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Abstract 

Background  Although the TNM staging system plays a critical role in guiding adjuvant chemotherapy for colorectal 
cancer (CRC), its precision for risk stratification in stage II and III CRC patients with proficient DNA mismatch repair 
(pMMR) remains limited. Therefore, precise predictive models and research on postoperative treatments are crucial 
for enhancing patient survival and improving quality of life.

Methods  This retrospective study analyzed 1051 pMMR CRC patients who underwent radical resection and were 
randomly assigned to training (n = 736) and validation (n = 315) groups. Immunohistochemistry and hematoxy-
lin and eosin staining were utilized to evaluate regulatory-Immunoscore (RIS), tertiary lymphoid structures (TLS), 
and tumor budding (TB). The Tumor Aggression-Defense Index (TADI) was derived through a multi-factor COX regres-
sion model. Subgroup analysis demonstrated potential of TADI in guiding personalized adjuvant therapy for stage II 
and III CRC.

Results  Univariate and multivariate Cox analysis indicated that TADI was an independent prognostic indicator. 
Among stage II CRC, chemotherapy was significantly correlated with improved recurrence times in individuals 
with intermediate (95% CI 0.19–0.59, P < 0.001) and high (95% CI 0.36–0.95, P = 0.031) TADI. In stage III CRC receiving 
adjuvant chemotherapy, a duration of 3 months or longer was notably associated with a prolonged time to recur-
rence in those with high TADI (95% CI 0.40–0.98, P = 0.041) compared to durations of less than 3 months.

Conclusion  The TADI serves as an effective parameter for predicting the survival outcomes of stage I-III pMMR CRC 
patients and guiding precision treatment strategies.
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Introduction
Colorectal cancer (CRC) remains one of the lead-
ing causes of cancer-related morbidity and mortality 
worldwide. Despite advances in surgical and adjuvant 
therapies, recurrence remains a significant barrier to 
long-term survival, affecting 10%−20% of stage II and 
30%−40% of stage III CRC patients [1, 2]. The major-
ity of these cases are DNA mismatch repair-proficient 
(pMMR), which tend to show poor responses to adju-
vant chemotherapy treatment (ACT) [3]. Traditional 
prognostic models, such as the Tumor-Node-Metastasis 
(TNM) staging system, have demonstrated limited accu-
racy in predicting patient outcomes, underscoring the 
need for more precise approaches [4, 5]. Several tumor 
stratification markers, including CpG island methylator 
phenotype (CIMP) [6, 7] and mutations in APC, KRAS, 
and BRAF genes [8], have been investigated; however, 
their predictive accuracy remains suboptimal, and their 
clinical applicability is limited. This highlights the urgent 
need for robust and accessible predictive models to guide 
personalized therapy for pMMR CRC patients.

Tumor invasion and the tumor microenvironment 
(TME) are central to CRC progression and therapeutic 
response. Tumor-intrinsic invasive factors drive malig-
nancy, while the TME plays a pivotal role in promoting 
anti-tumor immunity and supporting tumor suppres-
sion [9]. Tumor budding (TB), a hallmark of aggressive 
cancer subtypes [10], is frequently associated with poor 
prognosis and higher recurrence rates [11]. In contrast, 
protective components within the TME, such as tertiary 
lymphoid structures (TLS) and tumor-infiltrating lym-
phocytes (TILs), enhance anti-tumor immunity and con-
tribute to tumor suppression [12]. The organized zones 
of follicular B cells, CD3 + T cells, and LAMP + dendritic 
cells within TLS facilitate efficient tumor antigen pres-
entation and the generation of effector T cells and anti-
body-producing plasma cells [13, 14]. Additionally, high 
density of TILs has been closely associated with favora-
ble prognosis, as it typically indicates a robust immune 
response [15]. It has been correlated with improved clini-
cal outcomes, underscoring the critical need to under-
stand the balance between tumor aggression and immune 
defense mechanisms in CRC.

Integrating tumor invasion markers and immune 
microenvironmental factors provides a comprehensive 
framework for evaluating CRC prognosis. By assessing 
both aggressive tumor characteristics, such as TB, and 
protective immune components like TLS and TILs, it is 
possible to develop more precise and actionable prognos-
tic models. This study introduces the Tumor Aggression-
Defense Index (TADI), a novel approach that quantifies 
both invasive and defensive factors. Rigorous validation 
demonstrates that TADI holds significant potential for 

improving survival prediction, guiding risk stratifica-
tion, and optimizing adjuvant chemotherapy for stage II-
III pMMR CRC patients. This model not only addresses 
the limitations of existing prognostic markers but also 
captures the multifaceted, dynamic interplay between 
tumor-intrinsic invasive factors and the complex 
immune responses within the TME, marking a significant 
advancement in personalized cancer management.

