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Abstract 

Background The traditional process of developing new drugs is time‑consuming and often unsuccessful, making 
drug repurposing an appealing alternative due to its speed and safety. Graph neural networks (GCNs) have emerged 
as a leading approach for predicting drug‑disease associations by integrating drug and disease‑related networks 
with advanced deep learning algorithms. However, GCNs generally infer association probabilities only for existing drugs 
and diseases, requiring network re‑establishment and retraining for novel entities. Additionally, these methods often 
struggle with sparse networks and fail to elucidate the biological mechanisms underlying newly predicted drugs.

Methods To address the limitations of traditional methods, we developed HEDDI‑Net, a heterogeneous embedding 
architecture designed to accurately detect drug‑disease associations while preserving the interpretability of biological 
mechanisms. HEDDI‑Net integrates graph and shallow learning techniques to extract representative diseases and pro‑
teins, respectively. These representative diseases and proteins are used to embed the input features, which are then 
utilized in a multilayer perceptron for predicting drug‑disease associations.

Results In experiments, HEDDI‑Net achieves areas under the receiver operating characteristic curve of over 0.98, out‑
performing state‑of‑the‑art methods. Rigorous recovery analyses reveal a median recovery rate of 73% for the top 100 
diseases, demonstrating its efficacy in identifying novel target diseases for existing drugs, known as drug repurposing. 
A case study on Alzheimer’s disease highlighted the model’s practical applicability and interpretability, identifying 
potential drug candidates like Baclofen, Fluoxetine, Pentoxifylline and Phenytoin. Notably, over 40% of the predicted 
candidates in the clusters of commonly prescribed clinical drugs Donepezil and Galantamine had been tested in clini‑
cal trials, validating the model’s predictive accuracy and practical relevance.

Conclusions HEDDI‑NET represents a significant advancement by allowing direct application to new diseases 
and drugs without the need for retraining, a limitation of most GCN‑based methods. Furthermore, HEDDI‑Net provides 
detailed affinity patterns with representative proteins for predicted candidate drugs, facilitating an understanding of their 
physiological effects. This capability also supports the design and testing of alternative drugs that are similar to existing 
medications, enhancing the reliability and interpretability of potential repurposed drugs. The case study on Alzheimer’s 
disease further underscores HEDDI‑Net’s ability to predict promising drugs and its applicability in drug repurposing.
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Background
As the complexity of diseases continues to grow, it is 
essential to study them from multiple perspectives to 
comprehensively understand their pathological mecha-
nisms [1, 2]. However, developing safe and effective drugs 
is a time-consuming and costly endeavor, often span-
ning 10–15  years and costing an average of 2.6 billion 
US dollars [3, 4]. Moreover, less than 10% of new drugs 
are approved for clinical use after undergoing a series of 
lengthy drug design processes [5]. Consequently, drug 
repurposing—identifying new therapeutic applications 
for existing drugs beyond their original indications—
offers a valuable alternative, particularly for diseases 
without known treatments [6]. The advantage of drug 
repurposing is rooted in the use of approved drugs that 
have already undergone rigorous animal testing and 
clinical trials as well as equipped with well-characterized 
safety profiles and documented side effects.

The accumulation of extensive, diverse databases and 
advancements in computer hardware and software has 
spurred the development of innovative computational 
methods in medical research [7]. Computational predic-
tion methods for drug-disease associations generally fall 
into four categories: network propagation-based, matrix 
factorization- and completion-based, machine learning-
based, and deep learning-based techniques [8–10]. These 
methods computationally identify previously undiscov-
ered connections between diseases and approved drugs, 
significantly reducing time and expenses while offering 
potential candidates for further experimental validation. 
Notably, graph-based deep learning stands out as the 
current leader, acclaimed for its exceptional performance 
[8–11].

Graph-based deep learning methods employ multiple-
layer artificial neural networks (ANNs) to learn patterns 
and relationships within diverse biological and biomedi-
cal networks encompassing drug and disease data. These 
techniques automatically derive data features, eliminat-
ing the need for manual feature engineering, and allow-
ing the identification of complex, non-linear relationships 
between drugs and diseases. However, these methods 
mandate substantial data for effective training and can 
entail high computational costs. Moreover, interpret-
ing the acquired models may present challenges, poten-
tially hindering clinical integration. Nonetheless, deep 
learning-based methods have demonstrated encourag-
ing outcomes, surpassing alternative methods in recent 
investigations. Examples include using random walking 
to explore the neighbor topology structures of diseases 
and drugs on different heterogeneous networks and con-
structing multi-layer convolutional network modules 
to learn the representative attributes for drug-disease 

node pairs, then aggregating topological and attribute 
representation to train predictive model from a mul-
tilayer neural network architecture [12]. Similar ideas 
have also been applied in discovering potential associa-
tions between miRNAs and diseases to investigate the 
molecular mechanisms and pathogenesis of complex dis-
eases [13]. Other approaches involve graph convolutional 
networks (GCNs) and multilayer attention networks to 
encode the embeddings of diseases and drugs in inter- 
and intra-domain, then decoding to drug-disease asso-
ciation probability scores [14, 15]. Some methods even 
extract and integrate common and specific topologies 
and attributes in multiple heterogeneous networks and 
subnets from multi-sourced information of drugs and 
diseases via different types of graph convolutional auto-
encoders, then adaptively integrating these representa-
tions for final association prediction [16]. Although these 
methods may capture complicated and multi-scale non-
linear relationships between drug-disease pairs, most of 
them are limited to obtaining the predicted probabilities 
of drug-disease pairs. They are primarily focused on dis-
covering unobserved links for known drugs and diseases 
from various heterogeneous sources without effectively 
presenting and explaining the biological functions and 
meanings contained in the used data.

To address the issue of limited interpretability and 
effectiveness of existing methods, we present a heteroge-
neous embedding drug and disease information network 
(HEDDI-Net) architecture that integrates shallow learn-
ing algorithms and graph theory into a deep learning 
model for drug-disease association prediction (Fig.  1). 
Our proposed method demonstrates excellent perfor-
mance, achieving an area under the receiver operating 
characteristic curve of over 0.98 in the datasets obtained 
from Comparative Toxicogenomics Database (CTD) [17] 
after evaluation with tenfold cross-validation. Further-
more, it outperforms several state-of-the-art methods. 
The main contributions of this work can be summarized 
as follows:

HEDDI-Net effectively connects the links of hetero-
geneous data, retaining data readability while achiev-
ing outstanding performance in both independent 
testing and comparison with other methods.
The architecture retains high interpretability by uti-
lizing specific proteins and diseases as features and 
training the model based on the affinity and similar-
ity with the representative markers of each input pair 
(known drug and targeted disease).
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Importantly, unlike existing solutions, HEDDI-Net can 
be extended to new diseases or novel drugs without the 
need to modify the model.

