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Abstract 

Background  Glioblastoma (GBM) is a rare brain cancer with an exceptionally high mortality rate, which illustrates 
the pressing demand for more effective therapeutic options. Despite considerable research efforts on GBM, its under-
lying biological mechanisms remain unclear. Furthermore, none of the United States Food and Drug Administration 
(FDA) approved drugs used for GBM deliver satisfactory survival improvement.

Methods  This study presents a novel computational pipeline by utilizing gene expression data analysis for GBM 
for drug repurposing to address the challenges in rare disease drug development, particularly focusing on GBM. The 
GBM Gene Expression Profile (GGEP) was constructed with multi-omics data to identify drugs with reversal gene 
expression to GGEP from the Integrated Network-Based Cellular Signatures (iLINCS) database.

Results  We prioritized the candidates via hierarchical clustering of their expression signatures and quantification 
of their reversal strength by calculating two self-defined indices based on the GGEP genes’ log2 foldchange (LFC) 
that the drug candidates could induce. Among five prioritized candidates, in-vitro experiments validated Clofarabine 
and Ciclopirox as highly efficacious in selectively targeting GBM cancer cells.

Conclusions  The success of this study illustrated a promising avenue for accelerating drug development by uncov-
ering underlying gene expression effect between drugs and diseases, which can be extended to other rare diseases 
and non-rare diseases.

Keywords  Rare diseases, Drug repurposing, Glioblastoma, Multi-omics analysis, Reversal gene expression

Introduction
Low prevalence and the increasing number of rare dis-
eases brings a substantial challenge for the study of dis-
ease etiology and the development of pharmaceutical 
interventions. Of the over 10,000 rare diseases affecting 
30 million individuals in the US, only about 500 rare dis-
eases have FDA-approved treatments [1]. Glioblastoma 
(GBM), a rare type of highly aggressive brain cancer, is 
characterized by its devastatingly short survival time due 
to the absence of effective treatments. GBM is associated 
with an exceptionally high mortality rate, with roughly 
30% of patients surviving only one year and less than 5% 
surviving five years [2]. This stark reality underscores 
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the pressing demand for more effectively therapeutic 
options. Despite considerable research efforts on GBM, 
its underlying biological mechanisms remain unclear. 
Presently, the United States Food and Drug Administra-
tion (FDA) has approved four drugs for GBM, none of 
which deliver satisfactory survival improvement, under-
scoring the imperative for innovative therapies [3].

Drug repurposing (DR), the discovery of existing drugs 
for new therapeutic use, emerges as a promising strategy 
for drug development [4, 5]. DR leverages the existing 
data on safety profiles, pharmacokinetics, and mecha-
nisms of action of approved drugs, and thus can be a 
time and cost-effective alternative to traditional de novo 
drug development [6]. By circumventing early-phase 
clinical trials and drug safety assessment, DR can signifi-
cantly shorten the average development timeline from 
approximately 12 years to about 7 years [7]. For instance, 
Hutchinson-Gilford progeria syndrome (HGPS) and 
Muckle-Wells syndrome (MWS) are two rare diseases 
with successful DR candidates, identified based on the 
pairing of cellular pathophysiology mechanisms and the 
drug’s mechanism of action. Farnesyltransferase inhibi-
tors (FTI), originally used for cancer treatment, showed 
therapeutic effect on HGPS, a rare premature aging dis-
ease, in which protein farnesylation plays a critical role, 
leading to the recent application for FDA approval as 
the first ever treatment for HGPS [8]. Canakinumab, a 
human IgG1 anti-IL-1β monoclonal antibody initially 
approved for rheumatoid arthritis, has been successfully 
repurposed for MWS, an autoinflammatory rare disorder 
caused by increased IL-1 [9].

With the current explosion of omics data reservoirs, 
which include genetics, transcriptomics, proteomics, 
and metabolomics datasets, computational method to 
uncover underlying biological mechanisms plays an 
important role in DR. Concurrently, substantial datasets 
concerning drugs’ perturbation on gene expression of 
disease cell line models are increasingly applied in DR 
[10], exemplified by resources like the Connectivity Map 
(CMap) [11], LINCS [12], and iLINCS[13]. Thus, linking 
drug responses and disease gene expression emerges as a 
promising strategy for DR. For example, via CMap-based 
transcriptome analysis, ivermectin has been identified 
as a new oncotherapy candidate for gastric cancer and 
its effect has been validated in wet-lab experiments [14]. 
Furthermore, targeting these databases, gene expression 
signature-based screening approaches, such as reversal 
gene expression identification [15], have been proposed 
to identify DR candidates [16, 17]. For those feature 
genes that exhibit misregulation in a disease, a reversal 
gene expression is defined when they were regulated in 
the opposite direction (upregulation vs. downregulation) 
in cell lines treated with a drug.

Although systematic approaches based on reversal 
gene expression have yielded promising DR candidates 
for cancers and several other common diseases [18], 
its application had not been reported in rare diseases. 
Therefore, in this study we adopted the aforementioned 
concept of reversal gene expression [15] to identify DR 
candidates for GBM by leveraging gene expression sig-
nature. Specifically, we constructed a GBM gene expres-
sion profile (GGEP) through an integrated differential 
gene expression analysis of transcriptome and proteome, 
aiming for an optimal characterization of GBM’s mecha-
nism. Targeting this GGEP we identified DR candidates 
with reversal gene expression signatures, the therapeutic 
effects of which were validated via cell viability assess-
ment in GBM cell lines and control astrocytes. This 
omics-based DR approach illustrates the potential to 
significantly advance DR efforts in rare diseases and cer-
tainly common diseases as well.

Methods and materials
In this study, we attempted to integrate transcriptomics 
and proteomics for GBM gene expression profile (GGEP) 
construction toward DR. The drug candidates identified 
with significant reversal gene expression were evaluated 
from multiple aspects to identify the top potential repur-
posing candidates. Figure 1 illustrates the study workflow 
comprising of four main components, candidate identi-
fication based on reversal gene expression (A, B and C), 
candidate prioritization assessed regarding the reversal 
strength (D and E), candidate evaluation with the identi-
fied scientific evidence (F), and experimental evaluation 
(G and H). We describe each of the components in the 
following sections.