Material and methods
Patients and endpoints
This study retrospectively analyzed stage I-III pMMR 
CRC patients who underwent curative resection at Har-
bin Medical University Cancer Hospital (HMUCH), from 
January 4, 2013 to December 30, 2015 (Fig. 1). Detailed 
inclusion and exclusion criteria are provided in the Sup-
plementary Materials. Following stratification by primary 
tumor location, tumor differentiation, T stage, N stage 
and relapse, 1051 patients were randomly divided (7:3) 
into a training set (n = 736) and a validation set (n = 315) 
(Fig. 1). The primary endpoint of this study was to assess 
time to recurrence (TTR), which was defined as the dura-
tion from the date of surgery to the initial diagnosis of 
disease recurrence. Additionally, the secondary endpoint 
was overall survival (OS), which was defined as the dura-
tion from the date of surgery to death from any cause. 
This study was conducted in accordance with the Decla-
ration of Helsinki and was approved by the ethics com-
mittee of the Harbin Medical University Cancer Hospital 
(KY2022-20).

Clinical indicators
Patient demographics and tumor characteristics were 
systematically recorded. This included age, gender, East-
ern Cooperative Oncology Group performance status 
(ECOG PS), preoperative carcinoembryonic antigen 
(CEA) levels, and tumor location, along with detailed 
pathological data such as differentiation grade (poor-
undifferentiation, moderate, well), T stage (T1-4), N stage 
(N0-2), TNM stage (re-staged according to the 8th AJCC 
staging system), and VELIPI. Tumors exhibiting positive 
biomarkers for venous emboli, lymphatic, or perineural 
invasion were classified as VELIPI + . Follow-up data on 
subsequent treatments, including adjuvant chemother-
apy treatment (ACT), were also gathered.

Pathological processing and evaluation
Formalin-fixed, paraffin-embedded surgical specimens 
were processed into 4-μm-thick slices for hematoxy-
lin and eosin (H&E) staining and immunohistochem-
istry (IHC) (Fig.  2A). To ensure consistency, sections 
representing the deepest extent of tumor invasion were 
selected for analysis. Following staining, slides were 
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Fig. 1  The flow chart of this study. pMMR: mismatch‐repair‐proficient, CRC: colorectal cancer, RIS: regulatory-Immunoscore, TLS: tertiary lymphoid 
structures, SFL-TLS: secondary follicle-like stage TLS, TADI: Tumor Aggression-Defense Index, ROC: receiver operating characteristic
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digitally scanned by the MoticEasyScan Infinity sys-
tem, and images were evaluated with Motic DSAssistant 
software for histological assessment. Tertiary lymphoid 
structures, tumor budding, and the regulatory Immu-
noscore (RIS) were defined independently by two expe-
rienced gastroenterology pathologists, who were blinded 
to the clinicopathological information of patients. A third 
expert pathologist was responsible for the final decision 
in case of a disagreement between the two pathologists. 
The full definitions of these indicators can be found in 
sTable 1.

Evaluation of tertiary lymphoid structures
Existence, abundance, location, and subtypes of tertiary 
lymphoid structures (TLS) were evaluated on H&E-
stained slides. Pathologists standardized TLS definition 
and classification for consistency. TLS density was deter-
mined as the number of TLS per mm of tumor-invasive 
front in peritumoral regions (within 7 mm of the tumor 
front) [16]. The length of the invasive front of the tumor 
was measured by Fiji software. TLS were divided into 
three categories according to the morphology deter-
mined by H&E staining; (1) early stage (E-TLS): small, 
quasi-circular clusters of lymphocytes (Fig.  2B); (2) pri-
mary follicle-like stage (PFL-TLS): large clusters without 
germinal center formation (Fig.  2C); and (3) secondary 
follicle-like stage (SFL-TLS): large clusters with germinal 
center formation (Fig. 2D). The numbers of TLS in each 
maturation stage were counted and expressed as a pro-
portion from all TLS within each patient.