Methods
Study design
This study aims to develop and validate HEDDI-Net, a 
deep learning-based model designed to predict drug-
disease associations and facilitate drug repurposing. 
HEDDI-Net integrates protein-drug affinity profiles and 
disease similarity measures to generate interpretable 
embeddings that enhance the model’s predictive accu-
racy. The model’s performance and benchmark compari-
son were evaluated using tenfold cross-validation on both 
large and small datasets, as well as balanced and imbal-
anced sample pairs. Metrics such as AUC, AUPR, recall, 
specificity, accuracy, and F1-score were used to com-
prehensively assess the model’s predictive capabilities. 
Furthermore, to validate HEDDI-Net’s robustness, we 
systematically removed top-ranked diseases and drugs 
along with their associations and evaluated the model’s 
ability to recover these associations using the remaining 
data. A case study focusing on Alzheimer’s disease was 
conducted to demonstrate the model’s interpretabil-
ity and practical applicability. Potential drug candidates 
were clustered based on their binding affinity profiles and 
compared with commonly prescribed Alzheimer’s drugs, 
Donepezil and Galantamine.

These comprehensive approaches highlight HEDDI-
Net’s potential to predict novel drug-disease associations, 
offering a valuable tool for drug repurposing and acceler-
ating the drug discovery process.

HEDDI‑Net architecture: harnessing shallow learning 
and graph theory for drug‑disease associations
In this study, we introduce the Heterogeneous Embed-
ding Drug and Disease Information Network (HEDDI-
Net), an innovative architecture that synergizes a shallow 
learning algorithm and graph theory within a deep learn-
ing framework to identify drug-disease associations. The 
shallow learning algorithm and graph theory are strate-
gically employed to extract representative proteins and 
diseases as interpretable features, respectively. These 
features are subsequently integrated into a deep neural 
network model to predict drug-disease associations. Fig-
ure 1 provides an overview of the HEDDI-Net workflow.

To gather drug-related information, we collected drug-
protein interactions and their binding affinities from the 
BindingDB database [18–20]. We developed a shallow 
learning model to predict the binding affinity between 
proteins and drugs, thereby defining representative pro-
teins. The predicted binding affinity profiles of these rep-
resentative proteins were then utilized as input features 
for the drugs in HEDDI-Net (Fig. 1A).

For disease representation, we constructed a hierarchi-
cal directed acyclic graph (DAG) using Medical Subject 
Headings (MeSH) disease descriptors, grounded in the 

Fig. 1 HEDDI‑Net workflow: protein‑drug affinity, disease similarity, feature embedding, and association learning model. A Protein‑drug affinity 
model. This component predicts the binding affinities between various drugs and representative proteins. The shallow learning embedding 
processes the binding affinity data to generate a comprehensive affinity matrix for the drugs. B Disease similarity model. This part calculates 
the semantic similarities between diseases using the MeSH hierarchical structure. It generates a similarity matrix by embedding the graph‑based 
similarities, which helps in identifying representative diseases. C Association learning model. This deep learning model integrates the embeddings 
derived from the protein‑drug affinity and disease similarity models. It concatenates these features to predict the association probabilities 
between drugs and diseases using a multi‑layer perceptron (MLP) with dropout layers to ensure robust predictions



Page 4 of 16Su et al. Journal of Translational Medicine           (2025) 23:57 

semantic definitions of diseases. We identified eigen-
diseases within the MeSH DAG to serve as representative 
diseases and calculated the semantic similarity between 
eigen-diseases and target diseases to generate input fea-
tures for the diseases in HEDDI-Net (Fig. 1B).

Lastly, we trained a deep neural network on known 
disease-drug associations. The drug and disease features, 
derived from protein-drug affinity and disease similarity 
profiles, were utilized as input nodes. The deep neural 
network, consisting of multiple fully connected layers, 
predicted the association probability for each drug-dis-
ease pair (Fig. 1C).

Chemical‑disease associations for training and testing 
HEDDI‑Net
We utilized chemical-disease relationships from the 
Comparative Toxicogenomics Database (CTD) [17] as 
drug-disease associations to train HEDDI-Net. Two 
types of chemical-disease associations were employed for 
training and evaluating our model:

1. Direct Evidence: This dataset included all association 
data with direct evidence, such as marker/mecha-
nism and therapeutic relations, resulting in 71,187 
chemical-disease associations between 6,074 chemi-
cals and 2,802 diseases.

2. Therapeutic: This dataset comprised only therapeutic 
association data, deemed more reliable, with 26,789 
drug-disease associations between 4,157 drugs and 
2,149 diseases.

Feature embedding of drugs in HEDDI‑Net
In HEDDI-Net, achieving model interpretability neces-
sitated the utilization of protein binding affinity profiles 
to embed drug features. Drugs generally exhibit multi-
ple binding sites for various proteins, resulting in diverse 
effects on molecular biology and pharmaceutical func-
tions [21, 22]. To address the complexity inherent in these 
interactions, we employed the Support Vector Regression 
(SVR) algorithm to predict the affinity between differ-
ent drugs and individual proteins, thereby encapsulating 
the binding characteristics of each drug. These predicted 
binding affinity profiles, particularly those with the repre-
sentative proteins, were subsequently employed as input 
features for drugs in our drug-disease association predic-
tion model.

To develop affinity prediction models ( Aff  ) for pro-
teins ( PR ) and drugs ( DR ), we collected information 
on drug-protein interactions and their binding affini-
ties from Binding Database (BindingDB), a publicly 

accessible repository containing experimentally derived 
binding affinities of protein–ligand interactions. Bind-
ingDB comprises over 2.5 million binding data entries for 
more than 8,900 target proteins and 1.1 million drug-like 
small molecules up to mid-2022. We specifically selected 
human proteins with unique UniProt [23] entry names 
and drug compounds possessing structural informa-
tion, PubChem CID [24], InChI key [25], and binding 
affinity to corresponding proteins. The binding affinity 
served as the dependent variable for SVR model predic-
tion, while the structural information of drugs ( FDR

1  ) was 
used as the first set of features. We obtained the struc-
tural information from BindingDB and converted it into 
a 166-bit MACCS set [26] using RDKit [27]. The second 
set of features, the physicochemical properties of drug 
compounds ( FDR

2  ), was acquired from the ChEMBL [28, 
29], a public database maintained by the European Bio-
informatics Institute (EBI), using InChI keys. ChEMBL 
includes 2-D structures, calculated properties, and bioac-
tivity data from primary scientific literature. We selected 
17 physicochemical properties potentially relevant to 
binding affinity for training the regression model, as 
listed in Table  S1. After filtering, 203,725 binding data 
entries between 1,289 proteins and 118,366 small mol-
ecules met the criteria and were used to establish affinity 
models in this study.

The affinity model of protein ( PR ) was trained using the 
following equation:

where Aff PR
DR represents the affinity value for drug DR 

with protein PR,FDR
1 ∈ R

APR×SDR , andFDR
2 ∈ R

APR×PDR . In 
this context, APR denotes the number of drugs with avail-
able affinity data for protein PR , SDR is 166, which is the 
length of MACCS set, and PDR is 17, which is the number 
of used physicochemical properties of drug compounds. 
The affinity profiles of drugs ( IDR ) to the representative 
proteins ( PRr ) were used as input features for drugs in 
the drug-disease association learning model, represented 
as:

To ensure that the representative proteins effectively 
represent the relevant biological interactions, we imple-
mented a rigorous filtering and evaluation process. This 
process was crucial for identifying the most informative 
proteins, thereby enhancing the model’s predictive accu-
racy and interpretability. We initially filtered proteins 
with at least 15 small molecule drug affinity data, result-
ing in 645 proteins meeting the criteria. For each pro-
tein, we partitioned the affinity data into 70% for training 
and 30% for testing. The testing data was further utilized 

(1)Aff PR
DR = SVR(F

DR

1
, FDR

2 )

(2)IDR = Aff
PRr
DR
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to evaluate the performance of the protein-drug affin-
ity model using Spearman’s rank correlation coefficient 
(Spearman’s ρ) [30].

