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Abstract 

Background Acute respiratory distress syndrome (ARDS) is a prevalent complication among critically ill patients, con-
stituting around 10% of intensive care unit (ICU) admissions and mortality rates ranging from 35 to 46%. Hence, early 
recognition and prediction of ARDS are crucial for the timely administration of targeted treatment. However, ARDS 
is frequently underdiagnosed or delayed, and its heterogeneity diminishes the clinical utility of ARDS biomarkers. This 
study aimed to observe the incidence of ARDS among high-risk patients and develop and validate an ARDS predic-
tion model using machine learning (ML) techniques based on clinical parameters.

Methods This prospective cohort study in China was conducted on critically ill patients to derivate and validate 
the prediction model. The derivation cohort, consisting of 400 patients admitted to the ICU of the Peking University 
Third Hospital(PUTH) between December 2020 and August 2023, was separated for training and internal valida-
tion, and an external data set of 160 patients at the FU YANG People’s Hospital from August 2022 to August 2023 
was employed for external validation. Least absolute shrinkage and selection operator (LASSO) and multivariate 
logistic regression were used to screen predictor variables. Multiple ML classification models were integrated to ana-
lyze and identify the best models. Several evaluation indexes were used to compare the model performance, includ-
ing the area under the receiver-operating-characteristic curve (AUC) and decision curve analysis (DCA). SHapley 
Additive ex Planations (SHAP) is used to interpret ML models.

Results 400 critically ill patients were included in the analysis, with 117 developing ARDS during follow-up. The final 
model included gender, Lung Injury Prediction Score (LIPS), Hepatic Disease, Shock, and combined Lung Contusion. 
Based on the AUC and DCA in the validation group, the logistic model demonstrated excellent performance, achiev-
ing an AUC of 0.836 (95% CI: 0.762–0.910). For external validation, comprising 160 patients, 44 of whom developed 
ARDS, the AUC was 0.799 (95% CI: 0.723–0.875), significantly outperforming the LIPS score alone.

Conclusion Combining the LIPS score with other clinical parameters in a logistic regression model provides a more 
accurate, clinically applicable, and user-friendly ARDS prediction tool than the LIPS score alone.
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Background
ARDS is a syndrome characterized by acute respira-
tory failure resulting from various intrapulmonary or 
extrapulmonary factors, leading to increased perme-
ability of the pulmonary vasculature and epithelium, 
pulmonary edema, gravity-dependent pulmonary atelec-
tasis, and ultimately diffuse pulmonary inflammation and 
edema [1]. The LUNG SAFE study reported an incidence 
of ARDS in ICU patients at 10.4%, with hospital mortal-
ity rates of 34.9%, 40.3%, and 46.1% for mild, moderate, 
and severe ARDS [2]. A CHARDSnet study conducted in 
18 ICUs across mainland China found ARDS accounted 
for 3.57% of total ICU admissions, with hospital mortal-
ity rates of 31.4%, 40.4%, and 56.2% for mild, moderate, 
and severe ARDS, respectively [3]. Current treatments 
primarily involve comprehensive supportive measures 
such as mechanical ventilation, with no drugs recog-
nized as effective in treating ARDS, contributing to its 
high mortality rate. Thus, the urgent clinical need lies in 
identifying effective methods and approaches to improve 
ARDS prognosis. Early identification of high-risk ARDS 
patients and proactive intervention have been shown to 
mitigate the occurrence and progression of ARDS [4–6].

Gajic et al. constructed a predictor of clinical indicators 
of ARDS: the LIPS, which was validated in a multicenter 
study [7]. However, the positive predictive value (PPV) 
of LIPS was only 18%, thus limiting its clinical applica-
tion. Other prediction models for ARDS (e.g., surgical 
lung injury prediction model (SLIP), emergency depart-
ment lung injury prediction score (EDLIPS), sepsis ARDS 
prediction model, traumatic brain injury ARDS predic-
tion model) have not been validated in clinical practice 
[8–11].

In this study, we observed the incidence of ARDS 
in high-risk patients. The LIPS score and other clini-
cal parameters were used to develop and validate an 
ML-based ARDS prediction model for accurate patient 
identification.