Drug candidate identification with reversal gene 
expressions to GBM
GBM based multi‑omics data preparation
We collected transcriptome and proteome datasets from 
the Chinese Glioma Genome Atlas (CGGA) database [19] 
and an academic research paper [20] by following two 
criteria: (1) utilizing human brain tissue samples from 
GBM patients, and (2) conducting experiments on the 
same or similar platforms with analogous methodologies.

In this study, we utilized message RNA (mRNA) 
sequencing datasets collected from CGGA. Compared 
to total RNA transcriptomics, mRNA sequencing focuses 
on protein-coding genes which are translated into pro-
teins. Proteomics data sets were derived from the experi-
ment conducted by Buser et al. [20], which encompassed 
three GBM samples and three control samples. To the 
best of our knowledge, this experiment stands as the 
sole source of proteomics data that compared healthy 
control tissues and provided accessible original protein 
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intensities. We downloaded the read counts for each gene 
from the mRNA sequencing and the signal intensities for 
each identified protein from proteomics experiments.

Principal component analysis (PCA) [21] was employed 
to estimate the similarity between each sample’s gene 
expression profiles. Samples as outliers were excluded 
from the dataset. The PCA was performed using the R 
package DEseq2 [22].

Differential expression identification and GGEP 
construction
We identified differentially expressed (DE) genes from 
both transcriptome and proteome datasets. A DE mRNA 
expression was identified as Benjamini-Hochberg (B-H) 
[23] adjusted p-value < 0.05 and absolute log2 foldchange 
(|LFC|) > 1. DE genes in the transcriptome datasets were 
determined via the standard procedure with the R pack-
age Deseq2. A DE protein translation was defined as 

Fig. 1  Study workflow
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Bonferroni [24] adjusted p-value < 0.05 and |LFC|> 1. 
DE proteins were identified from the proteome data set 
using the R stats package [25]. As the LFC cannot be cal-
culated for proteins that were detected only in one group, 
we manually set their fold changes as a fixed value which 
approximates the maximum fold change detected in the 
experiment. Thereby we included these proteins with 
significant impacts on GBM. Based on the identified DE 
genes, we then constructed a GBM gene expression pro-
file (GGEP) comprising genes exhibiting both DE mRNA 
and DE protein expression in GBM.

Identification of drug candidates with reversal responses 
in the iLINCS database
We searched the iLINCS database [13] for drug responses 
that demonstrate reversal effect to GGEP. The iLINCS 
defines a signature as the cell line’s gene expression when 
perturbated by a particular chemical or drug. A signature 
was captured for each perturbation experiment. In this 
study we queried multiple signature libraries in iLINCS, 
including Cancer therapeutics response signatures [26], 
LINCS Chemical perturbagen signatures (LINCS L1000 
assay) [12], Connectivity Map signatures [27], DrugMa-
trix signatures [28], Pharmacogenomics transcriptional 
signatures [29, 30], and LINCS target proteomics sig-
natures [31]. The iLINCS auto-generated Pearson’s cor-
relation coefficient (i.e., the concordance), was used as 
an index for preliminary identification of reversal drug 
response signatures to GGEP. A negative concordance 
value indicates that the chemical-induced gene expres-
sion was inversely correlated with the GGEP [13]. To 
include all potential candidates, we selected chemicals 
that induced gene expression signatures of a concordance 
score < −  0.2 [32]. Among these chosen chemicals, only 
FDA-approved drugs [33] (Published on June 6th, 2023) 
were included for further analysis towards DR.

Drug candidate prioritization
In the previous step, we identified drugs that could 
induce gene expression signatures that inversely corre-
lated with the GGEP. In this step, we assessed the can-
didates’ reversal strength via similarity clustering of 
their gene expression signatures and calculation of two 
self-defined evaluation indices. In addition, we collected 
Blood–Brain Barrier (BBB) permeation probabilities of 
those candidates from the DrugBank database [34] to 
consider sufficient drug uptake in the brain.

Candidates’ gene expression signature clustering
We retrieved gene expression signatures of the candidates 
from the iLINCS via its API [35], utilizing R packages 
knitr [36], tinytex [37], httr [38], jsonlite [39], htmltools 
[40], and Biobase [41]. Subsequently, we clustered these 

signatures based on their expression features using the 
ComplexHeatmap R package [42]. The matrix used 
for this clustering is DEG’s LFC in each signature. The 
parameters used for the clustering are the Minkowski 
distances and Ward’s hierarchical cluster method [43]. 
Heatmap was employed to categorize the drugs’ response 
signatures based on the similarity between their reversal 
gene expression and GGEP.

Regulation strength calculation
To quantify the candidates’ regulation strength, we 
defined two indices, regulation score (RS) and over-
all coverage (OC) based on the number of genes in the 
GGEP they regulate and the LFCs of reversed gene 
expression they can produce respectively.

Regulation score (RS)
Based on the concept of Kullback–Leibler (KL) diver-
gence [44], we introduced the RS which quantifies the 
regulation strength (i.e., LFC) based on the divergence 
between the GGEP and drug response signature (For-
mula 1). The RS is positively correlated with (1) the num-
ber of GBM-related genes it regulates, (2) the strength it 
regulates these GBM-related genes (LFC in the expres-
sion signature), and (3) the importance of the GBM-
related genes it regulates (LFC in the GGEP). Thus, a 
potential drug candidate would be associated with a high 
RS, which illustrates its strong reverse effects on the 
expressions over GGEP genes.

, where

The LFCGBM
k  and LFCdrug

k  stand for the LFC of gene k 
in the gene expression feature of GBM and drug response 
signature, respectively. Theoretically, RS is a positive 
value ranges [0, + ∞). The derivation and interpreta-
tion of RS can be found in the supplementary file named 
“supp file 01.docx”.

Overall coverage (OC)
We defined an OC (formula 2) as the ratio of GBM-
related genes regulated by drug candidates. OC is defined 
as the percentage of the GGEP genes, whose gene expres-
sion could be reversed by a single drug. The OC was cal-
culated following below formulas:
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In formulas (2), ‘g’ stands the number of the GBM-
associated genes in the GGEP, while ‘a’ denotes the GBM-
associated genes regulated by drugs (Fig.  1G). OC has 
positive values, ranged [0,1]. A higher OC score indi-
cates a higher ratio of GGEP genes that a treatment can 
reverse.