To ensure that superior performance was not due to 
chance, we conducted 1,000 permutation tests for each 
model and calculated the z-score based on the permuta-
tions. The z-score equation [31] used to evaluate the per-
formance of the protein-drug affinity model is:

where ρ represents the observed Spearman’s ρ, µperm 
is the mean of the Spearman’s ρ from the 1000 permu-
tation tests, and σperm is the standard deviation of the 
Spearman’s ρ from the 1000 permutation tests. This 
process (1000 permutation tests for z-score calculation) 
was repeated for 100 times by randomly dividing train-
ing and testing dataset. Accordingly, for each protein, 
100 z-scores were calculated, and the median z-score 
was used to evaluate its model performance in predicting 
binding affinity of drugs.

We selected 228 proteins with a median z-score greater 
than or equal to 4 as representative proteins ( PRr ) based 
on the testing performances. It is important to note that, 
following this selection, we used all available small mol-
ecule drug data to construct the affinity models for the 
representative proteins. Additionally, we applied Min-
MaxScaler to normalize the data for all affinity models, 
based on the physicochemical properties of all 118,366 
drug-like small molecules. This normalization process 
was subsequently applied to the drug-disease association 
models, ensuring consistent scaling and facilitating the 
integration of affinity profiles into the overall predictive 
framework.

Feature embedding of diseases in HEDDI‑Net
The Medical Subject Headings (MeSH) database (https:// 
www. ncbi. nlm. nih. gov/ mesh/) [32], a controlled vocabu-
lary thesaurus maintained by the National Library of 
Medicine (NLM) and encompasses subject headings in 
MEDLINE/PubMed and other NLM databases, serves as 
a critical resource for indexing, cataloging, and searching 
biomedical and health-related information. MeSH descrip-
tors are systematically organized in a hierarchical structure, 
ranging from general to specific disease terms across up to 
thirteen hierarchical levels, thereby forming a hierarchical 
directed acyclic graph (DAG). Based on the layered struc-
ture of the DAG, we posited that diseases sharing a greater 
number of descriptors would exhibit more common phe-
notypes and symptoms, impact similar physiological func-
tions, and possess closely related molecular origins. This 
implies that such diseases may respond to similar thera-
peutic interventions or treatments.

(3)z =
ρ − µperm

σperm

In this study, we utilized a total of 4,933 diseases to 
construct the DAG tree and quantify the relationship 
between two diseases based on the MeSH descriptor 2022. 
We employed Wang’s method [33] to calculate seman-
tic similarity. Wang’s method leverages the topological 
information of two nodes (MeSH descriptors) within the 
biomedical ontology tree and accounts for the varying con-
tributions of each node. This approach is widely recognized 
for its efficacy in similarity calculations due to its compre-
hensive consideration of the hierarchical structure and 
node significance within the DAG.

Assuming a tree structure of disease DI is represented as 
DAGDI = (DI ,TDI ,EDI ) , where TDI is the set of all ances-
tor nodes of DI in DAGDI (including the term DI ), and EDI 
is the set of corresponding links (semantic relations). The 
semantic value of disease DI , as the cumulative contribu-
tion of all nodes in DAGDI to term DI , can be denoted as:

where SDI (t) is the semantic value of term t related to 
term DI , defined as:

where � is the semantic contribution factor for term t 
with its child term t′ , which is chosen between 0 and 1 
to reduce the contributions of ancestor nodes that are 
far from term DI . In this study, � is set to 0.5 based on 
recommendations from findings in the original literature 
[33]. The semantic similarity between disease DIa and 
disease DIb is calculated as:

where t represents the common ancestor nodes of dis-
ease DIa and disease DIb . More common ancestors 
tend to create higher semantic similarities. SDIa(t) is the 
semantic value of term t related to term DIa , and SDIb(t) 
is the semantic value of term t related to term DIb . The 
semantic similarity profiles of diseases DI to the repre-
sentative diseases DIr are used as the input features of 
diseases in the drug-disease association learning model 
and are expressed as:

Building on the semantic similarity calculations, we 
aimed to identify representative diseases that could 
serve as key nodes within the MeSH tree. These repre-
sentative diseases were defined as playing a crucial role 
in capturing the interconnectedness of various diseases 

(4)SV(DI) =
∑

tǫTDI

SDI (t)

(5)SDI (t) =

{
1 if t = DI

max
{
∆× SDI

(
t ′
)
|t ′ ǫ childeren of t

}
if t �= DI

(6)

Sim(DIa,DIb) =

∑
tǫTDIa∩TDIb

(SDIa(t)+ SDIb(t))

SV(DIa)+ SV(DIb)

(7)IDI = Sim(DI ,DIr)

https://www.ncbi.nlm.nih.gov/mesh/
https://www.ncbi.nlm.nih.gov/mesh/
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and enhancing the predictive accuracy of our model. The 
identification of these representative diseases is essential 
for developing a robust disease embedding framework 
within HEDDI-Net.

Eigenvector centrality [34, 35] is a measure of a node’s 
importance in a network, accounting for the importance 
of the nodes to which it is connected. Within the MeSH 
tree structure, eigenvector centrality is utilized to identify 
the most representative diseases, or eigen-diseases, in the 
network. This approach assesses the importance of a dis-
ease by considering its connections to other influential 
diseases. A high eigenvector score indicates that a disease 
is well-connected to other diseases with high scores.

To apply this method, we first converted the MeSH 
Directed Acyclic Graph (DAG) into an undirected 
tree structure. We then used the eigenvector central-
ity method to identify the top 277 representative nodes 
( DIr ), based on their similarity distribution with CTD 
diseases (Supplementary Fig. S1). This selection process 
ensured that the most significant diseases, in terms of 
their network connectivity, were included as representa-
tive nodes.

We mathematically represented our MeSH tree struc-
ture as G = {V ,E} , where V  denotes vertices and E 
denotes edges. The adjacency matrix of the graph G was 
represented by A , with elements Aij = 1 if there is a con-
nection between vertices i and j , otherwise Aij = 0 . The 
centrality of vertex i was denoted by xi , adjusted for this 
effect by making xi proportional to the average of the 
centralities of i ’s network neighbors using the equation:

where λ is a constant. We defined the vector of cen-
tralities as x = (x1, x2, . . . ) , and rewrote the equation in 
matrix form as �x = A • x. Thus, x is an eigenvector of 
the adjacency matrix A with eigenvalue λ. Supplemen-
tary Figure S2 shows the score distribution of eigenvector 
centrality for the MeSH tree. This distribution highlights 
the central nodes within the MeSH tree, which play a piv-
otal role in capturing the interconnectedness of diseases 
within the biomedical ontology. Identifying these central 
nodes enhances our understanding of disease relation-
ships and supports the robust selection of representative 
diseases for subsequent analysis. This detailed eigenvec-
tor centrality analysis, combined with the semantic simi-
larity measures, provides a comprehensive framework for 
embedding disease features within HEDDI-Net, thereby 
enhancing the predictive accuracy of our drug-disease 
association model.

