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Abstract
Background  Ulcerative colitis (UC) is a persistent inflammatory bowels disease (IBD) characterized by immune 
response dysregulation and metabolic disruptions. Tryptophan metabolism has been believed as a significant factor 
in UC pathogenesis, with specific metabolites influencing immune modulation and gut microbiota interactions. 
However, the precise regulatory mechanisms and key genes involved remain unclear.

Methods  AUCell, Ucell, and other functional enrichment algorithms were utilized to determine the activation 
patterns of tryptophan metabolism at the UC cell level. Differential analysis identified key genes associated with 
tryptophan metabolism. Five machine learning algorithms, including Random Forest, Boruta algorithm, LASSO, SVM-
RFE, and GBM were integrated to identify and categorize disease-specific characteristic genes.

Results  We observed significant heterogeneity in tryptophan metabolism activity across cell types in UC, with the 
highest activity levels in macrophages and fibroblasts. Among the key tryptophan metabolism-related genes, CTSS, 
S100A11, and TUBB were predominantly expressed in macrophages and significantly upregulated in UC, highlighting 
their involvement in immune dysregulation and inflammation. Cross-analysis with bulk RNA data confirmed the 
consistent upregulation of these genes in UC samples, highly indicating their relevance in UC pathology and potential 
as targets for therapeutic intervention.

Conclusions  This study is the first to reveal the heterogeneity of tryptophan metabolism at the single-cell level in UC, 
with macrophages emerging as key contributors to inflammatory processes. The identification of CTSS, S100A11, and 
TUBB as key regulators of tryptophan metabolism in UC underscores their potential as biomarkers and therapeutic 
targets.
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Introduction
Ulcerative colitis (UC) is a chronic relapsing form of 
inflammatory bowel disease (IBD), commonly trig-
gered by environmental exposures in genetically suscep-
tible individuals. Dysfunctions in the epithelial barrier, 
immune response imbalances, and ecological distur-
bances participate in the inflammatory processes [1–3]. 
Recent researches highlight various metabolic disorders 
in UC, where small molecule metabolites engage in sig-
naling, immune modulation, and interactions with the 
gut microbiota, significantly contributing to the onset 
and progression of UC [4]. Among these, tryptophan 
metabolism plays a crucial role, with its metabolites 
shown to affect immune balance and microbiota com-
position. However, the specific cellular mechanisms and 
genetic factors that regulate tryptophan metabolism in 
UC remain largely unexplored [5, 6].

Tryptophan, an essential amino acid, plays a key role 
in the synthesis of various biologically active compounds 
and must be obtained from the diet [7]. Its metabolism 
involves three primary pathways: the kynurenine (Kyn), 
5-hydroxytryptamine (5-HT), and indole pathways, with 
the majority of tryptophan being metabolized through 
the Kyn pathway. These pathways allow Trp to be con-
verted into various metabolically active intermediates, 
which possess immunomodulatory properties essential 
for maintaining immune homeostasis [8]. Dysregulated 
tryptophan and its metabolites contribute to immune 
imbalance and intestinal inflammation in UC, leading 
to epithelial barrier disruption and activation of inflam-
matory pathways. This metabolic imbalance not only 
aggravates chronic inflammation but also promotes UC 
progression by facilitating immune cell infiltration and 
cytokine release [5, 9, 10].

While current research highlights the significant role 
of tryptophan metabolites in UC onset and progres-
sion, identifying and validating the key regulatory genes 
involved remains challenging. Traditional experimental 
methods often lack the sensitivity to detect cell-type-
specific gene expression and metabolic activity, which 
are crucial for understanding the regulatory heteroge-
neity of tryptophan metabolism in UC. Single-cell RNA 
sequencing (scRNA-seq) is an emerging tool that enables 
genomic examination, cell heterogeneity analysis, dif-
ferential gene expression, and identification of specific 
cell types within individual cells of a tissue [11, 12]. This 
approach offers notable advantages over traditional bulk 
RNA sequencing by capturing cellular diversity within 
complex tissues. When combined with bioinformatics 
methods, scRNA-seq is widely used in disease diagno-
sis, prognosis, and investigating the role of metabolites 
in various diseases [13–15]. Machine learning, a branch 
of artificial intelligence, enables the analysis of vast data 
sets, facilitating tasks such as disease diagnosis and the 

identification of key regulatory genes and pathways. 
Metaheuristic optimization algorithms further enhance 
these capabilities by optimizing complex data analysis 
[16, 17]. Integrating machine learning with bioinfor-
matics methods significantly boosts the advantages of 
scRNA-seq, improving data analysis accuracy and uncov-
ering hidden relationships within the data [18–20].