Methods
Study population and diagnosis of ARDS
From December 2020 to August 2023, we prospectively 
enrolled 476 consecutive patients with identified risk fac-
tors for ARDS in the Department of Surgical Critical Care 
Medicine at the PUTH. Among these patients, 117 were 
ultimately diagnosed with ARDS. The diagnostic criteria 
for ARDS adhered to the 2012 Berlin definition [12]: new 
or worsening respiratory symptoms within 1 week attrib-
uted to known clinical triggers; bilateral diffuse exudates 
on chest imaging not entirely attributable to pleural effu-
sion or lobar/lung collapse; respiratory failure induced 
by pulmonary edema not entirely attributable to cardiac 
failure or fluid overload; and an oxygenation index < 300.

Inclusion criteria comprised: (1) age ≥ 18 years; (2) 
presence of one or more risk factors for ARDS, includ-
ing sepsis, shock, acute abdomen, pneumonia, pulmo-
nary contusion, aspiration, high-risk trauma, or high-risk 
surgeries (such as spinal, abdominal, cardiac, and major 
vascular surgeries) [6]. Exclusion criteria encompassed: 
(1) patients with a pre-existing diagnosis of ARDS before 
initial assessment; (2) ICU admission duration shorter 
than 72 h; (3) patients deceased within 6 h of admission; 
(4) incomplete core information; and (5) abandonment of 
intensive care. Patients meeting any of these conditions 
were excluded from the study. Ultimately, 400 patients 
were included in our analysis (Fig.  1). The study proto-
col received approval from the Ethics Committee of the 
PUTH (Approval No. M2020278). Patient treatments 
adhered to the diagnosis and treatment protocols issued 
by the National Health Commission in real-time, and 
informed consent was obtained from patients or their 
families. Relevant clinical data were collected and ana-
lyzed with strict adherence to patient identity confiden-
tiality protocols.

Data collection and processing
We utilized demographic characteristics, vital sign meas-
urements, and laboratory data collected within the first 
24 h after ICU admission to identify features and con-
struct prediction models, as shown in Table  1. All data 
were extracted from the Electronic Medical Record 
(EMR) system. Given that nursing record system entries 
on the first day after ICU admission were documented 
from admission time until 7 am the subsequent day, we 
utilized the recorded data during this period for con-
structing the prediction model. The LIPS, Acute Physiol-
ogy and Chronic Health Evaluation (APACHE) II score, 
Sequential Organ Failure Assessment(SOFA) score, and 
Neutrophil-to-Lymphocyte Ratio (NLR) were computed 
based on physiological parameters documented within 
the first 24 h of ICU admission.

To address multicollinearity, a test was performed 
to identify variables with a variance inflation factor 
(VIF) above 5, indicating multicollinearity (as shown in 
Table  S1). A total of 35 features were retained, demo-
graphic factors including age, sex, body mass index 
(BMI); medical history including chronic obstructive pul-
monary disease (COPD), hypertension, coronary artery 
disease (CAD), diabetes mellitus (DM), hepatic disease, 
malignancy, chronic kidney disease (CKD); use of vaso-
active drugs, continuous renal replacement therapy 
(CRRT), or massive blood transfusion; admission type 
and diagnoses including shock, trauma, brain injury, sep-
sis, acute abdomen, pulmonary contusion, pneumonia, 
aspiration, orthopedic spinal, spinal cord injury (SCI); 
and clinical parameters and evaluations such as 24-h 
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fluid balance upon admission (calculated as fluid intake 
minus fluid output), NLR, hemoglobin (HGB), red blood 
cell distribution width (RDW_CV), lactate, international 
normalized ratio (INR), urea, albumin (ALB), APACHE II 
scores, LIPS scores, and SOFA scores (Table 1).

External validation cohort
An external dataset comprising 160 patients from the 
ICU of FU YANG People’s Hospital, collected between 
August 2022 and August 2023, was incorporated to vali-
date the derivation cohort. The inclusion and exclusion 
criteria mirrored those applied to the training cohort.