Drug candidate validation
We evaluated the candidates with their possible mecha-
nism of action in treating GBM in pre-clinical experi-
ments and clinical trials via the Biomedical Data 
Translator [45] and the top five candidates were further 
validated in in- vitro experiments.

Evaluation based on scientific evidence
We identified scientific evidence to further evaluate and 
prioritize drug candidates. First, we examined if these 
drug candidates have undergone clinical trials for GBM 
treatment. We queried ClinicalTrial.gov using the key-
words "glioblastoma", "high-grade glioma", and “GBM” in 
the "condition" field to retrieve clinical trials in which the 
candidates have been used as intervention to treat GBM. 
In parallel, we also conducted literature search for can-
didates related clinical trials performed outside the US. 
Then, we explored their possible pharmacological mech-
anisms for GBM by collecting scientific evidence from 
the NCATS Biomedical Data Translator [45]. Specifi-
cally, we utilized the ARAX reasoning engine [46] part of 
the Translator eco-system to identify any possible direct 
and indirect correlations between the candidates and 
GBM. In the end, we identified five candidates, namely 
Ciclopirox, Prochlorperazine, Clofarabine, Tacrolimus, 
and Tigecycline with promising therapeutic effects that 
had not yet been investigated for clinical GBM use for 
further experimental evaluation.

Therapeutic effect validation on drug candidates
Assessment of DR candidates’ half maximal inhibitory 
concentration (IC50)
Eight GBM cell lines were purchased from American 
Type Culture Collection (ATCC, Manassas, VA, USA) 
(A-172, H-4, U-87 MG, T98-G, SW-1088, LN-229, and 
U-118 MG) and Kerafast, Inc. (U-251 MG) (Shirley, 
MA, USA). All cell lines were cultured and maintained 
as recommended by the vendor. Seeding densities for 
each line were optimized in white, solid bottom 1536-
well microplates (Greiner BioOne, Monroe, NC, USA) 
in 6 µL of media per well. Cells were plated using the 

(2)OC =
a

g

Multidrop Combi Liquid Dispenser (Thermo Fisher, 
Waltham, MA, USA) at 200 cells/well except for 
U-87 mg, T-98 G, U-118 MG, which were plated at 400, 
150 and 300 cells/well, respectively. The plates were 
incubated at 37  °C with 5% CO2 for six hours before 
adding compounds. Ten millimolar stock solution 
of above mentioned five candidate compounds were 
titrated in Dimethyl Sulphoxide (DMSO) at a 1:3 dilu-
tion in 384-well plates, which were then dispensed at 
20 nL/well to 1536-well plates by Echo Acoustic Liq-
uid Handling (Beckman Coulter, Inc., Brea, CA, USA). 
In addition to testing the candidates, temozolomide 
(TMZ), the FDA-approved chemotherapy drug for 
GBM, was included as a reference control. TMZ was 
tested at concentrations ranging from 8 nM to 500 µM. 
Cells were incubated at 37  °C with 5% CO2 with the 
compounds for 72  h before adding 4.5  μl of CellTiter-
Glo luminescent reagent (Promega, Madison, WI, USA) 
per well. The plates were incubated at room tempera-
ture for 10 min before reading signal luminescence on 
PHERAStar plate reader (BMG Labtech, Cary, NC, 
USA). Data was normalized to cells with 0.3% DMSO 
(100% viability) and 10 µM Staurosporine (0% viability) 
as a positive control. Concentration–response curves 
with corresponding relative half-maximal inhibitory 
concentration (IC50) values were plotted and analyzed 
in GraphPad Prism 9 (GraphPad, Inc., San Diego, USA). 
All results are shown as means of eight biological repli-
cates ± standard deviation (SD).

Selectivity assessment of ciclopirox and clofarabine  We 
found Ciclopirox and Clofarabine exhibited the best 
IC50 curves in the above experiment, thus, we further 
evaluated their selectivity between GBM cells and astro-
cyte cells. Specifically, iPSC-derived astrocytes (Fujifilm 
Cellular Dynamics, Cat#C1037) and all GBM lines were 
seeded in laminin-coated 35 µL media at 2400 cells/well 
in 384-well plates for 24 h at 37 °C with 5% CO2. Com-
pounds were diluted in media before adding to the assay 
plate and further incubated for 72  h at 37  °C with 5% 
CO2. Prior to reading luminescence, the bottom of the 
plate was sealed with white backing tape (after visuali-
zation of cells). A mixture of 35 μL/well of CellTiter-Glo 
luminescent reagent was added to the plates and the 
signal was read as described above. Results are shown 
as means of four or six replicates ± standard deviation 
(SD).

Cell viability staining  GBM and astrocytes cell lines 
were plated in 1536 black clear bottom plates and 
treated with Ciclopirox and Clofarabine in parallel with 
plates for luminescence assays. After 72 h of incubation, 
cells were fixed with a final concentration of 4% para-
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formaldehyde (PFA) for 20  min at room temperature. 
Cells were washed with Phosphate-buffered saline (PBS) 
followed by incubation with 0.5 µg/mL of high-content 
screening CellMask green (Thermo Fisher Scientific) 
and 4 µM Hoechst 33342 (Thermo Fisher Scientific) at 
room temperature for 30 min. Cells were washed twice 
and sealed for imaging. Imaging was performed on the 
Opera Phenix High Content Screening System (Revvity, 
Inc).

Results
Results on identifying drugs with reversal gene expression
Results on multi‑omics data preparation
Adhering to our inclusion criteria described in the Meth-
ods, we obtained mRNA-seq data sets from three pro-
jects from the CGGA, containing 358 GBM patients and 
20 healthy brain tissues. By performing the PCA, thirty 
outliers (supplemental Figure S1) were excluded from 
the subsequent DE analysis. We downloaded proteome 
datasets of three GBM samples and three control sam-
ples from Buser et  al.’s study [20]. GBM samples were 
extracted and pooled from eight GBM patients, while 
control samples were extracted and pooled from five 
epileptic patients. There are no outliers identified in the 

proteome data sets thus all samples were included in 
the DE analysis (supplementary Figure S2). Table 1 lists 
clinical distribution about patient subjects from the tran-
scriptomics study involved in this study. A complete clin-
ical characteristics about the patients from both omics’ 
datasets can be found in the supplementary file named 
“supp file 02.xlsx”.