In this study, we were the first to find the heterogeneity 
of tryptophan metabolism at the single cell level of UC, 
with significant differences among cell types. Through 
functional enrichment algorithms and machine learning, 
we recognized key genes linked to the upregulation of 
tryptophan metabolism, and contributed to the pathol-
ogy and development of UC, suggesting that they might 
be new targets and providing critical insights for future 
research and potential therapeutic interventions in UC.

Method
Data acquisition and processing
In this study, scRNA-seq data for UC were obtained from 
the GSE214695 and GSE125527 database ​(​​​h​t​​t​p​s​​:​/​/​w​​w​w​​.​
n​c​b​i​.​n​l​m​.​n​i​h​.​g​o​v​/​g​e​o​/​​​​​)​, comprising 13 UC and 14 health 
control (HC) samples (Supplementary Table S1) [21, 
22]. A total of 48 tryptophan metabolism-related genes 
(TrMGs) information were selected based on KEGG, 
GO, REACTOME databases and previous study (Supple-
mentary Table S2) [23]. For the processing of scRNA-seq 
data, we preserved high-quality cells that had fewer than 
20% mitochondrial genes and expressed more than 200 
genes. We also focused on genes that were expressed at 
levels between 200 and 7000 and were active in at least 
three cells. A total of 39,080 eligible cells were kept for 
further exploration. After that, the integration workflow 
conducted by Seurat pipeline [24]. The remaining cells 
were further scaled and normalized using a linear regres-
sion model with the “Log-normalization” method and the 
top 3000 variable genes were detected by the “FindVari-
ablFeatures” function. Subsequently, the dimensionality 
of the scRNA-seq data was diminished through Principal 
Component Analysis (PCA). Uniform manifold approxi-
mation and projection (UMAP) dimensional reduction, 
dataset integration, and cell types were annotated with 
the aid of the R package “single R” [25]. To remove the 
batch effects among the samples, soft k-means clustering 
was executed using the “Harmony” package [26]. The cell 
clustering was conducted using the “FindClusters” func-
tion, with the resolution parameter set at 0.8. The meth-
odology for annotating cell clusters involved focusing on 
genes with elevated expression levels, genes exhibiting 
unique expression patterns, and documented canonical 
cellular markers. For Bulk RNAseq data, the GSE887466 
cohort was employed as training set, and GSE53306 was 
validation set (http://​www.ncb​i.nlm.n​ih.g​ov/geo).

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo
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Gene set scoring algorithm in scRNA-seq
We used five different algorithms to score gene sets in 
scRNA-seq datasets: AUCell [27], UCell [28], singscore 
[29], ssGSEA [30], and AddModuleScore [31]. AUCell 
and UCell were specifically selected for their unique 
strengths in quantifying gene set activity at the single-
cell level, which is essential for accurately identifying 
activation patterns in UC cells. AUCell calculated gene 
set activity in each cell by computing the area under the 
cumulative distribution curve (AUC) of gene expres-
sion ranks. UCell assessed gene set activity by calculat-
ing and normalizing rank scores within single-cell gene 
expression rankings. Singscore ranked genes within each 
cell for a given gene set and calculated the average rank 
score, providing a score based on the difference between 
average ranks of positive and negative genes. ssGSEA 
determined gene set enrichment by comparing expres-
sion values of gene sets to other genes, computing rela-
tive enrichment scores. AddModuleScore calculated 
weighted average expression of gene sets in each cell, 
normalizing these values to obtain the final score.

Differential gene expression and functional enrichment 
analysis
Differential expression analysis was performed to identify 
differentially expressed genes (DEGs) between the high 
and low TrMG groups using the ‘FindMarkers’ function, 
with criteria set at |log2 fold change| > 0.25 and adjusted 
p value < 0.05 for further investigation. Additionally, cor-
relation analysis was conducted to pinpoint genes most 
strongly linked with TrMGs expression, with the top 100 
most correlated genes being included for future study. 
These DEGs and genes discovered through correlation 
analysis were the ones that had the greatest influence 
on up-regulated TrMGs expression. Subsequently, Gene 
Ontology (GO) enrichment analysis was carried out 
using ‘clusterProfiler’ package in R software, aiming to 
elucidate the potential mechanistic underpinnings gov-
erned by these DEGs.