Model development and comparison
First, R software (glmnet4.1.2) was used to conduct the 
least absolute shrinkage and selection operator (LASSO) 
regression analysis and adjust the variable screening and 
complexity. Subsequently, the outcomes of the LASSO 
regression analyses were utilized to conduct multifactor 

logistic regression analyses, ultimately identifying char-
acteristic factors with P-values < 0.05. The Python soft-
ware (version 0.22.1) was then employed to randomly 
partition the data from the PUTH into 70% for training 
and 30% for validation to mitigate potential overfitting 
issues. Additionally, an external dataset was employed for 
testing purposes (external validation).

The final screened features were used to develop 
predictive models. Five ML models namely K Near-
est Neighbours (KNN), Logistic Regression (LR), Ran-
dom Forest (RF), Support Vector Machine (SVM), and 
eXtreme Gradient Boosting (XGboost) were used for pre-
dicting the occurrence of ARDS in critically ill patients. 
To optimize the prediction model, grid search combined 
with manual fine-tuning was applied to obtain the final 
hyperparameters.

Several commonly used evaluation indexes, such 
as AUC, sensitivity, specificity, PPV, negative predic-
tive value(NPV), accuracy, and F1 score, were used to 

Fig. 1 Flowchart of screening
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Table 1 Baseline demographics, clinical characteristics, and outcomes

ARDS: acute respiratory distress syndrome NLR: Neutrophil-to-Lymphocyte Ratio; APACHE: Acute Physiology and Chronic Health Evaluation; SOFA: Sequential Organ 
Failure Assessment; BMI: body mass index; COPD: chronic obstructive pulmonary disease; CAD: coronary artery disease; DM: diabetes mellitus; CKD: chronic kidney 
disease; MBT: massive blood transfusion; CRRT: continuous renal replacement therapy; SCI: spinal cord injury; HGB: hemoglobin; RDW_CV:Coefficient of variation of 
red cell distribution width; INR: international normalized ratio; ALB: albumin;

Non-ARDS (n = 283) ARDS (n = 117) P value

Age, (year), median (Q1,Q3) 62.0 (50.0, 73.0) 66.0 (55.0, 76.0) 0.070

High (m), median (Q1,Q3) 1.68 (1.60, 1.72) 1.70 (1.63, 1.73) 0.215

Weight (kg), median (Q1,Q3) 68.0 (60.0, 75.0) 69.0 (60.0, 76.0) 0.641

BMI (kg/m2), median (Q1,Q3) 24.1 (21.5, 26.3) 23.9 (21.6, 26.7) 0.824

Gender (male), n (%) 159 (56.18) 86 (73.50) 0.001

Fluid intake 3084.0 (2703.5, 3991.0) 3413.00 (2788.0, 4346.0) 0.024

Fluid output 2800.00 (2032.50, 3601.00) 2608.00 (1915.00, 3460.00) 0.067

Fluid balance 2800.0 (2032.5, 3601.0) 2608.0 (1915.0, 3460.0) < 0.01

Admission type, n (%)

 Planned surgical 87 (30.74) 21 (17.95) 0.024

E mergency surgical 141 (49.82) 65 (55.56)

 Medica 55 (19.43) 31 (26.50)

Comorbidities, n (%)

 COPD 6 (2.12) 2 (1.71) 1.000

 Hypertensive 129 (45.58) 60 (51.28) 0.299

 CAD 30 (10.60) 19 (16.24) 0.118

 DM 61 (21.55) 29 (24.79) 0.481

 Hepatic disease 33 (11.66) 29 (24.79) < 0.001

 Tumor 39 (13.78) 24 (20.51) 0.093

 CKD 12 (4.24) 7 (5.98) 0.456

Laboratory variables median (IQR)

 HGB 113.0 (94.0,128.0) 114.0 (92.0, 131.0) 0.952

 NLR 9.8 [5.4,18.3] 9.6 [5.1,18.50] 0.991

 RDW_CV 13.3 (12.7, 14.6) 13.9 (12.9, 14.8) 0.054

 Lactate 2.0 (1.4, 3.4) 2.3 (1.5, 4.0) 0.084

 INR 1.2 (1.1, 1.4) 1.3 (1.2 1.5) 0.009

 UREA 6.7(4.8, 10.2) 8.7 (6.0, 12.6) < 0.001

 ALB 28.0 (23.8 32.1) 27.6 (23.3, 30.5) 0.319

Diagnose n (%)