Evaluation of tumor budding
Tumor budding (TB) was defined as the presence of a 
single isolated tumor cell or a small cluster of tumor cells 
(up to four cells) at the invasive margin of the tumor. TB 
was assessed on digitally scanned H&E-stained tissue 
slides, at 20 × magnification to examine a single hotspot 
field, with an area normalized to 0.785 mm2 at the inva-
sive margin of the tumor, in accordance with the ITBCC 
2016 guidelines. Categories for TB scoring were: Bd1 

(0–4 buds: low), Bd2 (5–9 buds: intermediate), and Bd3 
(more than 10 buds: high) (Fig. 2E–G) [10, 17].

Evaluation of regulatory immunoscore
Regulatory Immunoscore (RIS) was used to assess the 
immune microenvironment by evaluating the balance 
between cytotoxic T cells (CD8 +) and regulatory T 
cells (FOXP3 +). The IHC staining was performed to 
identify CD8 + T cells (Abcam, ab101500, 1:500) and 
FOXP3 + T cells (Abcam, ab200334, 1:500). The densi-
ties of CD8 + and FOXP3 + T cells in central tumor (CT) 
and invasive margin (IM) tissues (cells/mm2) were esti-
mated by the Fiji/ImageJ platform at 20 × magnification 
(Fig. 2H–I) [18]. Each patient was categorized into high 
or low immune cell density groups based on the esti-
mated densities in each tumor region. The thresholds for 
categorization are specified in Supplementary Table  1. 
Specifically, a high density of immune cells was recorded 
as score 1, while a low density was recorded as score 
0. The RIS was defined by summing the scores of two 
immune parameters (CD8 + and FOXP3 + lymphocyte 
densities) across the two regions (CT and IM). RIS was 
categorized into three groups, with scores ranging from 
0, 1 to 3 and 4 representing low, intermediate and high, 
respectively (Fig. 2J) [19].

Statistical analysis
Statistical analyses were performed by utilizing R soft-
ware (version 4.3.2). Mann–Whitney tests were utilized 
for comparing continuous variables, while Chi-square 
or Fisher’s exact tests were employed for analyzing cat-
egorical variables. Kaplan–Meier survival curves were 
analyzed with log-rank tests to assess TTR and OS. To 
evaluate the prognostic significance of clinical and patho-
logical factors, a multivariate Cox proportional hazards 
regression model was employed. This method allows for 
the simultaneous assessment of multiple covariates on 
time-to-event outcomes while accommodating censored 
data, which is particularly advantageous in retrospective 
studies where follow-up durations and event occurrences 

(See figure on next page.)
Fig. 2  Evaluation of RIS, Tumor budding and TLS according by hematoxylin/eosin (H&E) staining and immunohistochemistry (IHC). A 
Representative sections for evaluating RIS, Tumor budding and TLS. B–D Representative images of TLSs in each maturation category as evaluated 
by H&E. E–G Representative images of Tumor budding in each category as evaluated by H&E. H–I Representative immunohistochemistry 
of CD8 + cells stained with CD8 antibody and FOXP3 + cells stained with FOXP3 antibody. J The RIS scoring system is based on the counting 
of two lymphocyte subsets (CD8 and FOXP3) in two locations (CT and IM) of the primary tumor. All patients were divided into high (H in a dark 
circle) or low (L in a light circle) groups for the density of each marker in each region. A high density of immune cells was recorded as a score of 1, 
and a low density was recorded as a score of 0. Patients were stratified according to a score of 0, 1–3 or 4, representing low, intermediate, or high 
RIS, respectively. For example, score 0 refers to a tumor with low densities of CD8 + and FOXP3 + cells in CT and IM regions. Score 4 refers to a tumor 
with high densities of CD8 + and FOXP3 + cells in CT and IM regions. TLS, tertiary lymphoid structures; E-TLS, early-stage TLS; PFL-TLS, primary 
follicle-like stage TLS; SFL-TLS, secondary follicle-like stage TLS; CT, center of the tumor; IM, invasive margin; RIS, regulatory-Immunoscore
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vary [20]. Variables such as RIS, tumor budding, TLS 
density, and SFL-TLS proportion were selected based on 
their potential prognostic relevance. Model performance 
was evaluated using Harrell’s C-index and ROC curve 

analysis, with calibration curves confirming alignment 
between predictions and observed outcomes. Statistical 
significance was set at p < 0.05 for all tests.

Fig. 2  (See legend on previous page.)