(8)xi =
1

�

∑

jǫV �=i

Aijxj

Deep learning model to predict association probability
To predict the association probability between drugs and 
diseases, we proposed a deep learning model that con-
catenates embedded features derived from protein-drug 
affinity and disease similarity. Given a pair of drug i ( DRi ) 
and disease j ( DIj ), along with their respective affinity 
profile IDRi and similarity profile IDIj obtained from previ-
ously described feature embedding approaches, the drug 
embedding is defined as:

where IDRi is a 228-dimensional vector recording the 
binding affinities of drug i to the 228 representative pro-
teins, f1(·) indicates the tanh activation function with 
228 input dimensions and 128 output dimensions, while 
f2(·) represents the tanh activation function with 128 
input dimensions and 64 output dimensions. Drop0.25(·) 
denotes a dropout layer with a rate of 0.25, randomly 
selecting neurons to be dropped out (as illustrated in the 
upper MLP of Fig. 1C).

Similarly, the disease embedding is defined as:

where IDIj is a 277-dimensional vector consisting of the 
similarities of disease i with the 277 representative dis-
eases. The function f1(·) represents the tanh activation 
function with 277 input dimensions and 128 output 
dimensions, while f2(·) represents the tanh activation 
function with 128 input dimensions and 64 output 
dimensions (as illustrated in the lower MLP of Fig. 1C).

The predicted association probability between the drug 
and disease, denoted as P̂ij , is obtained through a neural 
network model that concatenates the embeddings of the 
protein-drug affinity and disease similarity models. Spe-
cifically, we define

where ⊕ indicates the concatenation operation, f1(·) is a 
sigmoid function with 128 input dimensions and 64 out-
put dimensions, and f2(·) is a sigmoid function with 64 
input dimensions and 2 output dimensions. Drop0.5(·) 
represents a dropout layer with a 0.5 rate, and softmax(·) 
represents a nonlinear activation function (right MLP of 
Fig. 1C).

The model was optimized by minimizing the categori-
cal cross-entropy loss function [36]

(9)ZDRi = Drop0.25(f2(f 1
(
IDRi

)
))

(10)ZDIj = Drop0.25(f2(f 1

(
IDIj

)
))

(11)P̂ij = softmax(Drop0.5(f2(f 1

(
ZDRi⊕ZDIj

)
)))

(12)L = −
∑

(i,j)ǫNtrain

yi,j logP̂ij ,+(1− yij)log(1− P̂ij)
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where Ntrain is the set of training pairs and yi,j indicates 
the real association label of ( DRi ) – ( DIj ) derived from 
CTD. When there is an actual association between DRi 
and DIj , yi,j = 1 ; otherwise, yi,j = 0 . The optimization 
was performed using the Adam algorithm [37].

Experimental design and hyper‑parameter settings
To evaluate the performance and generalizability of our 
drug-disease association prediction model, we employed 
tenfold cross-validation approach using direct evidence 
and therapeutic datasets from CTD [17]. Comprehen-
sive evaluation metrics were used, encompassing rank-
ing-based metrics such as the area under the ROC curve 
(AUC) and the area under the precision-recall curve 
(AUPR). Additionally, threshold-based metrics includ-
ing recall, specificity, accuracy (ACC), and F1-score were 
employed to assess the model’s performance, thereby 
ensuring a robust evaluation while mitigating potential 
dataset biases.

To create a balanced dataset, we randomly selected an 
equal number of negative samples to match the num-
ber of positive samples. This process ensured an equal 
representation of positive and negative instances in the 
dataset, thereby reducing potential bias in the model’s 
training and evaluation. To minimize misclassification 
risk, we carefully selected negative samples by randomly 
sampling drug-disease combinations from the thera-
peutic dataset while rigorously excluding any potential 
positive links. Specifically, we cross-referenced the CTD 
database, considering both curated and inferred chemi-
cal-disease associations. Curated associations, based on 
published literature, provide direct evidence of positive 
interactions, whereas inferred associations link drugs 
and diseases via shared gene interactions. Since drugs 
and diseases connected through common genes are more 
likely to represent true associations, we excluded these 
pairs from the negative sample set to avoid mislabeling 
potential positives as negatives. This approach strength-
ens the reliability of our model by reducing the likeli-
hood that undiscovered positives are mistakenly included 
among negative samples, enhancing predictive accuracy.

Regarding the hyper-parameter settings in the deep 
learning model, we considered various combinations 
for the batch size and number of epochs. Specifically, 
we explored batch sizes ranging from {10,000, 11,000, 
12,000, 13,000, 14,000, 15,000} and epochs ranging from 
{1,000, 1,100, 1,200, 1,300, 1,400, 1,500, 1,600}. Through 
extensive experimentation, we determined that the opti-
mal settings were 1,600 epochs, a batch size of 11,000, 
and a learning rate of  10–3. All results reported for the 
testing data were validated using retrained models based 
on the original training data, ensuring robustness and 
reliability of the model’s performance.

Results
Accurate prediction of drug‑disease associations 
with HEDDI‑Net, surpassing state‑of‑the‑art models
To ensure the capability of HEDDI-Net in drug repurpos-
ing, we evaluated its effectiveness in predicting known 
drug-disease associations. We applied the HEDDI-
Net architecture to build models for the CTD datasets: 
direct evidence and therapeutic datasets, separately. To 
ensure more reliable negative datasets, we generated bal-
anced negative instances using unobserved associations 
between 4157 chemicals and 2149 diseases in the thera-
peutic dataset.

In the direct evidence dataset, which contains 71,187 
drug-disease associations (positive samples), HEDDI-Net 
achieves a median AUC and AUPR greater than 0.982 in 
a tenfold cross-validation (Fig.  2A). For the therapeutic 
dataset, comprising 26,789 drug-disease associations, the 
median AUC and AUPR in the tenfold cross-validation 
are both over 0.986 (Fig. 2A). These results demonstrate 
that HEDDI-Net consistently and accurately predicts 
known drug-disease associations.

To better understand the contribution of drug and dis-
ease features to the model’s performance, we evaluated 
the performance using either drug ( ZDR ) or disease ( ZDI ) 
embeddings alone. As shown in Fig.  2A, for the direct 
evidence dataset, the performance of ZDR surpass that of 
ZDI . Combining both ZDR and ZDI improves the tenfold 
median AUC and AUPR by 10.58% and 9.74%, respec-
tively, compared to using only ZDR . For the therapeutic 
dataset, there is no significant difference between the 
performance of ZDR and ZDI . However, combining both 
embeddings greatly improves the average median AUC 
by 18.18% and the average median AUPR by 17.18%.

These findings demonstrate that our model can gen-
erate accurate predictions using either drug or disease 
information alone when sufficient sample size is avail-
able. However, when dealing with smaller datasets, such 
as therapeutic dataset, combining both drug and disease 
features largely enhances the model’s performance. This 
highlights the importance of using both features in sce-
narios with limited data. Furthermore, the results from 
using either drug or disease embeddings alone further 
validate that the representative proteins and diseases 
effectively capture the essential information of drug-dis-
ease pairs.