 Shock 100 (35.34) 81 (69.23) < 0.01

 Trauma 36 (12.72) 19 (16.24) 0.353

 Brain injury 67 (23.67) 20 (17.09) 0.147

 Sepsis 97 (34.28) 65 (55.56) < 0.01

 Acute abdomen 102 (36.04) 64 (54.70) < 0.001

 Lung contusion 6 (2.12) 15 (12.82) < 0.001

 Pneumonia 21 (7.42) 24 (20.51) < 0.001

 Aspiration 0 (0.4) 7 (6.0) < 0.001

 Orthopedic spine 36 (12.72) 6 (5.13) 0.024

 SCI 51 (18.02) 9 (7.69) 0.008

Advanced life support n (%)

 MBT 3 (1.06) 5 (4.27) 0.090

 Vasoactive drugs 184 (65.02) 97 (82.91) < 0.001

 CRRT 38 (13.43) 33 (28.21) < 0.001

Score median (Q1,Q3)

 APACHE II 17.0 (13.0, 19.0) 19.0 (16.0, 22.0) < 0.001

 LIPS 5.5 (3.5, 7.0) 8.5 (6.5, 10.0) < 0.001

 SOFA 6.0 (4.0, 8.0) 8.0 (6.0, 10.0) < 0.001
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evaluate the reliability of these models. Furthermore, a 
DCA was carried out to evaluate the utility of the deci-
sion models by quantifying the net benefit across differ-
ent threshold probabilities.

Model explanation
The SHapley Additive exPlanations (SHAP) method 
offered global and local explanations for the model expla-
nation. The global explanation could give consistent 
and accurate attribution values for each feature within a 
model to show the associations between input features 
and ARDS. The local explanation could demonstrate a 
specific prediction for individual patients by inputting 
the specific data.

Webpage deployment tool based on shiny
To enhance the clinical utility of the model, a web-based 
interactive dynamic column chart application was devel-
oped using Shiny (version 0.13.2.26). This application 
facilitates the prediction of the probability of ARDS by 
inputting the values of the corresponding features from 
the final model.

Statistical analysis
The data were analyzed using Python version 3.6.5 
(https:// www. python. org) and SPSS version 27.0 (https:// 
www. ibm. com/ spss). Categorical data were presented as 
frequencies (percentages) and compared using chi-square 

tests. Continuous variables were presented as median 
(interquartile range) and compared using the Kruskal–
Wallis test. The predictive power was evaluated using the 
AUC, with the optimal cut-off value determined by maxi-
mizing the Youden index (sensitivity + specificity  −  1). 
DCA and Precision-Recall (P-R) curve analysis was con-
ducted using R version 4.1.2 (https:// www.r- proje ct. org). 
A significance level of P < 0.05 was considered statistically 
significant.

Results
Patient characteristics
The study utilized 400 patients from the PUTH as the 
derivation cohort, with 117 patients diagnosed with 
ARDS, yielding an incidence rate of 29.3% during hospi-
talization. The derivation cohort was randomly divided 
into two subsets using the random number method: 
70% of patients comprised the training cohort, while the 
remaining 30% constituted the internal validation cohort 
for constructing and screening the best predictive model. 
Additionally, an external cohort comprising 160 patients 
from FU YANG People’s Hospital was employed for 
external validation. Details of the study design are dis-
played in Fig. 1

As shown in Table  1, among the 400 patients in the 
derivation cohort, a notably higher proportion of patients 
in the ARDS group compared to the non-ARDS group 
were male. Significant differences between the ARDS 

Fig. 2 Results of the LASSO regression analysis. A Plot of the LASSO coefficient profiles. B Tuning parameter (λ) selection cross-validation error curve

https://www.python.org
https://www.ibm.com/spss
https://www.ibm.com/spss
https://www.r-project.org
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and non-ARDS groups were observed in terms of gen-
der, fluid balance, liver function abnormality, and urea 
levels (P < 0.05). Furthermore, within the initial 24 h of 
admission to the ICU, patients in the ARDS group exhib-
ited significantly higher LIPS scores, APACHE II scores, 
and SOFA scores (P < 0.01). Variables were compared 
between the derivation cohort and the external validation 
cohort (as shown in Table  S2). Patients in the external 
validation cohort were older than those in the deriva-
tion cohort. Patients in the external validation cohort had 
higher LIPS scores, SOFA scores, APACHE II scores, and 
higher NLR and RDW_CV compared with the derivation 
cohort.