Page 6 of 15Wu et al. Journal of Translational Medicine          (2025) 23:107 

Results
Clinical characteristics
A total of 1051 patients with stage I-III pMMR CRC were 
included following rigorous clinical and biomarker qual-
ity control measures. Among them, 115 (10.95%) patients 
had stage I CRC, 573 (54.5%) had stage II CRC, and 363 
(34.5%) had stage III CRC. In total, 268 (46.8%) of the 
patients with stage II CRC and 272 (74.9%) of the patients 
with stage III CRC received adjuvant chemotherapy. 
The median follow-up period was 89.0 months (95% CI 
87.0–91.6), providing a sufficient duration for assessing 
recurrence and survival outcomes with reliable follow-up 
data. Clinicopathologic factors were consistent between 
the training and validation sets, ensuring the robustness 
of the comparative analyses (Table 1).

Univariate and multivariate analyses of pathological risk 
factors
In the training cohort, univariate analysis demonstrated 
significant correlations between TTR and several fac-
tors, including RIS, tumor budding, TLS density, E-TLS 
proportion, PFL-TLS proportion, and SFL-TLS propor-
tion. Multivariate analysis identified RIS, tumor budding, 
TLS density, and SFL-TLS proportion as independent 
risk factors for recurrence (Table 2). Notably, RIS scores 
exhibited a gradual decline from TNM stage I to III and 
from T1 to T4, suggesting that both TNM and T stages 
influence tumor-infiltrating lymphocyte infiltration 
(sFigure  1A, E). Similarly, high-grade tumor budding 
increased progressively from TNM stage I to III and from 
T1 to T4 (sFigure 1B, F). Intragroup analysis of TLS dis-
tribution across TNM stages revealed that TLS density 
varied significantly, with higher density observed in stage 
II patients compared to other stages. However, no signifi-
cant differences were noted among the T stages, indicat-
ing that the TNM stage, rather than the T stage, likely 
influences TLS density (sFigure 1C, G). Further analysis 
demonstrated that the proportion of SFL-TLS differed 
across TNM and T stages, with a higher proportion in 
stage III patients and a decreasing trend from T1 to T4 
stages, indicating that both TNM and T stages may affect 
TLS maturity (sFigure 1D, H).

Construction and validation of the tumor 
aggression‑defense index
Multivariate Cox regression was employed to develop a 
clinical prediction score model called the Tumor Aggres-
sion-Defense Index (TADI) a prognostic model integrat-
ing four independent risk factors: RIS, tumor budding, 
TLS density, and SFL-TLS proportion. Each factor was 
assigned a weighted score based on its regression coeffi-
cient, which was then summed to calculate the predicted 

probability of TTR (sFigure  2A). The model demon-
strated robust predictive performance, with AUC of 
0.717 (95% CI 0.680–0.755) in the training set and 0.733 
(95% CI 0.675–0.791) in the validation set (sFigure  2B, 
C). Patients were stratified into three groups—low-TADI, 
intermediate-TADI, and high-TADI—based on their 
TADI scores, with cutoff points selected at the first and 
second tertiles of the TADI score distribution. Represent-
ative histopathological images are shown in sFigure  3. 
Critical data on RIS, TLS, and TB scores across the dif-
ferent TADI groups are summarized in sTable  2. Com-
parative analyses revealed that TADI achieved a superior 
C-index for predicting recurrence risk (training: 0.69, 
95% CI 0.66–0.72; validation: 0.71, 95% CI 0.67–0.76) 
compared to individual pathological risk parameters, 
including TNM stage, RIS, tumor budding, TLS density, 
and SFL-TLS proportion (Fig.  3A). Incorporating TADI 
into a combined model with TNM staging significantly 
improved TTR prediction, as evidenced by higher time-
dependent AUC (tAUC) values in both training and vali-
dation sets (Fig.  3B). Calibration curves showed strong 
agreement between predicted and observed recurrence 
probabilities at one, three, and five years (Fig.  3C, D), 
while decision curve analysis demonstrated a greater net 
clinical benefit of TADI across a wide range of threshold 
probabilities (sFigure 2D, E).