Results on DE gene analysis and GGEP construction
DE analysis of transcriptome datasets revealed 7,106 
upregulated and 5,359 downregulated transcripts in 
GBM. DE analysis of proteome datasets identified 890 
upregulated and 309 downregulated proteins in GBM. 
Table  2 shows calculated values of DE genes for both 
omics from raw data.

Combining these two sets resulted in 318 DE genes that 
exhibit significant regulation across both transcription 
and protein translation processes (Fig. 2A). Subsequently, 
we constructed the GGEP using the LFCs of these 318 
genes transcription expression in GBM. The raw data and 
DE analysis results of both omics were provided as sup-
plementary file named “supp file 03.xlsx”. In the GGEP, 
the top ten DE genes ranked by the LFC and adjusted 
p-value are associated with tumorigenesis (CDC45 [47, 
48], POSTN [49], KIF4A [50, 51], PEX5L [52], TFPI [53], 
GOLGA6L2 [54], NOL7 [55], GJB6 [56, 57], IGKV1-16 
[58], and MOG [59]). For instance, CDC45 is associated 
with DNA methylation in a variety of cancers and its 
expression is negatively correlated with overall survival 
of GBM [48]. POSTN, a matricellular protein implicated 
in gliomas and ovarian cancer, drives tumor growth and 
metastasis, influences cell responses [49], and could serve 
as a potential biomarker for GBM survival prognosis 
[60]. NOL7, positioned on chromosome 6p23, exhibits 
dual roles of suppressing cervical carcinoma cell growth 
while promoting melanoma progression [55]. As shown 
in Fig.  2B, the DE genes in GGEP are enriched with 
cell proliferation-related GO terms and pathways (cell 
cycle, RNA metabolism, DNA metabolic processes, etc.) 
which reflect the excessive cell proliferation in tumor 

Table 1  Basic information of patient subjects from the 
transcriptomics study

Female Male Overall

(N = 135) (N = 193) (N = 328)

GBM type

Primary 79 (58.5%) 119 (61.7%) 198 (60.4%)

Recurrent 56 (41.5%) 74 (38.3%) 130 (39.6%)

Age

Mean (SD) 48.9 (12.7) 48.3 (13.6) 48.5 (13.2)

Median [Min, Max] 50.0 [19.0, 72.0] 49.0 [11.0, 79.0] 50.0 [11.0, 79.0]

Overall Survival (Day)

Mean (SD) 605 (696) 628 (649) 618 (668)

Median [Min, Max] 366 [27.0, 4440] 405 [19.0, 3820] 387 [19.0, 4440]

Missing 4 (3.0%) 6 (3.1%) 10 (3.0%)

Table 2  DE analysis results

p-adj refers to adjusted p-values of the hypothesis test of mean gene expression level in GBM and control groups. The Transcripts’ LFC in this table were calculated 
after transformation and normalization of all genes’ read counts using the R package DEseq2

Transcriptomics Proteomics

GBM Control LFC p-adj GBM Control LFC p-adj

CDC45 285.1 20.9 3.06 1.67E-23 6.82E5 0 NA 0.011

NOL7 176.9 1082.1 − 3.37 3.95E-197 2.24E6 0 NA 6.33E-05

TFPI 685.2 65.5 2.75 2.53E-19 5.63E6 3.6E4 7.30 0.041

PEX5L 678.2 2861.4 − 2.85 4.64E-10 3.33E5 3.23E7 − 6.60 0.0078

GOLGA6L2 29.1 2.5 4.94 2.83E-09 0 1.20E7 NA 0.017
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progression [61, 62]. Notably, the enrichment of VEGFA-
VEGFR2 signaling pathway, a major driver of tumor angi-
ogenesis and metastasis indicates its prominent role in 
GBM mechanism. This pathway is instrumental in angio-
genesis, fostering endothelial cell activities and vascular 
permeability, rendering it a promising target for therapy 
development across diverse cancers, including glioblas-
toma [63–65].

Results on identification of drugs with reversal gene 
expression
As shown in Table  3, 1517 gene expression signatures 
were identified from iLINCS by applying the predefined 

Concordance cutoff, calculated between the GGEP and 
the drug response signatures. These signatures were 
derived from perturbation experiments of 726 chemicals, 
which include 119 FDA-approved drugs. Detailed infor-
mation of these signatures and chemicals can be found in 
the supplemental file named “supp file 04.csv”.

Twenty-one of these 119 drugs have undergone inves-
tigation in 215 GBM related clinical trials resulted by 
searching ClinicalTrials.gov. Temozolomide (TMZ), as 
one of 21 drugs, has been studied in 169 clinical trials. 
The remaining 20 drugs have been investigated by an 
average of 2.3 trials. Dasatinib, Sirolimus, Hydroxyu-
rea, and Etoposide, appeared in five GBM based clinical 

Fig. 2  Expression and enrichment analysis of DE genes in the GGEP. A GBM gene expression at both transcription and translation stages. Each dot 
stands for one gene, with its LFCs in RNA transcription and protein translation displayed in the X and Y axes, respectively. Red dots denote the 318 
DE genes applied to construct the GGEP. B Enrichment analysis results of upregulated genes in the GGEP. Each bar denotes an enriched pathway 
from GO. The X-axis values are the log-transformed enrichment p-values

Table 3  Drugs identified in iLINCS with reversal gene expression signatures

The Cutoff column lists the Concordance score value used to filter the signatures with reversal gene expressions. A negative concordance denotes a possible 
reversal gene expression to GGEP. After the first-round screening using concordance < − 0.2 as a cutoff, we further strain the cutoff to < − 0.6 for the LINCS Chemical 
perturbagen library. This is based on the observation that much lower numbers of overlapped genes between its signatures and GGEP (approximately 10% of other 
signatures), which will increase false positive rate. The Signatures column lists the number of signatures identified in each signature library following the cutoffs. The 
Chemicals column lists the number of chemicals tested in these signatures. The Drugs column denotes the number of FDA-approved drugs identified accordingly. The 
row of Total denotes the numeric sum of signatures, chemicals, and drugs identified from all libraries, while the row of Unique lists the unique numbers of chemicals 
and drugs