To further confirm HEDDI-Net’s performance, 
we benchmarked it against four state-of-the-art 
approaches―DRHGCN [15], DRWBNCF [38], 
LAGCN [14], and HINGRL [39] (Supplementary Mate-
rials)―using a dataset of 18,416 known drug-disease 
associations involving 269 drugs and 598 diseases [40]. 
This dataset has been used in the studies of these four 
methods, but it had fewer drugs and diseases compared 
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to our dataset used for training and evaluating HEDDI-
Net. To ensure a fair comparison, we retrained all mod-
els, including HEDDI-Net, on this smaller dataset by 
using 18,416 known and all unobserved drug-disease 
associations as positive and negative samples, respec-
tively. For the four state-of-the-art approaches, we used 
hyperparameters that were either built-in or recom-
mended by their respective studies. During HEDDI-Net 
training, we set the batch size to 13,000 and the number 
of epochs to 1,400 for all negative sample scenario.

HEDDI-Net demonstrates superior performance com-
pared to all other methods in terms of AUPR, AUC, F1 
score, and precision (left panel in Fig. 2B and Table S2). 
Additionally, HEDDI-Net secures the second-highest 
scores in ACC, recall, and specificity. Among the graph 
deep learning-based methods, HINGRL shows the 
second-best performance, highlighting the importance 
of incorporating biological information in predictive 
modeling. However, LAGCN exhibits the lowest overall 
performance while achieving the highest ACC and speci-
ficity. This suggests that LAGCN tends to generate a large 
number of negative predictions to enhance accuracy and 
specificity in the imbalanced dataset, negatively impact-
ing recall and precision. Furthermore, we also compare 
the performance of HINGRL with HEDDI-Net on a bal-
anced dataset. The results indicate that HEDDI-Net out-
performs HINGRL in all evaluation metrics (right panel 

in Fig.  2B and Table  S2). This further substantiates the 
effectiveness of our approach in predicting drug-disease 
associations, even with datasets containing fewer drugs 
and diseases.

In summary, HEDDI-Net has demonstrated excep-
tional predictive performance in identifying drug-disease 
associations, consistently outperforming state-of-the-art 
models. By leveraging both drug and disease features, 
HEDDI-Net ensures high accuracy even with smaller 
datasets. The model’s robust performance unveils its 
potential for drug repurposing, thereby facilitating the 
drug discovery and development process.

High recovery rate of drug‑disease associations: HEDDI‑Net 
for drug repurposing
To evaluate HEDDI-Net’s applicability in drug repur-
posing, we conducted a systematic procedure. We 
sequentially removed the top 100 drugs or diseases 
according to the number of associations they possessed 
in a descending order, along with their respective asso-
ciations. For each removal, we used the rest diseases, 
drugs, and drug-disease associations to train a model, 
using the removed associations of the removed drugs 
(diseases) for independent validation.

Notably, we observed a median recovery rate of 73% 
for retrieving the removed drug-disease associations 
from the models of the top 100 diseases (Fig. 3A). This 

Fig. 2 Comparative performance analysis of HEDDI‑Net and other state‑of‑the‑art models. A Performance evaluation of HEDDI‑Net using 
direct evidence and therapeutic datasets with different feature sets. The comparison is made between the direct evidence dataset (left) 
and the therapeutic dataset (right), with further analysis based on drug embedding  (ZDR) and disease embedding  (ZDI). Here,  ZDR represents the use 
of only drug embeddings (excluding disease embeddings and their corresponding MLP), while  ZDI represents the use of only disease embeddings 
(excluding drug embeddings and their corresponding MLP). B Comparison of HEDDI‑Net with state‑of‑the‑art models (HINGRL, DRHGCN, 
DRWBNCF, LAGCN) using all negative samples and a balanced dataset. The performance metrics are evaluated across various datasets to highlight 
HEDDI‑Net’s effectiveness in predicting drug‑disease associations. The error bars represent standard deviations derived from tenfold cross‑validation
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result suggests that HEDDI-Net can effectively iden-
tify unknown target diseases for existing drugs, sup-
porting its potential for drug repurposing. However, 
the median recovery rate is only 40% for retrieving the 
removed drug-disease association from the models of 
the top 100 drugs (Fig. 3B). This performance indicates 
that while our model shows promise in developing new 
drugs for existing diseases, further experimental valida-
tion is needed. Additionally, this analysis demonstrates 
the reliability and solidity of HEDDI-Net.

State-of-the-art graph-based deep learning 
approaches, although effective, require retraining to 
predict drug-disease associations for previously unseen 
drugs and diseases. In contrast, HEDDI-Net allows 
new drugs and diseases to be directly fed into the pre-
trained model without the need for retraining, mak-
ing it more practical than many advanced graph-based 
deep learning methods.

In summary, our robustness analysis highlights 
HEDDI-Net’s ability to predict novel drug-disease asso-
ciations, even in diverse conditions or unknown associa-
tions. This capability positions HEDDI-Net as a powerful 
tool for drug repurposing and drug discovery, emphasiz-
ing its practicality and efficiency in handling new data 
without retraining.

Application of HEDDI‑Net in Alzheimer’s drug discovery
To further substantiate the applicability of our model, 
we conducted a case study on the relationship between 
Alzheimer’s disease (AD) and the candidate drugs identi-
fied by HEDDI-Net. AD, an unstoppable and irreversible 
brain disorder, is the primary contributor to dementia 
among the elderly population. Previous research suggests 
that the primary pathological hallmarks of AD include 
extracellular plaques constituted by amyloid-β (Aβ) and 
intracellular neurofibrillary tangles (NFT) comprised of 
tau protein [41]. Unfortunately, the current medical land-
scape offers no definitive remedy for AD, leaving avail-
able therapeutic interventions restricted to alleviating 
symptoms, with no capacity to alter the underlying pro-
gression of the disease.

In our case study, we trained 100 models using 
therapeutic drug-disease associations. Each model 
encompassed all positive data and an equal number 
of randomly selected negative samples. Subsequently, 
we tested all chemicals in the dataset for their asso-
ciation with AD. For each model, we retained predic-
tions for chemicals if the positive probability exceeded 
0.8, ensuring a high confidence level in the results. 
To determine the collective consensus of predicted 
drugs, we summarized the probability values   of all 100 

Fig. 3 HEDDI‑Net’s capacity to recover drug‑disease associations for drug repurposing. A Disease association removal and recovery. Associations 
were removed based on the number of associations for each disease. Diseases within the direct evidence dataset were first ranked by their 
number of associations in descending order. The top 100 diseases, along with all their associations, were systematically eliminated. This process 
allowed us to evaluate the model’s capacity to recover the removed associations by considering the remaining data. B Drug association removal 
and recovery. Similar to the disease analysis, drugs within the direct evidence dataset were ranked by their number of associations. The top 100 
drugs, along with all their associations, were systematically removed. The model’s ability to recover these missing associations was then assessed 
using the remaining data. These two procedures demonstrated the robustness of HEDDI‑Net in recovering critical drug‑disease relationships
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models, aiming to eliminate bias stemming from the 
randomness of the sampling process. We identified the 
predicted drugs, which are not associated with AD in 
CTD, achieving a cumulative sum of positive probabil-
ity exceeding 50 as candidates, totaling 58 chemicals. 
This threshold indicates a consistent and robust associ-
ation with AD on the predictions derived from the 100 
models.

