-
ferent populations. ME/CFS affects all ages, genders, 
ethnicities, and socioeconomic groups [23]; although the 
condition affects two to four times more women than 
men [23–25, 234–236]. This could be due to differences 
in sex hormones and sex chromosomes [237]. It is not 
uncommon for studies to only recruit female participants 
[49, 238], or for the majority of participants to be female 
[198, 239]. Recruitment of age and gender matched con-
trols is necessary for identifying biomarkers, or differ-
ences in diagnostic biomarker thresholds.

Adoptability
To be highly adoptable, the ideal ME/CFS blood-based 
biomarker would necessitate minimal preparation time, 
such as a finger-prick to provide point-of-care diagno-
sis. Blood sample processing takes time. Based on the 
hypothesis that ME/CFS is an immune-metabolic disor-
der, many studies investigate the use of PBMCs as bio-
markers. However, PBMC isolation from whole blood 
is a multi-step isolation process which significantly 
increases protocol duration if it were to be adopted for 
clinical practice. Where possible, use of whole blood as 
opposed to PBMCs would be beneficial in reducing pro-
cessing time. For example, Esfandyarpour et  al. [1] first 
attempted to measure the impedance of whole blood 
as opposed to PBMCs but found there were no reliable 
or repeatable patterns [1]. Alternatively, development 
of devices which work with whole blood or incorporate 
microfluidic systems to isolate specific blood cells would 
overcome blood sample processing times [33].

Another consideration is the use of fresh versus frozen 
patient samples in assay development. Use of fresh blood 
samples would be most appropriate for point-of-care 
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diagnostic applications. Additionally, fresh samples elim-
inate potential changes to blood cells caused by damage 
to cell morphology during freezing (such as ice crystals 
puncturing cell membranes) or damage via the freezing 
medium [240]—which is important when also trying to 
understand the pathophysiology of the disease. However, 
a benefit of using frozen samples as opposed to fresh is 
the flexibility with respect to sample collection and stor-
age, or transport to designated test facilities if specialist 
or expensive laboratory equipment is required. Being 
able to freeze blood samples for analysis later and trans-
port them across the country with less time-sensitivity 
increases the flexibility and practicality of sample pro-
cessing in clinical laboratories. It also decreases the risk 
that differences in sample processing times are seen 
between freshly collected healthy controls and 2-day old 
patient samples could be attributable to differences seen 
between cohorts, as opposed to pathological differences, 
during biomarker development—as has been hypoth-
esised with the ATP Profile test [136].

Whilst optimising and assessing whether their device 
could be used on patient samples collected globally, 
Esfandyarpour et  al. [1] trialled their assay on patient 
samples stored in different storage conditions including 
4 °C, room temperature, − 20 °C frozen and liquid nitro-
gen storage. After fresh samples, 1-week liquid nitrogen 
storage and 24-h storage at room temperature were the 
next most successful techniques; they both preserved the 
same impedance pattern expressed in fresh samples but 
were attenuated [1].

A comparative analysis of the different biochemical and 
electrophysiological diagnostic biomarkers for ME/CFS 
outlined in this review, and considerations for potential 
clinical application are outlined in Table 4.

Conclusion
The continued absence of a robust, specific physical or 
biochemical biomarker means that those living with ME/
CFS have no certainty over their diagnosis, whilst many 
in society persistently identifies those with the condi-
tion as malingerers. However, work in the identification 
of new markers, both biochemical and electrophysiologi-
cal, offers hope for a better understanding of the ME/CFS 
pathophysiology and would provide measurable evidence 
for the ME/CFS diagnosis, helping to validate patients 
within the health professions and in wider society. The 
development of novel analyses, such as that of electrical 
impedance and Raman spectroscopy shows great prom-
ise, thus there remains the possibility of rapid, point-of-
care reassurance in the near future, and the possibility of 
beginning a path towards effective treatment.

Achieving a high accuracy of 91%, Raman spectroscopy 
of PBMCs shows great promise as a rapid, non-invasive, 

label-free, low-cost ME/CFS diagnostic technique [33], 
as does metabolomic analyses [79–81]. Additionally, the 
nanoneedle device used to measure changes in electri-
cal impedance of blood samples to osmotic stress sig-
nificantly differentiates ME/CFS and HCs with high 
accuracy, although the specificity of this technique needs 
to be investigated [1].

Mitochondrial dysfunction in ME/CFS has been well-
documented, but performance as a diagnostic biomarker 
requires greater investigation. The commercially avail-
able ATP profile test has previously been used in-clinic, 
but the validity of the test has been brought into ques-
tion following the inability of other research laboratories 
to replicate published results. Cytokine disruption is also 
well-documented, but whether it could be used as a diag-
nostic biomarker is questionable due to the sensitivity of 
cytokines to biological mechanisms, and widespread lab-
oratory methodologies. Many studies have reported TRP 
ion channel dysfunction, but currently no studies have 
investigated the sensitivity or specificity of TRP ion chan-
nel dysfunction as a diagnostic biomarker.

Multiple studies have integrated techniques to aim to 
improve biomarker sensitivity and specificity. By combin-
ing individual parameters/protocols (using methods such 
as multiple logistic regression) and adopting a multi-
modal diagnostic approach, diagnostic sensitivity and 
specificity has been shown to increase in some studies 
[37, 100]. This is most beneficial in cases such as quan-
titative metabolomics, where metabolite biomarkers can 
be combined during data analysis following a single run 
protocol [141]. Whereas, although beneficial in improv-
ing biomarker accuracy, combining two biomarkers 
obtained using different experimental protocols does also 
increase protocol complexity and time.

When investigating potential diagnostic techniques, 
the specificity of biomarkers to ME/CFS needs to be 
explored with disease controls, and with more large-scale 
studies. Moreover, the time of experiments, specialised 
machines, and complexity of techniques (for example, 
requires trained laboratory technicians) needs to be con-
sidered for the development of point-of-care diagnostic 
tools.
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