Factor selection for the predictive model
LASSO regression analysis was conducted on the 
remaining independent variables, with ARDS serving as 
the dependent variable (Fig.  2). LASSO can compress 
variable coefficients to prevent overfitting and solve 
severe collinearity problems [13]. The results showed 
(lambda = 0.013 for minimum mean square error) that 35 
independent variables were reduced to 21, including gen-
der, admission type, MBT, Fluid balance, RDW_CV, ALB, 
APACHE II, LIPS, SOFA, shock, Trauma, Brain Injury, 
Lung contusion, Pneumonia, Lung contusion, Aspira-
tion, SCI, Hypertensive, CAD, DM, HepaticDisease, and 
Tumor. To further control for the effects of confounders, 
multiple logistic regression was used to analyze the above 
21 independent variables were analyzed [14]. Finally, only 
Gender, LIPS, shock, lung contusion, and Hepatic dis-
ease were identified as characteristic factors (P < 0.05) (as 
Table 2).

Comprehensive analysis of classified multi-model
XGBoost, LR, RF, SVM, and KNN were trained and 
repeated 10 times. The models were evaluated using AUC 
values [15], which showed that XGBoost and RF were 
highest in the training set, and LR was highest in the set 
of internal validation sets (Fig. 3a–c). The AUC indicator 
focuses on the predictive accuracy of the model and does 
not tell whether the model is clinically usable or which 
one of the two is preferable [16]. Therefore, the DCA, cal-
ibration curves, and PR curves were analyzed. The DCA 
assessment revealed that the Logistic Regression model 
exhibited better clinical applicability (Fig.  3d). Calibra-
tion curves demonstrated higher accuracy in the predic-
tions of the Logistic model (Fig.  3e). Moreover, in the 
validation set, the Logistic model demonstrated higher 
Average Precision (AP) values (Fig.  3f ). Taken together, 
these findings suggest that the Logistic Regression model 
was the most desirable model for this study (Details are 
displayed in Tables S3 and S4).

The best model building and external evaluation
Logistic regression analysis and tenfold cross-validation 
were performed on the training set. The results show 
an average AUC of 0.824 (0.779–0.869) for the train-
ing set, 0.808 (0.662–0.951) for the internal validation 
set, and 0.799 (0.723–0.875) for the external validation 
set (Fig. 4a–c) (see Table S5 S6and S7 for more details). 
Given that the performance of the validation set under 
the AUC metric did not surpass that of the test set, or the 
exceedance ratio was less than 10%, the fit can be con-
sidered successful [16]. This demonstrates that the model 
exhibited strong performance in both internal and exter-
nal validation. Additionally, the DCA assessment model 

Table 2 Multivariate logistic regression analysis

Predictor R SE Z p Odds ratio

(Intercept) − 6.052 1.397 − 4.333 0

Admission type 0.248 0.239 1.039 0.299 1.281 [0.803, 
2.053]

MBT 1.904 1.084 1.756 0.079 6.714 [0.925, 
65.125]

Fluid balance 0 0 0.909 0.363 1 [1] 

RDW_CV 0.012 0.062 0.192 0.848 1.012 [0.892, 
1.139]

ALB 0.048 0.025 1.89 0.059 1.049 [0.999, 
1.104]

APACHE II 0.008 0.031 0.268 0.788 1.008 [0.948, 
1.073]

LIPS 0.378 0.073 5.154 0 1.459 [1.27, 1.694]

SOFA − 0.016 0.052 − 0.302 0.763 0.984 [0.888, 1.09]

Gender (Female) − 0.908 0.312 − 2.91 0.004 0.403 [0.215, 0735]

Shock (Yes) 0.722 0.35 2.062 0.039 2.059 [1.039, 
4.123]

Trauma (Yes) − 1.045 0.625 − 1.673 0.094 0.352 [0.095, 
1.120]