To delve deeper into the potential of these 58 candidate 
drugs, we explored their relationships to two commonly 
prescribed medications―Donepezil and Galan-
tamine―using the proximity analysis. Specifically, we 
investigated the similarity of binding affinity profiles to 
the 228 representative proteins between the candidates 
and the two prescribed medications. We then performed 
the conventional hierarchical clustering to identify the 
candidates clustered with Donepezil, Galantamine, or 
both. Interestingly, Donepezil and Galantamine were 
separated into two different clusters. We therefore 
assigned the predicted candidates into three groups―
donepezil, galantamine, and others―according to 
their proximity to the two prescribed drugs (Fig.  4 and 
Table 1).

According to the records of ClinicalTrials.gov from 
NIH, we found that 8 out of 19 (42%) candidates in the 
donepezil cluster, 8 out of 17 (47%) candidates in the gal-
antamine cluster, and 9 out of 22 (41%) candidates in the 
others cluster have been tested in clinical trials (Table 1). 
Briefly, more than 40% of predicted candidates have been 
recognized as possessing promising potential in treating 
AD by the pharmaceutical industry. These results further 

emphasize the predictive accuracy and practicability 
of HEDDI-Net in real world applications. Moreover, it 
provides a demonstration of how to apply HEDDI-Net 
to predict candidate chemicals for drug repurposing in 
practice.

Moreover, we investigated those predicted drugs that 
have not been tested in clinical trials to demonstrate the 
interpretability of HEDDI-Net. That is, by studying the 
target proteins, we can interpret why those predicted 
drugs clustered with the two known prescribed medica-
tions, and assess the repurposing potential of the pre-
dicted candidate drugs. In the donepezil cluster (Fig. 4), 
besides those predicted drugs that have been tested in 
clinical trials, HEDDI-Net also identified Baclofen and 
Fluoxetine as promising candidate drugs for the treat-
ment of AD. Baclofen, a GABA-ergic agonist, has demon-
strated potential neuroprotective effects by modulating 
neuroinflammation and reducing neuronal excitotoxic-
ity, which are critical in preventing neuronal damage and 
cognitive decline associated with AD [42, 43]. Fluoxetine, 
a selective serotonin reuptake inhibitor (SSRI), not only 
improves mood and cognitive function by increasing 
serotonin levels but also exhibits neuroprotective prop-
erties and reduces neuroinflammation  [44, 45]. These 
drugs address key pathological aspects of AD, including 
neuroinflammation, psychiatric symptoms, and neuro-
degeneration, thereby supporting their potential repur-
posing for this condition. Moreover, by investigating the 
drug feature embedding of HEDDI-Net, we discovered 
that Baclofen and Fluoxetine may target ITGB3 (ITB3 
protein): their predicted targeted protein with the second 

Fig. 4 HEDDI‑Net’s applicability and interpretation: Clustering drugs candidates with commonly prescribed drugs in Alzheimer’s disease 
by affinity. The selected high‑confidence drug‑like chemicals (rows) were clustered based on the similarity of their binding affinity profiles 
to the representative proteins (columns). The color bar represents the strength of binding affinity. According to their proximity to two commonly 
prescribed drugs for Alzheimer’s disease, Donepezil and Galantamine, the chemicals were clustered into three groups: the donepezil (colored red), 
the galantamine (colored green), and others clusters. The proteins selected to display the interpretability of HEDDI‑Net were colored to correspond 
with their respective group. Among the chemicals, drug_1 represents N‑(oxo‑5,6‑dihydrophenanthridin‑2‑yl)‑N, N‑dimethylacetamide 
hydrochloride
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Table 1 Predicted candidate drugs in clinical trials

drug_1: N-(oxo-5,6-dihydrophenanthridin-2-yl)-N, N-dimethylacetamide hydrochloride
* indicates that the drug is discussed in the article

Chemical Name ID study type Phase trail status Last update Cluster

Cyclophosphamide NCT00013650 Interventional Phase 1 Completed 2017–07‑02 Donepezil

Nitric Oxide NCT03451591 Interventional Phase 2 & 3 Completed 2022–08–25

Gabapentin NCT00018291
NCT03082755

Interventional
Interventional

NA
Phase 4

Completed
Unknown

2009–01–21
2022–05–18

Dapsone NCT05894954 Interventional Phase 3 Recruiting 2024–05–16

Hydroxychloroquine NCT05894954 Interventional Phase 3 Recruiting 2024–05–16

Metronidazole NCT05894954 Interventional Phase 3 Recruiting 2024–05–16

Thiamine NCT06223360
NCT02292238

Interventional
Interventional

Phase 2
Phase 2

Recruiting
Completed

2024–04–30
2022–06–28

Acetylcysteine NCT04740580
NCT04044131
NCT01370954

Interventional
Interventional
Observational

Early Phase 1
Phase 2
NA

Recruiting
Completed
Completed

2024–03–21
2022–08‑08
2013–05–09

Not in a trail (11) Azathioprine, Baclofen*, Carbamazepine, Chloroquine, Cimetidine, Fluoxetine*, drug_1, Nitroglycerin, Peni‑
cillamine, Propranolol, Pyridoxine

Bromocriptine NCT04413344 Interventional Phase 1 & 2 Completed 2022–04–07 Galantamine

Methotrexate NCT04571697 Observational NA Completed 2021–10–18

Ketoconazole NCT00860275
NCT00931073

Interventional
Interventional

Phase 1
Phase 1

Completed
Completed

2011–1–25
2009–11–18

Acetazolamide NCT05443308 Observational NA Recruiting 2022–07‑05

Ciprofloxacin NCT06185543 Interventional Phase 2 Recruiting 2024–01–18

Thalidomide NCT01094340 Interventional Phase 2 & 3 Unknown 2012–08‑08

Rifampin NCT00715858
NCT00439166
NCT00692588

Interventional
Interventional
Observational

Phase 3
Phase 3
NA

Unknown
Completed
Completed

2009–02–04
2018–03–19
2011–04–06

Tacrolimus NCT04263519 Interventional Phase 2 Withdrawn 2021–09–27

Not in a trail (9) Adrenal Cortex Hormones, Gentamicins, Leucovorin, Mycophenolic Acid, Pentoxifylline*, Phenobarbital, 
Phenytoin*, Sulfasalazine, Vincristine

Ascorbic Acid NCT00117403 Interventional Phase 1 Completed 2009–04‑03 others

Prednisone NCT00000178 Interventional Phase 3 Completed 2005–06–24

Warfarin NCT00827034
NCT00689637
NCT00726726

Interventional
Interventional
Interventional

Phase 1
Phase 1
Phase 1

Completed
Completed
Completed/

2018–10–16
2009–07‑02
2008–11‑05

Valproic Acid NCT01729598
NCT00071721
NCT00088387
NCT00208819
NCT00375557

Interventional
Interventional
Interventional
Interventional
Interventional

Early Phase 1
Phase 3
Phase 2
Phase 4
Phase 4

Completed
Completed
Completed
Completed
Withdrawn

2019–10‑09
2014–09–25
2008–03–04
2013–11–13
2015–05–27

Vitamin E NCT00235716
NCT00040378
NCT00000173
NCT00056329
NCT01594346
NCT00117403
NCT01320527