Cutoff Signatures Chemicals Drugs

Signature Libraries Cancer therapeutics response  < − 0.2 431 275 37

LINCS Chemical perturbagen  < − 0.6 325 263 15

Connectivity Map  < − 0.2 14 11 5

DrugMatrix  < − 0.2 337 187 164

Pharmacogenomics transcriptional  < − 0.2 377 26 126

LINCS target proteomics  < − 0.2 33 32 3

Total – 1517 794 350

Unique – – 726 119
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trials individually. Notably, among the 21 drugs, there 
are three Vascular Endothelial Growth Factor Receptor 2 
(VEGFR2) inhibitors (Axitinib, Cabozantinib, and Dasat-
inib) and one EGFR inhibitor (Gefitinib). This observa-
tion proved the significance of the Vascular Endothelial 
Growth Factor A (VEGFA)-VEGFR2 signaling pathway 
in GBM progression, which was highlighted in the GGEP 
enrichment analysis (Fig.  2B), and thus targeting this 
pathway provides a promising research direction in the 
development of GBM treatment strategies. That being 
said, identification of these 21 drugs proved our method-
ology is valuable for DR, and remaining 98 drugs might 
be novel drug candidates for GBM to be examined. The 
detailed information of the 119 drugs can be found in the 
supplementary file named “supp file 05.csv”.

Results on drug candidate prioritization
Gene expression signatures clustering results
The 350 gene expression signatures of the 119 drugs were 
categorized into seven clusters with different reversal 
gene expression patterns, shown as cluster 1–6, and 8 in 
Fig.  3A (Cluster 7 was the LFC of GGEP in descending 
order). The cluster # in the heatmap visualized differ-
ent reversal strengths of the clusters by comparing each 
gene’s LFC in the drug’s gene expression signatures to the 
GGEP. Among them, 24 drugs in three clusters (Clusters 
#1, #3, and #8) exhibited obvious reversal expressions tar-
geting the GGEP. As illustrated in Fig. 3B, the GGEP gene 
expression could be reversed by the drugs in these three 
clusters. The expressions of the upregulated genes were 
reduced, and the downregulated genes were increased. 
It is noteworthy that the GGEP gene with higher LFCs 
were more strongly reversely regulated, indicating a high 
potential in reversing the GGEP. In contrast, the rever-
sal effects of drugs in the rest of four clusters are either 

Fig. 3  Classification of perturbation signatures. A The perturbation gene expression signatures were classified into 7 clusters. Each row corresponds 
to a gene in GGEP while each column corresponds to one perturbation experiment signature. B Scatter plots of signature LFCs in cluster #1, 3, 
and 8. Each dot represents the LFC of one gene in one signature. The colors of dots denote different clusters. The X-axis presents the genes in GGEP, 
while the Y-axis presents their corresponding LFCs. The red line denotes the LFCs in GGEP in ascending order
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negligible or inaccessible due to a considerable number 
of missing values. Besides, cluster # 8 contains two sig-
natures with a high ratio of missing values (gray column 
in heatmap), indicating that heatmap is not a reliable tool 
for candidate prioritization. The clustering results can be 
found in supplementary file named “supp file 06.csv”.

In addition, we plotted the heatmap at the drug level 
displaying each gene’s median LFC of all gene expres-
sion signatures, the result confirmed the potential 
reversal effect of those 24 drugs (Figure S3). Seven-
teen of the 24 drugs have undergone clinical trials for 
GBM treatment, including Cabozantinib [66–68], Axi-
tinib (NCT01508117, NCT01562197, NCT03291314), 
Mitomycin (NCT01580969, NCT02272270, and 
NCT02770378) [69], and Simvastatin [70]. Twenty-two 
of these 24 drugs have a blood–brain barrier (BBB) pene-
tration probability greater than 0.9, which indicates their 

Table 4  Clinical characteristics for the identified DR candidates

BBBs are the Blood–Brain Barrier permeability probabilities obtained from the Drugbank database, and * indicates that the BBB were obtained from published studies 
as they were missing in the Drugbank database. The column of Clinical Trials lists the number of GBM related clinical trials registered in ClinicalTrials.gov, and # 
indicates that the clinical trials were identified via literature review. The column of Approved Indications lists the drugs’ FDA-approved indications obtained from the 
Drugbank database

Drug Candidates Cluster ID BBB #Clinical Trials FDA-Approved Indications

Temozolomide 8 0.9879 169 Glioblastoma multiforme, refractory anaplastic astrocytoma

Dasatinib 8, 3 0.507 5 Acute lymphoblastic leukemia; chronic myeloid leukemia

Sirolimus 8, 3 0.9599 5 Lymphangioleiomyomatosis and adults with perivascular epithelioid cell tumors

Etoposide 8 0.9609 5 Testicular and small cell lung tumors

Topotecan 8, 3 0.9659 3 Ovarian cancer, small cell lung cancer, or cervical cancer

Cabozantinib 8 Yes* 3 Advanced renal cell carcinoma, hepatocellular carcinoma, and medullary thyroid 
cancer

Mitomycin 8 0.9659 3 Chemotherapeutic agent for various malignancies

Dacarbazine 8 0.9382 2 Malignant melanoma and Hodgkin’s disease

Temsirolimus 8 0.9494 2 Renal cell carcinoma

Bortezomib 1 0.6533 2 Multiple myeloma

Axitinib 8 Yes* 2 Advanced renal cell carcinoma

Gemcitabine 8 0.9693 1 Adjunct therapy for ovarian cancer, non-small cell lung carcinoma, metastatic breast 
cancer, and as a single agent for pancreatic cancer

Cytarabine 8 0.9465 1 Acute non-lymphocytic leukemia, lymphocytic leukemia, and the blast phase 
of chronic myelocytic leukemia

Romidepsin 8 Yes* 1 Cutaneous T-cell lymphoma

Simvastatin 8 0.9422 1# Lower lipid levels and reduce the risk of cardiovascular events

Docetaxel 8 Poor* 1# Locally advanced or metastatic breast cancer, metastatic prostate cancer, gastric 
adenocarcinoma, head and neck cancer

Thalidomide 8 0.9382 1 Newly diagnosed multiple myeloma, erythema nodosum leprosum

Epirubicin hydrochloride 8 0.9951 1# Axillary node metastases in patients of primary breast cancer

Tigecycline 8 0.9836 0 Bacterial infections

Podofilox 8 0.5388 0 External genital warts and perianal warts

Prochlorperazine 8 0.9781 0 Schizophrenia and anxiety and to relieve severe nausea and vomiting

Clofarabine 8 0.9827 0 Relapsed or refractory acute lymphoblastic leukemia

Ciclopirox 8 0.9892 0 Mild to moderate onychomycosis of fingernails and toenails in immunocompetent 
patients

Tacrolimus 8 0.9659 0 Prevent organ transplant rejection and to treat moderate to severe atopic dermatitis

Table 5  Top six drug candidates ranked by the RS

Drug Regulation 
Score

Overall 
Coverage

# 
Clinical 
Trials

Romidepsin 2.093 0.610 1

Docetaxel 1.664 0.519 1

Ciclopirox 1.653 0.601 0

Cabozantinib 1.652 0.657 1

Epirubicin Hydrochlo-
ride

1.641 0.591 1

Axitinib 1.633 0.594 2
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possible drug delivery to GMB brain tissues. Table 4 lists 
information of these 24 drugs, including their BBB pen-
etration probabilities, FDA-approved indications, and 
the number of GBM-related clinical trials they have been 
tested in.