Prognostic efficacy of TADI in stage I‑III pMMR colorectal 
cancer
Univariate analysis demonstrated that TADI, presence 
of VELIPI, advanced TNM stage, and poor tumor grade 
were associated with an unfavorable prognosis in the 
cohort. Multivariate Cox regression analysis for TTR and 
OS demonstrated that TADI remained an independent 
prognostic factor (TTR: HR = 2.31, 95% CI 1.86–2.85, 
P < 0.001; OS: HR = 2.22, 95% CI 1.77–2.80, P < 0.001). 
These results suggest that an elevated TADI score is asso-
ciated with a notably increased risk of disease recurrence 
and mortality. Notably, other clinically relevant tumor 
characteristics, including TNM stage and tumor grade, 
lost their significance in the multivariate model, thereby 
underscoring the superior predictive value of TADI in 
this cohort (Fig.  4A, B). Kaplan–Meier survival curves 
showed that patients with low TADI scores exhibited 
significantly longer TTR and OS compared to interme-
diate- and high-TADI groups (P < 0.001), with consistent 
trends across training and validation cohorts (Fig.  5A–
D). Moreover, TADI scores were found to be elevated 
in patients who subsequently experienced recurrence or 
death, further supporting its potential as a reliable prog-
nostic biomarker (Fig. 5E–J). Subgroup analyses stratified 
by age, sex, VELIPI, tumor site, TNM stage, and tumor 
differentiation consistently demonstrated that elevated 
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Table 1  Clinicopathologic factors in patients with pMMR colorectal cancer

Clinicopathological features Total (n = 1051) Training set (n = 736) Validation set (n = 315) P value

Age (years), n (%) 0.692

  < 70 865 (82.3%) 603 (81.9%) 262 (83.2%)

  >  = 70 186 (17.7%) 133 (18.1%) 53 (16.8%)

Sex, n (%) 0.305

 Female 427 (40.6%) 307 (41.7%) 120 (38.1%)

 Male 624 (59.4%) 429 (58.3%) 195 (61.9%)

ECOG PS 0.177

  ≥ 2 212 (20.2%) 157 (21.3%) 55 (17.5%)

 0–1 839 (79.8%) 579 (78.7%) 260 (82.5%)

CEA at diagnosis 0.164

  < 5 ng/mL 645 (61.4%) 456 (62.0%) 189 (60.0%)

  ≥ 5 ng/mL 399 (38.0%) 273 (37.1%) 126 (40.0%)

 Unknown 7 (0.67%) 7 (0.95%) 0 (0.00%)

Adjuvant chemotherapy 0.929

 No 501 (47.7%) 352 (47.8%) 149 (47.3%)

 Yes 550 (52.3%) 384 (52.2%) 166 (52.7%)

Period number 0.983

  < 3 month 260 (24.7%) 181 (24.6%) 79 (25.1%)

  ≥ 3 month 290 (27.6%) 203 (27.6%) 87 (27.6%)

 untreated 501 (47.7%) 352 (47.8%) 149 (47.3%)

Tumor location, n (%) 0.051

 Left sided 197 (18.7%) 128 (17.4%) 69 (21.9%)

 Right sided 285 (27.1%) 192 (26.1%) 93 (29.5%)

 Rectum 569 (54.1%) 416 (56.5%) 153 (48.6%)

VELIPI, n (%) 0.903

 Absent 830 (79.0%) 580 (78.8%) 250 (79.4%)

 Present 221 (21.0%) 156 (21.2%) 65 (20.6%)

TNM stage, n (%) 0.371

 I 115 (10.9%) 82 (11.1%) 33 (10.5%)

 II 573 (54.5%) 391 (53.1%) 182 (57.8%)

 III 363 (34.5%) 263 (35.7%) 100 (31.7%)

Tumor grade, n (%) 0.451

 Poor-undifferentiation 169 (16.1%) 125 (17.0%) 44 (14.0%)

 Moderate 803 (76.4%) 555 (75.4%) 248 (78.7%)

 Well 79 (7.52%) 56 (7.61%) 23 (7.30%)

RIS, n (%) 0.753

 Low 122 (11.6%) 87 (11.8%) 35 (11.1%)

 Intermediate 629 (59.8%) 435 (59.1%) 194 (61.6%)

 High 300 (28.5%) 214 (29.1%) 86 (27.3%)

 CD8 CT 154 (168) 155 (170) 154 (162) 0.946

 CD8 IM 273 (226) 272 (230) 275 (215) 0.847

 Treg CT 53.6 (58.9) 53.4 (59.1) 54.2 (58.5) 0.823

 Treg IM 97.2 (88.7) 95.8 (85.7) 101 (95.5) 0.434

Tumor budding, n (%) 0.855

 Bd1 477 (45.4%) 338 (45.9%) 139 (44.1%)

 Bd2 407 (38.7%) 283 (38.5%) 124 (39.4%)

 Bd3 167 (15.9%) 115 (15.6%) 52 (16.5%)