Interventional
Observational
Interventional
Interventional
Interventional
Interventional
Interventional/

Phase 3
NA
Phase 3
Phase 3
Phase 3
Phase 1
Phase 2/

Completed
Completed
Completed
Unknown
Completed
Completed
Completed/

2014–07–23
2018–03–14
2009–12‑11
2012–05‑04
2012–05–09
2009–04‑03
2016–03‑03

Aspirin NCT05894954 Interventional Phase 3 Recruiting 2024–05–16

Hydrocortisone NCT05894954 Interventional Phase 3 Recruiting 2024–05–16

Isotretinoin NCT01560585 Interventional Phase 1 & 2 Terminated 2022–06–15

Tretinoin NCT02439099 Observational NA Unknown 2021–08–09

Not in a trail (13) 6 beta‑hydroxycortisol, Alitretinoin, Betamethasone, Cortodoxone, Danazol, Dexamethasone, Fludrocorti‑
sone, Fluprednisolone, Isoascorbic acid, Meprednisone, Methylprednisolone, Prednisolone, Vitamin A
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highest binding affinity. ITGB3 is involved in neuroin-
flammatory processes, which are significant in AD [46]. 
Activated microglia, mediated by ITGB3, contribute to 
the neuroinflammation seen in AD, exacerbating disease 
progression [47, 48]. Accordingly, Baclofen’s and Fluox-
etine’s interaction with ITGB3 could help modulate these 
inflammatory pathways, reducing neuroinflammation 
and protecting neuronal integrity. These mechanisms 
align with the established pathophysiological processes in 
AD, elucidating the potential of Baclofen and Fluoxetine 
in treating this neurodegenerative disorder.

In the galantamine cluster (Fig.  4), besides those pre-
dicted drugs that have been tested in clinical trials, our 
model has identified Pentoxifylline and Phenytoin as 
promising candidate drugs for the treatment of AD. Pen-
toxifylline, known for improving blood flow and reduc-
ing blood viscosity, also exhibits anti-inflammatory and 
neuroprotective properties. By enhancing cerebral blood 
flow and reducing neuroinflammation, Pentoxifylline 
could help mitigate some of the neurodegenerative pro-
cesses in AD [49, 50]. Phenytoin, another anticonvulsant, 
similarly stabilizes neuronal membranes and decreases 
excitability, potentially mitigating hyperexcitability and 
excitotoxicity observed in Alzheimer’s pathology [51]. 
Collectively, these drugs address key aspects of AD, 
including neuroinflammation, impaired cerebral blood 
flow, and excitotoxicity, supporting their potential repur-
posing for this condition. In our model, we discovered 
that Pentoxifylline and Phenytoin may all target CAPN2 
(Calpain 2, CAN2 protein), which is their predicted tar-
geted protein with the second highest binding affinity. 
Calpain 2 is implicated in neurodegenerative processes 
through its role in tau pathology and amyloid-beta (Aβ) 
production. Abnormal activation of Calpain 2 leads to the 
hyperphosphorylation of tau and the formation of neu-
rofibrillary tangles, as well as increased Aβ production 
and aggregation, which are hallmark features of AD  [52, 
53] . By targeting Calpain 2, Pentoxifylline and Phenytoin 
could potentially reduce tau hyperphosphorylation and 
Aβ accumulation, thereby mitigating neurodegeneration. 
The neuroprotective effects of these two drugs, combined 
with their ability to stabilize neuronal activity and reduce 
neuroinflammation, make them compelling candidates 
for the treatment of AD, as suggested by our deep learn-
ing model.

In summary, this case study on Alzheimer’s disease 
underscores HEDDI-Net’s predictive capability in iden-
tifying candidate drugs for repurposing. With over 40% 
of the predicted candidates having been tested in clini-
cal trials, the model’s accuracy and practical relevance 
are evident, highlighting HEDDI-Net’s potential for 
real-world applications. Importantly, HEDDI-Net not 
only identifies promising candidates but also interprets 

why these drugs can treat AD by investigating their tar-
get proteins. By elucidating the key processes in which 
the candidate drugs’ target proteins are involved in AD, 
HEDDI-Net provides valuable insights into their repur-
posing potential. These achievements emphasize the 
model’s effectiveness in predicting drug-disease associa-
tions and its utility in the drug discovery and develop-
ment process.

Discussion
In this study, we present HEDDI-Net, a deep learning 
architecture designed to predict drug-disease associa-
tions with high accuracy, outperforming existing meth-
ods and reaffirming its effectiveness in this research 
domain. HEDDI-Net enhances prediction performance 
and interpretability by integrating heterogeneous embed-
ded features from both disease and drug information. 
Accordingly, a critical aspect of model construction 
involves determining representative proteins and dis-
eases, as these selections significantly impact the model’s 
performance. To identify the optimal set of representa-
tive proteins and evaluate their influence on prediction 
accuracy, we conducted experiments using different 
thresholds for the median z-score of the protein affin-
ity models. Specifically, we examined three thresholds of 
median z-score ≥ 3, ≥ 4, and ≥ 5, analyzing their respec-
tive performances on the direct evidence dataset and the 
therapeutic dataset.

The results indicate that there are no substantial dif-
ferences in model performance among the thresholds of 
3, 4, and 5 for both datasets (Table S3). This similarity in 
performance suggests that the model is robust to a range 
of z-score thresholds, indicating that the representative 
proteins selected at these thresholds capture the relevant 
biological information effectively. However, a threshold 
of 4 exhibited slightly superior performance compared 
to thresholds 3 and 5. Notably, when the threshold was 
set to 4, the variations in evaluation metrics were mini-
mized, resulting in the most stable outcomes. This stabil-
ity implies that a median z-score threshold of 4 provides 
a balanced selection of representative proteins instead 
of outliers, optimizing the trade-off between including 
relevant proteins and excluding noise. Consequently, we 
selected a median z-score greater than or equal to 4 as 
the threshold for choosing representative proteins. This 
threshold was used to compute the affinities between 
drugs and proteins, which served as the drug input fea-
tures ( IDR ) for the model. By excluding proteins with 
limited affinity data (< 15 drugs), our strategy effectively 
eliminates proteins that are less frequently accessed and 
may lack relevance to drug-disease associations.

Furthermore, to ensure that the 228 representative 
proteins in the affinity matrix effectively capture disease 
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relevance, we conducted an analysis using gene-disease 
associations from the CTD. Among 1,893 therapeutic 
associations (572 diseases, 755 genes), we found that 69 
of these representative proteins were targets across 155 
diseases. Additionally, in 34,047 direct evidence asso-
ciations (5,853 diseases, 9,098 genes), 212 proteins were 
targets for 800 diseases. This overlap confirms that our 
selected proteins are significantly associated with disease 
targets, including therapeutically relevant ones, thereby 
enhancing the biological relevance and interpretability 
of HEDDI-Net’s predictions. These findings validate that 
the selected proteins effectively represent a wide array of 
diseases, supporting HEDDI-Net’s strength in accurately 
inferring drug-disease associations.