Results on candidates’ reversal strength assessment
Based on RS and OC, we evaluated the reversal effect on 
the candidates. Table 5 lists the top six individual candi-
dates ranked by the calculated RS, which are consistent 
with their LFC (Fig.  4). The calculated RS and OC and 
the bar plots for all candidates can be found in the sup-
plementary file named “supp file 07.csv” and “supp file 
08.pdf”.

Among them, Romidepsin exhibits a significantly 
higher reversal effect than the others across all indices 
and from the direct expression of the bar plots. Romidep-
sin reverses the expression of 61% GGEP genes and its 

RS, which is a weighted sum of its reversal LFCs targeting 
these GGEP genes, is 25% higher than the other drugs. 
An example is Cabozantinib, although it can reverse 
more GGEP genes than Romidepsin (65.7% vs. 61%), its 
RS is lower due to smaller reversal LFCs it has. Note-
worthy, the results of the signature clustering and the RS 

Fig. 4  Bar plots of top 6 candidates ranked by the RS. Each bar stands for one gene’s median LFC which were calculated from all identified 
expression signatures for the drug. The red dotted line stands for the LFCs in GGEP in ascending order. RS regulation score, OC overall coverage

Table 6  The selected five top candidates

RS regulation score, OC overall coverage, BBB Blood–Brain Barrier

Drug RS OC BBB

Ciclopirox 1.653 0.601 0.9892

Prochlorperazine 1.563 0.623 0.9781

Clofarabine 1.542 0.579 0.9827

Tacrolimus 1.435 0.566 0.9659

Tigecycline 1.302 0.528 0.9836
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evaluation showed high consistency. Specifically, there 
were 22 candidates (91.6%) presented in both the list of 
24 candidates identified by the signature clustering and 
the list of top 24 candidates ranked by the RS. This sug-
gests that the RS can be applied as an efficient indicator 
in selecting candidates with top reversal strengths.

We identified five top candidates based on the fol-
lowing criteria: (1) high RS score, (2) not tested in any 
clinical trials for GBM yet, and (3) high BBB penetra-
tion probability. The top five candidates are Ciclopirox, 
Prochlorperazine, Clofarabine, Tacrolimus, and Tige-
cycline (Table  6). Some candidates with top RS were 
excluded because they have undergone clinical trials for 
GBM, such as, Romidepsin, Cabozantinib, Epirubicin 
Hydrochloride, and Axitinib, are associated with poor 
BBB penetration ability [71], or have failed a clinical trial 
when administered directly [72], like Docetaxel.

Results on drug candidate validation
Evaluation results with the translator
We evaluated the potential mechanisms of action of 
these five selected candidates for treating GBM based on 
scientific evidence collected from the Biomedical Data 
Translator.

Ciclopirox, an inhibitor of metal-dependent enzymes, 
was used to treat onychomycosis of fingernails and toe-
nails in immunocompetent patients [73]. The result 
generated by the Translator is shown in Fig. 5. Detailed 
evidence can be found in supplementary file named 
“supp file 09.pdf” or follow the link https://​arax.​ncats.​
io/?r=​187830. Figure  5 showed that Ciclopirox might 
impact GBM mechanism via pathways associated with 
EGFR, VEGFA, TP53, and CXCR4. Subsequent literature 
review proved that Ciclopirox inhibited the growth of 
glioblastoma cell lines (U251, SF126, A172, and U118) via 
simultaneously enhancing JNK/p38 MAPK and NF-κB 

Fig. 5  Scientific evidence collected by the Biomedical Data Translator. This network was constructed by possible interactions between Ciclopirox 
and GBM. We also include indirect interactions connected by another node, such as the VEGFA in this network. The green edges stand 
for high-confidence associations such as “regulates”, “treats”, “causes”, or “associated with”, while the blue edges stand for low-confidence associations, 
such as being discussed simultaneously in a study. Please note that direct edges between Ciclopirox and GBM do not always stand for existing 
studies that GBM has been treated by Ciclopirox

https://arax.ncats.io/?r=187830
https://arax.ncats.io/?r=187830
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signaling [74]. Another study showed that Ciclopirox 
inhibits the proliferation of cancer cell lines including 
MCF7 breast cancer cells, A549 lung cancer cells, and 
HT29 colon cancer cells via suppressing Cdc25A [75]. A 
recent study showed that Ciclopirox could inhibit U-251 
GBM cell line via targeting deoxyhypusine hydroxylase 
[76].

Prochlorperazine is a dopamine D2 receptor antago-
nists used to treat schizophrenia and anxiety, as well as 
to relieve severe nausea and vomiting [77]. The search 
results included in supplementary file named “supp 
file 10.pdf” (https://​arax.​ncats.​io/?r=​187832), from the 
Translator showed that Prochlorperazine might impact 
GBM mechanism of neoplastic cell transformation 
and tumor progression. One publication reported that 
Prochlorperazine induces concentration-dependent loss 
in the viability of human glioblastoma cells and its EC50 
has been evaluated at the U87-MG cell line [78].

Clofarabine is a DNA polymerase inhibitor used to 
treat relapsed or refractory acute lymphoblastic leu-
kemia [79]. The evidence, generated by the Translator, 
is included in the supplementary file named “supp file 
11.pdf” (https://​arax.​ncats.​io/?r=​233468) and shows 
that Clofarabine might impact GBM mechanism via 
pathways associated with STAT3, TP53, apoptosis, 
and neoplastic cell transformation. Currently Clo-
farabine is being tested as a repurposing drug to treat 
CLDN18.2 + solid tumors (NCT05862324) and relapsed 
solid tumors (NCT02211755). However, its effect on 
GBM has not been reported yet.