Brain Injury (Yes) − 0.586 0.438 − 1.337 0.181 0.557 [0.229, 1.29]

Pneumonia (Yes) 0.524 0.453 1.156 0.247 1.688 [0.687, 
4.101]

Lung Contusion 
(Yes)

2.291 0.765 2.994 0.003 9.889 [2.325, 
48.62]

Aspiration (Yes) 17.766 776.189 0.023 0.982 51,944,469

SCI (Yes) − 0.195 0.583 − 0.335 0.738 0.823 [0.245, 
2.472]

Hypertensive 
(Yes)

0.192 0.311 0.619 0.536 1.212 [0.66, 2.239]

CAD (Yes) 0.501 0.407 1.231 0.218 1.651 [0.738, 
3.666]

DM (Yes) 0.404 0.354 1.141 0.254 1.498 [0.745, 
2.999]

Hepatic Disease 
(Yes)

1.076 0.387 2.782 0.005 2.933 [1.383, 
6.335]

Tumor (Yes) 0.421 0.395 1.066 0.286 1.524 [0.698, 
3.308]
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demonstrated good clinical applicability in the external 
test set (Fig. 4d).

Model explanation
To visually elucidate the selected variables, SHAP was 
utilized to illustrate how these variables predict the 
occurrence of ARDS in the model [17]. Figure 5a depicts 
the five most important features in our model. Each fea-
ture significance line showcases all patient attributions 
for the outcome, represented by differently colored dots: 
red dots indicate high-risk values, while blue dots denote 
low-risk values. Elevated LIPS score, male gender, shock, 
pulmonary contusion, and combined liver disease were 
found to increase the risk of ARDS in high-risk patients. 
Figure  5b displays the ranking of the five risk factors 
assessed by mean absolute SHAP value, with the x-axis 
SHAP value indicating the importance of the predictive 
model. Additionally, two typical examples are provided to 

illustrate the interpretability of the model. One example 
pertains to patients who developed ARDS with a higher 
SHAP prediction score (0.82) (Fig.  5c), while the other 
example involves patients who did not develop ARDS, 
exhibiting a lower SHAP prediction score (0.24) (Fig. 5d).

Convenient application for clinical utility
The final prediction model was integrated into a web 
application to enhance its utility in clinical settings, as 
depicted in Fig.  6. This application seamlessly predicts 
a patient’s risk of developing ARDS upon entering the 
actual values of the five features required by the model. 
The web application is accessible online at https:// predi 
ction- model- for- ards. shiny apps. io/ Predi ction_ ards/

Fig. 3 ML model comprehensive analysis. A Training sets ROC and AUC B Validation sets ROC and AUC. Patients were sampled 10 times in a 7:3 
ratio. C The validation set AUC forest plot D Calibration curves for the validation set, with the horizontal coordinates being the average predicted 
probability, the case coordinates being the actual probability of the event, the dashed diagonal being the reference line, and the rest of the solid 
lines representing the different models. E The validation set DCA where the black dotted line is the assumption that all patients are treated 
and the red represents the assumption that all patients are not treated. The remaining solid lines represent different models. F Validation set PR 
curve and AP The y-axis is precision and the x-axis is recall. If the PR curve of one model is completely covered by the PR curve of another model, 
it can be concluded that the latter is better than the former, and the higher the AP value, the better the model performance. The different colors 
in the picture represent the corresponding model, and the values are represented by the average and 95% CI

https://prediction-model-for-ards.shinyapps.io/Prediction_ards/
https://prediction-model-for-ards.shinyapps.io/Prediction_ards/
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Discussion
The findings of this study revealed that among ICU 
patients with high-risk factors for ARDS, the inci-
dence of ARDS was 29.3%. In comparison, the LUNG 
SAFE study in 2016 reported that approximately 10% 
of ICU inpatients and 23.4% of mechanically venti-
lated patients developed ARDS [2]. Additionally, the 
CHARDS net study highlighted that the incidence rate 
of ARDS in 18 ICUs across mainland China was 3.57%. 
However, notable disparities were observed among 
different ICUs, with incidence rates varying signifi-
cantly from one ICU to another, ranging from 1.0% to 
16.7% [3]. The slightly higher incidence rate of ARDS 
observed in this study compared to the national study 
could potentially be attributed to the prospective 
observational nature of this study, which exclusively 

included patients with high-risk factors for ARDS 
meeting admission criteria, thus potentially skewing 
the incidence rate. Furthermore, differences in research 
methodologies and treatment management among var-
ious research institutions may also contribute to this 
discrepancy in incidence rates.