TLS density 0.46 (0.59) 0.44 (0.58) 0.52 (0.60) 0.057

E-TLS proportion 0.43 (0.42) 0.42 (0.42) 0.46 (0.42) 0.284

PFL-TLS proportion 0.13 (0.23) 0.13 (0.23) 0.13 (0.22) 0.715

SFL-TLS proportion 0.07 (0.17) 0.07 (0.16) 0.07 (0.18) 0.474



Page 8 of 15Wu et al. Journal of Translational Medicine          (2025) 23:107 

TADI levels were associated with poorer prognosis across 
all subgroups, reinforcing the generalizability and clinical 
relevance of TADI as a prognostic tool (sFigure 4).

Predictive value of TADI in stage II‑III pMMR colorectal 
cancer for ACT​
In stage II pMMR colorectal cancer (CRC) patients 
(n = 573), Kaplan–Meier survival analysis revealed sig-
nificant differences in both TTR and OS across the low, 
intermediate, and high TADI groups (All Patients: TTR, 
P < 0.001; OS, P < 0.001). The low TADI group had the 
best survival outcomes, followed by the intermediate and 
high TADI groups with progressively worse outcomes. 
This trend was consistent in both the training and valida-
tion sets (sFigure 5A). Among these patients, 268 (46.8%) 
received adjuvant chemotherapy (ACT) (sTable 3). ACT 
was associated with significant improvements in both 
TTR and OS for patients with intermediate and high 
TADI scores compared to those who did not receive 
ACT (Intermediate: TTR: HR = 0.34, 95% CI 0.19–0.59, 
P < 0.001; OS: HR = 0.25, 95% CI 0.14–0.47, P < 0.001; 
High: TTR: HR = 0.58, 95% CI 0.36–0.95, P = 0.031; OS: 
HR = 0.44, 95% CI 0.26–0.74, P = 0.002) (Fig. 6). Specifi-
cally, Patients with intermediate and high TADI scores 
who underwent ACT exhibited significantly improved 
survival outcomes, with markedly reduced recurrence 
and mortality risks. However, ACT did not show a sig-
nificant benefit in the low TADI group (TTR: P = 0.144) 
(Fig. 6C).

In stage III pMMR CRC patients (n = 363), survival dif-
ferences based on TADI scores were similarly observed 
(TTR, P < 0.001; OS, P < 0.001), with the low TADI group 
having the best prognosis and the high TADI group dem-
onstrating the poorest survival. These differences were 
confirmed in both the training and validation sets. Clin-
icopathologic factors for stage III patients who received 
ACT are presented in sTable  4. Kaplan–Meier survival 
analysis revealed that patients with high TADI scores 
who received ACT for more than 3  months had sig-
nificantly improved TTR and OS (TTR: P = 0.041; OS: 
P = 0.021) (sFigure  6C, F). The hazard ratios (HRs) fur-
ther highlight the clinical benefit of prolonged ACT in 
these groups: patients with high TADI scores experi-
enced a significantly reduced risk of recurrence (TTR: 
HR = 0.63, 95% CI 0.40–0.98, P = 0.041) and mortal-
ity (OS: HR = 0.56, 95% CI 0.34–0.92, P = 0.021) when 
receiving ACT for more than 3  months, compared to 
those who underwent shorter treatment durations (sFig-
ure 6G). Conversely, patients with low and intermediate 
TADI scores did not exhibit improved clinical outcomes 
based on ACT duration, suggesting no additional benefit 
from prolonged chemotherapy in these groups.

Discussion
Colorectal cancer (CRC) exhibits considerable variabil-
ity in prognosis and treatment response, driven by the 
complex interplay between intrinsic tumor invasive-
ness and TME. For instance, invasive features such as 
tumor budding within the tumor tissue are linked to poor 

Table 1  (continued)
ECOG PS: Eastern Cooperative Oncology Group performance status; CEA: carcinoembryonic antigen; pMMR: proficient mismatch repair, VELIPI: venous emboli, 
lymphatic invasion, or perineural invasion; RIS: regulatory-Immunoscore; CT: central tumor; IM: invasive margin; TLS: tertiary lymphoid structures; E-TLS: early-stage 
TLS; PFL-TLS: primary follicle-like stage TLS; SFL-TLS: secondary follicle-like stage TLS

Table 2  Univariate and multivariate analysis of pathological risk factors in the training set