Tacrolimus is an FDA-approved immunosuppressive 
agent used to prevent organ transplant rejection and 
to treat moderate to severe atopic dermatitis [80]. The 
evidence generated by the Translator is included in the 
supplementary file named “supp file 11.pdf” (https://​
arax.​ncats.​io/?r=​187831). It shows that Tacrolimus 
might impact GBM mechanism via pathways associ-
ated with EGFR, VEGFA, TP53, and apoptosis. The 
relevant publication proved that Tacrolimus attenu-
ated the MRP1-mediated chemoresistant phenotype i2 
GBM stem-like Cells [81]. Tacrolimus could confer che-
mosensitivity to anticancer drugs in glioblastoma mul-
tiforme cells, offering a possible improvement to the 
current poor therapy available for high-grade human 
gliomas [82].

Tigecycline is a Glycylcycline antibiotic used to treat 
bacterial infections [83]. The Translator results included 
in the supplementary file named “supp file 13.pdf” 
(https://​arax.​ncats.​io/?r=​187834) shows that Prochlorp-
erazine might impact GBM tumor growth. Similar pub-
lished results showed that Tigecycline inhibited glioma 
cell growth in an in vitro study by regulating the miRNA-
199b-5p-HES1-AKT pathway [84]. Besides, Tigecycline 

has demonstrated efficacy in restraining proliferation 
across various cancer types, including gastric cancer, 
melanoma, and neuroblastoma [85].

Therapeutic effects evaluation of top five drug candidates
Based on the systematic assessment of the drug can-
didates’ reversal strength and evaluation of scientific 
evidence regarding their mechanism of actions, we con-
sidered Ciclopirox, Prochlorperazine, Clofarabine, Tac-
rolimus, and Tigecycline as the most optimal candidates 
for in- vitro evaluation on GBM cell lines.

Concentration response assessment of top five candidates 
on eight GBM cell lines
For cell viability assay in each glioblastoma cell line, cell 
seeding density, choice and concentration of positive 
control, 0.3% DMSO, and incubation times were opti-
mized for assay performance in 1536-well plates. Cells 
were incubated with 11 concentrations of each drug 
ranging from 0.56 nM to 33 µM. Data was normalized to 
cells treated with 0.3% DMSO as 100% viable cells and to 
10  µM staurosporine as 0% viable cells. Based on these 
parameters, the calculated Z-factor of the assay for each 
cell line was between 0.65–0.82. The IC50 values and effi-
cacy of drugs was determined by cell viability assays via a 
luminescent ATP content readouts.

Out of the five drugs tested, Clofarabine was the most 
efficacious in killing all glioblastoma cell lines with IC50 
values ranging from 36.9  nM to 467.5  nM (Fig.  6A and 
Table 7). Ciclopirox was moderately efficacious, with IC50 
values between 927.7 nM to 3.2 µM (Fig. 6B and Table 7). 
TMZ was included for a comparative experiment. Con-
sistent with findings from reported studies [86, 87], TMZ 
demonstrated high IC50 values ranging from 252  µM in 
H4 cells to approximately 500 µM in U251 cells (Fig. 6F 
and Table 7). It’s IC50 on other GBM cell lines could not 
be estimated. These results illustrate the superior thera-
peutic efficacy of Clofarabine and Ciclopirox over TMZ 
in targeting GBM cells. Prochlorperazine exhibited steep 
dose–response curves, with estimated IC50 values rang-
ing from 12.4 to 19.6 µM (Fig. 6C and Table 7). Due to 
its relatively high IC50 values, Prochlorperazine was not 
included in subsequent selectivity assessments. Besides, 
the IC50 of Tacrolimus and Tigecycline could not be esti-
mated from their concentration–response curves, dem-
onstrating little to no effect on killing GBM cell lines 
(Fig. 6D, and E). 

Selectivity and  cell viability assessment of  Ciclopirox 
and  Clofarabine  To assess the efficacy and specific-
ity of Clofarabine and Ciclopirox on GBM cell lines, we 
then conducted a confirmation assay utilizing both the 

https://arax.ncats.io/?r=187832
https://arax.ncats.io/?r=233468
https://arax.ncats.io/?r=187831
https://arax.ncats.io/?r=187831
https://arax.ncats.io/?r=187834
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eight GBM cell lines and an astrocyte cell line as a non-
cancerous control. For consistency, all GBM lines and 
astrocytes were tested in 384-well plates under match-
ing culture conditions. Data was normalized as described 
above, and the calculated Z-factor of this assay was 0.68. 
The IC50 values for Clofarabine and Ciclopirox in astro-
cytes was 7.46 nM and 30.03 µM respectively (Fig. 7A and 
D). In comparison, the IC50 values ranged from 177 nM 
to 1.06  µM for Clofarabine and 760  nM to 3.74  µM for 
Ciclopirox for the GBM cell lines (Fig. 7B and E). These 
data indicates that Clofarabine was more efficacious in 

killing GBM cells compared to astrocytes by a magnitude 
of 6- to 42-fold (Fig. 7C). In the case of Ciclopirox, GBM 
cells were 8- to 40-fold more susceptible than astrocytes 
to the drug (Fig. 7F). The results showed that both drugs 
had high specificity targeting GBM cell lines, their thera-
peutic effect on GBM warrants further investigation. Fig-
ure 8 shows representative images of the difference in via-
bilities of two GBM cell lines and astrocytes when treated 
with 1.2 µM Clofarabine. At this concentration, Clofara-
bine at this concentration can kill GBM cells, while it has 
minimal effect on astrocytes. The staining images of all 

Fig. 6  Concentration–response curves of the five drugs. All drugs were tested in eight GBM cell lines in 1536-well plates. Each data point 
is presented as mean ± SD; n = 8 biological replicates for each condition. Clofarabine and Ciclopirox showed mediate to strong anti-GBM effect 
while Prochlorperazine, Tacrolimus, and Tigecycline showed little to no efficacy

Table 7  IC50 of Candidates

Cell line IC50

Clofarabine Ciclopirox Prochlorperazine Temozolomide

U-87 MG 3.69E-08 3.188E-06 1.27E-05 –

A172 3.148E-07 9.277E-07 1.26E-05 –

U-251 MG 2.997E-07 1.768E-06 1.96E-05  ~ 5.0E-4

H4 4.675E-07 2.983E-06 1.33E-05 2.52E-4

SW1088 2.226E-07 1.516E-06 1.59E-05 –

LN-229 3.55E-07 1.616E-06 1.24E-05 –

T98-G 6.475E-08 2.456E-06 1.48E-05 –

U-118 MG 8.027E-08 1.839E-06 1.71E-05 –
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GBM and astrocyte cell lines treated with Clofarabine and 
Ciclopirox at 1.2 µM are provided in the supplementary 
file named “supp file 14.pdf”. The staining images at other 
concentrations are available upon request.