Despite advancements, the morbidity and mortal-
ity rates of ARDS patients remain substantial, reach-
ing as high as 40.0%, with these rates escalating with 
the severity of ARDS [18]. However, clinical diagnosis 
of ARDS is frequently delayed or overlooked. In the 
Lung Safe study, only 60.2% of all ARDS patients were 
identified by clinicians, with recognition rates rang-
ing from 51.3% for mild ARDS to 78.5% for severe 
ARDS [2]. Additionally, less than two-thirds of ARDS 
patients receive the recommended tidal volume of 
8 mL/kg or less of their expected body weight [2]. 

Fig. 4 Logistic regression model training, validation, and testing. A Training set ROC and AUC and B Validation set ROC and AUC. Training 
and cross-validation of patients in the derivation cohort. Different colored solid lines represent 10 different outcomes. C Test set ROC and AUC. test 
results from patients of the external test cohort. D Test set clinical decision curves, where the black dashed line represents the hypothesis that all 
patients have ARDS and the red represents the hypothesis that no patients have ARDS. The solid line represents the logistic model
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Delayed recognition of ARDS can fail to implement 
strategies known to improve ARDS survival, such as 
protective mechanical ventilation [19], fluid restric-
tion [20], and prone ventilation [21, 22], consequently 
leading to increased mortality [23]. Despite ongoing 
research, there remains a lack of a widely accepted pre-
dictive model to identify individuals at risk of ARDS. 
One notable strength of this study is its prospective 
design, wherein patients were screened daily until the 
7th day of ICU admission, effectively mitigating missed 
or misdiagnosed cases of ARDS. Moreover, by employ-
ing well-established ARDS risk prediction models and 
disease severity scoring systems from previous studies, 
this study has developed a prediction model for ARDS 
incidence that aligns with clinical practice and exhibits 
improved general applicability.

In this study, we employed LASSO regression and 
multifactorial logistic regression analyses to identify 

five key variables (Gender, LIPS, shock, lung contusion, 
and Hepatic disease) out of 35 factors associated with 
the risk of ARDS in patients. The LIPS score model, 
proposed by Gajic and Trillo-Alvarez in 2011, has been 
widely used in recent years to assess the risk stratifi-
cation of patients with acute lung injury (ALI). It sys-
tematically grades the extent and degree of lung injury 
based on factors such as susceptibility, high-risk surger-
ies and traumas, and other risk-modifying factors. The 
LIPS score has demonstrated good predictive value for 
ALI, with AUC ranging from 0.80 to 0.84 [7, 24]. Stud-
ies conducted in China by Xiejianfeng et al. reported an 
AUC of 0.770 for the LIPS score [25], while Soto et al. 
demonstrated a close association between the LIPS 
score and the occurrence of ARDS, with an AUC of 
0.740 [26]. The sensitivity of the LIPS score ≥ 4 in pre-
dicting ALI was 90.3%, the specificity was 30.9%, the 
positive predictive value was 17.3%, and the negative 

Fig. 5 SHAP interprets the mode. A Attributes of characteristics in SHAP. Each line represents a feature and the abscissa is the SHAP value. Red 
dots represent higher eigenvalues and blue dots represent lower eigenvalues. B Feature importance ranking as indicated by SHAP. The matrix 
diagram describes the importance of each covariate in the development of the final predictive model. C Individual efforts by patients with ARDS 
and D without ARDS. The SHAP value represents the predicted characteristics of an individual patient and the contribution of each characteristic 
to the predicted ARDS. The number in bold is the probability forecast value (f(x)), while the base value is the predicted value without providing 
input to the model. F(x) is the logarithmic ratio of each observation. Red features indicate an increased risk of ARDS and blue features indicate 
a reduced risk of ARDS. The length of the arrows helps visualize the extent to which the prediction is affected. The longer the arrow, the greater 
the effect
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predictive value was 95.2% [26]. The specificity of the 
LIPS score in predicting the occurrence of ARDS is low, 
and it may not be accurate for clinical risk prediction 
alone. Our model combines the LIPS score with other 
clinical data, and the final model had a sensitivity of 
63.6%, a specificity of 83.6%, a positive predictive value 
of 41.9%, and a negative predictive value of 92.5% in the 
test set. (Table S8).