RIS: regulatory-Immunoscore; TLS: tertiary lymphoid structures; E-TLS: early-stage TLS; PFL-TLS: primary follicle-like stage TLS; SFL-TLS: secondary follicle-like stage TLS

Characteristics Univariate analysis Multivariate analysis

Hazard ratio (95% CI) Hazard ratio (95% CI) P value P value

RIS

 Intermediate vs Low 0.57 (0.41–0.78) 0.63 (0.46–0.88) 0.006 0.001

 High vs Low 0.31 (0.21–0.46) 0.41 (0.27–0.62)  < 0.001  < 0.001

Tumor budding

 Bd2 vs Bd1 1.93 (1.46–2.55) 1.78 (1.35–2.35)  < 0.001  < 0.001

 Bd3 vs Bd1 2.68 (1.93–3.73) 2.19 (1.57–3.06)  < 0.001  < 0.001

TLS density 0.37 (0.27–0.51) 0.43 (0.28–0.67)  < 0.001  < 0.001

E-TLS proportion 0.70 (0.52–0.94) 1.25 (0.89–1.76) 0.204 0.019

PFL-TLS proportion 0.53 (0.30–0.95) 1.43 (0.82–2.51) 0.209 0.033

SFL-TLS proportion 0.05 (0.01–0.18) 0.25 (0.07–0.87) 0.029  < 0.001
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prognosis, while higher levels of tumor-infiltrating lym-
phocytes (TILs) in the TME are generally associated with 
more favorable outcomes and enhanced immune activity 
[21]. Moreover, mismatch repair status further influences 
the TME, with pMMR and dMMR CRC displaying dis-
tinct immune landscapes. dMMR CRC, characterized by 
a high mutation burden, generate more tumor-specific 
neoantigens, which in turn promote increased TILs and 
stronger immune responses [22, 23]. In contrast, pMMR 
CRC, the predominant subtype, exhibit pronounced het-
erogeneity, contributing to variable responses to chemo-
radiotherapy (CRT), a nuance that traditional TNM 
staging fails to capture effectively [24]. While TNM stag-
ing and existing immune-based models, such as those 
developed by Tsikitis et al., Zhang et al., and Ueno et al., 

provide valuable prognostic insights, they predominantly 
focus on tumor characteristics and immune markers in 
isolation, without fully integrating both tumor invasive-
ness and immune response [25–27]. This study, focus-
ing on pMMR CRC, introduces the Tumor-Associated 
Defense Index (TADI), a novel prognostic model inte-
grating both invasive and immune-related biomarkers 
from tumor tissue and the TME. TADI outperforms con-
ventional TNM staging in predicting prognosis, offering 
valuable insights for personalized adjuvant therapy deci-
sions in stage II-III pMMR CRC patients, with the poten-
tial to optimize treatment strategies and improve clinical 
outcomes.

This study investigates two crucial independent defen-
sive factors within the TME: Immunoscore and TLS. 

Fig. 4  Univariate and multivariate analyses of TADI. A Univariate and multivariate analysis for TTR using cox regression. B Univariate and multivariate 
analysis for OS using cox regression. VELIPI: positive for the biomarkers for venous emboli, lymphatic invasion, or perineural invasion; TADI, Tumor 
Aggression-Defense Index; TTR, time to recurrence; OS, overall survival
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Immunoscore quantifies lymphocyte density in the core 
tumor and invasive margin, serving as a robust indica-
tor of the immune landscape. Our analysis, incorporat-
ing both CD8 + and FOXP3 + T cells, our RIS aligns with 
previous findings, demonstrating that higher RIS corre-
lates with a more favorable prognosis and significantly 
correlates with TNM and T stages. Additionally, TLS—
ectopic lymphoid structures within tumors—play a criti-
cal role in promoting anti-tumor immune responses [19]. 
Meta-analyses show that high TLS expression correlates 
with improved overall survival, recurrence-free survival, 
and reduced risk of tumor recurrence [28–30]. Our study 
further reinforces these findings, highlighting the sig-
nificant association between increased TLS density and 
maturity and better prognosis [31]. This study highlights 
the critical role of TLS expression and TLS density in the 
anti-tumor immune response in CRC. We found that 
TLS density correlated with TNM stage but not T stage. 
Advanced TNM and higher T stages were associated 
with reduced TLS density and fewer mature TLS. These 
results emphasize how tumor progression affects TLS 
formation and TILs infiltration, influencing the immune 
landscape within the TME. This study also examines 
invasive tumor factors, particularly TB, a well-established 
marker of poor prognosis in CRC and a key feature of 
epithelial-mesenchymal transition (EMT) [32–34]. Our 
analysis further underscores the significance of TB as an 
indicator of tumor aggressiveness, reinforcing its prog-
nostic value in CRC.