Discussion
The development of pharmaceutical interventions for 
rare diseases are challenged by low prevalence. Among 
them, GBM remains a devastating rare disease with lim-
ited treatment options and a short life expectancy. To 
fill the gap, in this study, we introduced a novel compu-
tational drug repurposing approach for GBM with con-
sideration of the concept of reversal gene expression by 
performing multi-omics data analysis and in-vitro experi-
ments. To this end, we successfully identified two prom-
ising drug candidates, Clofarabine and Ciclopirox for 
GBM, for further investigation.

In this study, we collected 328 transcriptome and 3 pro-
teome data sets of GBM patients from a public database 

and a published study. Subsequently, we constructed the 
GGEP based on 318 DEGs resulting from multi-omics 
analysis. This GGEP proved to be an effective profile in 
identifying DR candidates. However, the data type and 
sample size we used were limited due to the limited exist-
ing studies. When possible, the inclusion of more data 
types, such as whole genome sequencing data, metabo-
lism data, and clinical data would produce deepened 
insight in GBM mechanisms and possibly more promis-
ing drug repurposing candidates.

We utilized two self-defined indices, RS, and OC to 
quantify DR candidates’ reversal strength. The results 
showed that RS and OC can effectively prioritize can-
didates, resulting in promising candidates that were 
validated by in-vitro experiments. Five of the top six can-
didates ranked by RS (Table  5) are currently in clinical 
trials for GBM. The sixth candidate, Ciclopirox, exhibited 
promising in vitro efficacy in this study. These two indi-
ces were calculated by comparing the averaged LFCs in 
drug expression signatures with those in GGEP. Inclusion 

Fig. 7  Concentration–response curves of Clofarabine and Ciclopirox in iPSC-derived astrocytes and GBM cells. A: Concentration–response curves 
of Clofarabine in astrocytes; B: Concentration–response curves of Clofarabine in GBM cells; C: Clofarabine’s IC50 on astrocytes (green bar) and GBM 
cells (red orange bars); D: Concentration–response curves of Ciclopirox in astrocytes; E: Concentration–response curves of Ciclopirox in GBM cells; 
F: Ciclopirox’s IC50 on astrocytes (green bar) and GBM cells (red orange bars); In A, B, D, and E, Each data point is presented as mean ± SD; n = 4–6 
biological replicates for each condition
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of more features, such as drug concentrations and treat-
ment time will improve the prioritization. Furthermore, 
these indices focus on individual drugs and cannot be 
directly applied on the prediction of combination thera-
pies. The next step in our investigation is to expand the 
prioritization methods to reflect more aspects of the can-
didates’ characteristics, such as toxicity, adverse effects, 
and drug-drug interactions. This will increase the robust-
ness of the final candidate selection, especially for the 
combination therapies.

Through the in-vitro experiments, we identified Clo-
farabine and Ciclopirox as two promising repurposing 
drug candidates for GBM, which are further proved by 
the existing studies. Ciclopirox has been repurposed to 
treat breast cancer, lung cancer cells, and colon cancer, 
it has demonstrated inhibitory effect on GBM cell lines 
[74, 75]. Similarly, Clofarabine is being tested as a repur-
posing drug to treat solid tumors (NCT05862324 and 

NCT02211755). Future work will include in vivo studies 
to confirm their therapeutic efficacy in GBM models, fol-
lowed by the design of clinical trials for candidates that 
could successfully pass preclinical testing. Additionally, 
we examined the therapeutic potential of combination 
therapies. Using the RS and OC scores, we ranked the 
combinations of top-ranked candidate drugs. We have 
planned in  vitro experiments to evaluate whether these 
drug combinations exhibit synergistic or additive effects 
on GBM cell viability, while simultaneously investigating 
the molecular mechanisms underlying these interactions. 
The methods and results of these studies will be reported 
in a separate publication.

In this study, we identified one psychotropic drug, 
Prochlorperazine as an effective drug candidate in inhib-
iting GBM cell lines. Several studies have reported psy-
chotropic drugs as potential anti-GBM agents given their 

Fig. 8  Viability staining GBM and astrocyte cells after Clofarabine (1.2 µM) treatment. Blue color denotes cell nuclei and green denotes plasma 
membrane of vital cells. DMSO treatment served as a negative control, while 10 µM Staurosporine as a positive control
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ability to penetrate the BBB and modulate neurotrans-
mitter levels in the brain [91–95]. It is worthy to note that 
a small number of psychotropic drugs identified from 
this study, which might be due to the minimal overlap 
between GGEP and psychotropic drug perturbation sig-
natures in iLINCS. Applying the RS and OC indices to 
additional signature databases could potentially uncover 
more promising psychotropic drug candidates for GBM 
repurposing.

In this preliminary study, the iLINCS database was 
chosen for its perturbation signature comparison func-
tion, to validate predictive power of RS and OC. For the 
next step, we will integrate more perturbation signature 
databases, such as Cancer Cell Line Encyclopedia (CCLE) 
[88], Genomics of Drug Sensitivity in Cancer (GDSC) 
[89], ChemPert [96], and PerturBase [97] to identify 
more potential drug candidates with stronger therapeutic 
effect. Furthermore, at the time of performing this study, 
there was no existing multi-omics database designed spe-
cifically for rare diseases, therefore we manually collected 
the omics data sets from various sources after laborious 
searching and reviewing. Thus, it concludes that a rare 
disease-based omics data repository would greatly speed 
up the pace of DR in rare diseases, as well as various 
translational studies employing advanced artificial intel-
ligence (AI) tools.
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