Furthermore, male patients are more predisposed to 
ARDS compared to females. In a secondary analysis of 
the LUNG SAFE study, it was found that ARDS occurred 
more commonly in men than in women, with 905 (38%) 
women compared to 1472 (62%) men out of 2377 ARDS 
patients [27]. A similar male predisposition to ARDS has 
been reported in patients with COVID-19-associated 
ARDS [28]. Patients with liver disease are also at a higher 
risk of developing ARDS [29]. In patients with COVID-
19, advanced liver disease has been associated with worse 
respiratory outcomes, including increased mortality and 
the need for mechanical ventilation [30]. This could be 
attributed to impaired function of the hepatic reticuloen-
dothelial system and hepatocytes, which compromises 
systemic and pulmonary defenses, thereby impacting the 
onset and remission of ARDS [31, 32]. In our study, com-
bined liver disease was identified as an independent risk 
factor for the development of ARDS. Additionally, shock 
and pulmonary contusion were identified as risk factors 
for ARDS in both the Lung Safe study and our study [2]. 
However, other risk factors such as sepsis, pneumonia, 
and trauma did not show predictive value for the devel-
opment of ARDS in our multifactorial logistic regression 

analysis, possibly due to covariance with factors included 
in the LIPS scoring system.

In this study, we used several ML models and found 
that logistic regression models outperformed other mod-
els after analyzing AUC, DCA, calibration curves, and 
PR curves. However, it has been a challenge to interpret 
machine learning predictive models more comprehen-
sively and to present the predictions visually to clinicians. 
Therefore, the SHAP approach was used to interpret the 
logistic model, which ensures model performance and 
clinical interpretability. This will help physicians better 
understand the decision-making process of the model 
and facilitate the use of the prediction results. In the 
external validation cohort, when the prediction specific-
ity was fixed at 83.6%, the negative predictive value was 
92.5% and the positive predictive value was only 41.9%. 
Therefore, the model may not be able to fully provide 
decision support to clinicians. In clinical practice, it is 
necessary to evaluate the benefits of early identification 
of people at risk of ARDS and their additional costs.

Indeed, our study has several limitations that warrant 
consideration. Firstly, it is a prospective single-center 
study with a relatively small sample size. Consequently, 
the generalizability of our findings may be limited, and 
validation in larger, multicenter studies is necessary to 
confirm the robustness of our results. Secondly, while 
we validated our model using an external cohort, it is 
essential to acknowledge that this cohort consisted of 
retrospective data. This may introduce selection bias and 
affect the generalizability of our model’s performance to 
other settings. Thirdly, our prediction model was based 

Fig. 6 Online dynamic nomogram. An illustrative example is described for predicting the probability of ARDS after ICU admission in a woman 
presenting in shock with comorbid liver disease with a LIPS score of 10



Page 11 of 12Wei et al. Journal of Translational Medicine           (2025) 23:64  

on data available within 24 h of ICU admission and failed 
to use data on dynamic changes in indicators, which 
may have somewhat overlooked subsequent events that 
altered the occurrence of ARDS and caused confounding 
factors.

Conclusions
In conclusion, our ML model, incorporating sex, LIPS, 
shock, pulmonary contusion, and liver disease as risk 
factors, effectively predicts ARDS in high-risk patients. 
Compared to the LIPS score, the model demonstrates a 
significantly higher positive predictive value (41.9% vs. 
18%). In high-risk populations, the model enhances the 
identification of truly at-risk individuals, optimizes medi-
cal resource allocation, and provides additional interven-
tion time for patients. Furthermore, the SHAP method 
was used to explain personalized ARDS risk, fostering 
greater trust among clinicians in the model’s predictions. 
However, these conclusions require validation through 
further randomized controlled trials.
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