Moreover, TADI demonstrates potential in predict-
ing the efficacy of ACT, particularly for stage II-III 
patients. Current clinical guidelines consider high-risk 
features like poorly differentiated tumors, perforation/
obstruction, inadequate lymph node retrieval, lymph 
vascular invasion (LVI), and perineural invasion (PNI) 
for guiding adjuvant therapy in stage II CRC patients 
[35]. While some studies suggest that ACT may 
improve relapse-free survival (RFS) and OS in stage II 
CRC patients [36, 37], others caution that the risks and 
adverse effects may outweigh these benefits [38, 39]. 
Our stratified analysis of TADI in stage II patients sug-
gests that those with low TADI scores derive minimal 
benefit from ACT, supporting the potential for more 
selective treatment approaches in this cohort. In stage 
III CRC, the duration of ACT appears to significantly 
impact patient prognosis. The IDEA study, for exam-
ple, highlights the value of adjusting treatment duration 
based on T/N stages (low-risk vs. high-risk) [40]. For 
T1-3/N1 patients, a 3-month CAPOX regimen demon-
strates efficacy with reduced toxicity. Post hoc analyses 
from IDEA France and CALGB/SWOG 80702 stud-
ies also suggest combining tumor deposit count and 
lymph node metastasis improves the accuracy of TNM 

staging predictions [41, 42]. However, despite advances 
in stratification, current research still struggles to opti-
mize treatment duration for all stage III CRC patients. 
Our study indicates that patients with high TADI 
scores derive significant benefit from ACT durations 
exceeding 3  months, while patients with low to mod-
erate TADI scores may not benefit from prolonged 
treatment regimens. This suggests that high TADI lev-
els, which correlate with reduced TIL and TLS infiltra-
tion and increased tumor budding (TB), may indicate 
an immune-suppressive environment. We hypothesize 
that moderate TADI patients may not benefit from pro-
longed treatments due to weak immunogenicity or an 
immune-suppressive environment, where oxaliplatin-
induced immunogenic cell death (ICD) is less effective 
in ’cold tumors’ [43].

Currently, microsatellite instability-high (MSI-H) is 
the only biomarker used to guide immune checkpoint 
inhibitor (ICI) therapy in CRC, but its utility is limited 
in pMMR CRC, where ICI monotherapy is largely inef-
fective. While combination ICI therapy shows modest 
efficacy (10%−20%) in pMMR CRC [44, 45], identifying 
additional biomarkers is crucial to predict which patients 
may experience durable responses. Various factors within 
the tumor microenvironment (TME) influence immune 
therapy efficacy, including the density of tumor-infiltrat-
ing lymphocytes (TILs) [46–48]. For instance, a Phase 2 
multicenter study on regorafenib plus nivolumab demon-
strated that higher baseline densities of cytotoxic T cells, 
regulatory T cells, and macrophages were associated with 
improved outcomes [49]. Furthermore, TLS and B cells 
have been shown to enhance immune responses in mel-
anoma and breast cancer [50, 51]. Given these insights, 
the TADI model, which reflects both tumor invasiveness 
and immune defense characteristics, may offer a valuable 
composite biomarker to predict responses to ICIs, such 
as PD-1/PD-L1 or CTLA4 inhibitors, in pMMR CRC.

This study has several limitations. First, the single-
center design and the absence of an independent external 
validation cohort limit the generalizability and external 
applicability of the findings. Multicenter, prospective 
studies with independent validation cohorts are neces-
sary to confirm the robustness and predictive value of 
TADI across diverse clinical and immunologic profiles. 
Secondly, the complexity of TADI scoring necessitates 
intricate formulas, posing challenges for clinical imple-
mentation. Simplifying the TADI scoring process would 
enhance its clinical feasibility. Thirdly, while TB, TLS, 
and RIS benefit from established assessment criteria, 
their scoring and quantification may still be subject to 
pathologists’ subjective interpretations. Integrating digi-
tal pathology techniques like deep learning could miti-
gate observer bias in future evaluations. Despite these 
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limitations, our innovative stratified approach based 
on the attack-defense system model within TME holds 
promise for guiding precise and personalized treatment 
strategies for stage II-III pMMR CRC patients.
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