Moreover, to address potential uncertainties in the lay-
ered predictions used to construct the affinity matrix, we 
implemented several rigorous measures. First, we trained 
the binding affinity prediction models on experimentally 
validated protein-drug interaction data from BindingDB 
and selected representative proteins with robust binding 
data. Additionally, we conducted 100 hold-out valida-
tion tests, where each protein’s data was split into train-
ing and testing sets, to assess prediction stability. We also 
applied a stringent z-score filtering criterion to identify 
and retain only high-confidence proteins. For each pro-
tein, a median z-score was calculated from 1,000 per-
mutation tests, measuring prediction accuracy against 
random chance. Proteins with a median z-score ≥ 4, indi-
cating statistically significant prediction performance, 
were selected for the final matrix. This z-score thresh-
old helped systematically exclude proteins with low or 
inconsistent accuracy, minimizing noise in downstream 
predictions. Together, repeated hold-out validation and 
z-score filtering ensure HEDDI-Net’s affinity matrix 
remains robust and accurate, addressing layered predic-
tion concerns and supporting the reliability of the mod-
el’s outputs.

Shifting the focus to representative diseases, we recog-
nize that certain rare disorders may have limited seman-
tic connections with other diseases due to their unique 
characteristics and low connectivity within the MeSH 
DAG tree. Of the 2997 diseases considered, 59 had no 
semantic similarity with any of the 277 representative 
diseases. This subset primarily comprised conditions 
related to drug or substance abuse, alcoholism, or animal 
diseases. These conditions often face limitations regard-
ing direct drug treatment and are usually addressed 
through medical management approaches. This further 
underscores that our strategy for including representative 
diseases can exclude non-targeted diseases, ensuring that 
the model focuses on relevant and targetable conditions.

We also recognized that using MeSH similarity alone 
for disease analysis has limitations, particularly for 

representing complex diseases with overlapping symp-
toms or unique pathophysiology. Despite these chal-
lenges, MeSH remains valuable for structuring disease 
relationships due to its well-established, hierarchical 
organization, widely used across biomedical databases, 
including the Comparative Toxicogenomics Database 
(CTD). Furthermore, to address potential gaps in MeSH 
similarity, we selected representative diseases based on 
eigenvector centrality within the MeSH network. This 
approach prioritizes diseases with high connectivity and 
broad representational value, enhancing the robustness 
of similarity profiles by focusing on diseases with strong 
relational ties and reducing the impact of underrepre-
sented diseases. It also helps account for the complexity 
of diseases with overlapping symptoms through biomedi-
cal hierarchy relationships, thereby supporting HEDDI-
Net’s reliability.

Additionally, to investigate the effect of different classi-
fiers on drug-disease association prediction, we replaced 
the deep learning-based (DL) association probability 
prediction model with other classifiers, including logis-
tic regression (LR), linear support vector classification 
(SVC), SVC with radial basis function (RBF) kernel, ran-
dom forest (RF), and extreme gradient boosting (XGB) 
[54]. The results, as presented in Table S4, demonstrated 
that the DL model consistently outperformed all other 
classifiers across all evaluation metrics for both direct 
evidence and therapeutic datasets. Notably, XGB exhib-
ited the second-best performance, while SVC with RBF 
kernel yielded similar results to RF on average. Con-
versely, LR and linear SVC performed the poorest among 
the evaluated classifiers. These findings indicate that rely-
ing solely on the linear relationship between drug and 
disease features is insufficient to accurately distinguish 
drug-disease associations. This suggests that capturing 
complex, nonlinear relationships is crucial for improving 
prediction accuracy.

Furthermore, we conducted the same analysis on the 
benchmark dataset. As shown in Table  S4, classifiers 
such as XGB, RF, and SVC with RBF kernels, which are 
capable of capturing nonlinear relationships, exhibited 
superior performance. The performance gap among 
these classifiers and the linear models also increased sub-
stantially with decreasing data size. In contrast, the DL 
architecture maintained a relatively stable and excellent 
predictive ability across different dataset sizes. These 
results highlight the generality and robustness of DL in 
our proposed model. The superior performance of the 
DL model, particularly in handling varying dataset sizes, 
underscores its capability to effectively capture the intri-
cate patterns and relationships inherent in drug-disease 
associations. This robustness makes the DL approach 
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particularly well-suited for applications in drug repur-
posing and predictive modeling in biomedical research.

However, the DL models often function as “black-
box” models, posing challenges in feature extraction 
and interpretation. This lack of transparency makes it 
difficult to explain physiological mechanisms and hin-
ders their application in advanced research. In contrast, 
our method introduces representative proteins and dis-
eases, allowing predicted outcomes to be aligned on a 
common scale and facilitating easily interpretable asso-
ciations. This feature enhances the model’s practical usa-
bility across various research and application domains. In 
order to further substantiate the interpretability of our 
model, we conducted a case study focusing on the rela-
tionship between Alzheimer’s disease (AD) and the can-
didate drugs identified by our model. By incorporating 
representative biological entities, our approach provides 
clear insights into the underlying mechanisms of drug-
disease interactions. This not only aids in explaining 
the physiological basis of predictions but also supports 
advanced research applications by offering a transparent 
framework for hypothesis generation and validation. The 
case study on AD underscores the model’s capability to 
identify potential therapeutic candidates, highlighting its 
value in drug repurposing and biomedical research.

Besides, a key advantage of HEDDI-Net is its ability to 
incorporate new drugs or diseases without re-establish-
ing or retraining. This flexibility stems from predefined 
representative embeddings for drugs and diseases, creat-
ing stable feature spaces that allow seamless integration 
of novel entities. HEDDI-Net’s feature space is derived 
from binding affinity profiles with 228 representa-
tive proteins for drugs and semantic similarity profiles 
with 277 representative diseases for diseases, capturing 
essential interactions. When introducing a new drug or 
disease, we only need to calculate its embeddings using 
interaction profiles with these representative proteins 
or diseases. Specifically, MACCS fingerprints and phys-
icochemical properties predict binding affinities for new 
drugs, while MeSH-based semantic similarity profiles 
locate new diseases within the established feature space. 
This approach enables HEDDI-Net to accommodate new 
entities without modifying model architecture or param-
eters. Unlike traditional GCNs that require retraining 
with new nodes, HEDDI-Net decouples drug and disease 
embeddings from the core association model, ensur-
ing efficient and scalable integration of novel entities. 
This adaptability underscores HEDDI-Net’s utility for 
real-world applications in drug repurposing and disease 
exploration.

Conclusions
Taken together, we propose HEDDI-Net as a stable and 
applicable resource for pinpointing potential targets in 
drug repurposing. Beyond this, our approach provides 
invaluable biological insights that can be leveraged for 
further investigation. The model’s inherent adaptability 
and seamless integration capabilities position it as an 
ideal candidate for tackling emerging diseases or pioneer-
ing drug discoveries in future endeavors. In summary, 
HEDDI-Net demonstrates a strong combination of effi-
cacy, resilience, and applicability, solidifying its role as an 
indispensable tool in expediting the intricate processes 
of drug discovery and development. Its unique ability to 
deliver both high predictive performance and interpret-
ability ensures its continued relevance and utility in the 
rapidly evolving landscape of biomedical research.
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