Screening of optimal TrMGs
A total of five independent machine learning algorithms 
were utilized to screen out the optimal key genes in 
UC, including the Boruta algorithm [32], LASSO [33], 
SVM-RFE [34], the GBM [35], and random forest [36]. 
These algorithms were selected for their complemen-
tary strengths in feature selection, model optimization 
and avoiding single algorithm offset, which collectively 
enhance the robustness and accuracy of identifying UC-
specific characteristic genes. The Boruta algorithm was 
chosen for its ability to rigorously identify all relevant 
features associated with the target variable, ensuring that 
only the most important genes are retained. This algo-
rithm iteratively compares the importance of original 

features against that of randomly permuted shadow 
attributes, enabling us to retain only the most relevant 
features linked to UC while eliminating noise, thus pro-
viding a high-confidence selection of characteristic 
genes. LASSO was applied using the “glmnet” package, 
which introduces a regularization term to shrink coeffi-
cients, enabling the selection of the most predictive fea-
tures while eliminating irrelevant or redundant genes. 
SVM-RFE algorithm, a feature elimination method based 
on support vector machines, was used to iteratively 
remove the least important features, thereby refining 
the set of key genes that contribute most to classification 
accuracy. GBM and Random Forest were included to fur-
ther improve prediction reliability. GBM enhances model 
performance by sequentially building trees that correct 
errors from previous ones, which optimizes the overall 
predictive accuracy. Meanwhile, Random Forest builds 
multiple decision trees and averages their outcomes to 
rank feature importance, allowing us to select the top 20 
diagnostic gene candidates. Finally, the overlapping genes 
based on the five above mentioned machine learning 
algorithms were selected as the hub TrMGs in UC and 
visualized by a venn plot.

GSVA enrichment analysis
Gene Set Variation Analysis (GSVA) enrichment analysis 
was conducted to investigate differential biological mech-
anisms between distinct risk groups using the “GSVA” 
R package. Gene sets from the c2.cp.kegg.v7.4.symbols.
gmt and h.all.v2022.1.Hs.symbols.gmt collections were 
sourced from the MSigDB database ​(​​​h​t​​t​p​s​​:​/​/​w​​w​w​​.​g​s​e​
a​-​m​s​i​g​d​b​.​o​r​g​/​g​s​e​a​/​m​s​i​g​d​b​​​​​)​. False discovery rate (FDR) 
adjustments were implemented via the Benjamini and 
Hochberg (BH) method, with significance defined as 
FDR < 0.05.

Cell communication
CellChat (20) was used to analyze gene expression data 
and explore variations in potential cell-cell commu-
nication networks. Employing the conventional Cell-
Chat pipeline, we relied on the default CellChatDB for 
ligand-receptor interactions. By identifying overex-
pressed ligands or receptors within specific cell groups, 
we inferred cell type-specific interactions. Furthermore, 
we identified heightened ligand-receptor interactions 
associated with overexpressed ligands or receptors. Addi-
tionally, we leveraged the R package Scenic to infer the 
activity of gene regulatory networks.

Pseudo-time analysis
The Monocle package was used to conduct reverse 
chronological analysis, aimed at reconstructing the 
developmental trajectory of cells based on single-cell 
gene expression data. This intricate process entailed 

https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
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constructing a single-cell expression matrix, categoriz-
ing cells into distinct developmental states, and delineat-
ing cell developmental trajectories by discerning gene 
expression patterns. We also evaluated cell maturity or 
developmental status utilizing the Cytotrace method. 
This meticulous analysis quantified the developmental 
status of each cell by scrutinizing changes in gene expres-
sion within scRNA-seq data.

Statistical analysis
All data processing, statistical analysis, and visualization 
were conducted using R 4.1.3 software. Subtype-spe-
cific overall survival (OS) was estimated and compared 
employing the Kaplan-Meier method and log-rank test. 
Differences in continuous variables between groups were 
evaluated utilizing either the Wilcoxon test or t-test. Cat-
egorical variables were analyzed using the chi-squared 
test or Fisher’s exact test. The FDR method was applied 
to adjust p-values. Pearson correlation analysis was 
employed to examine associations between variables. 
Two-tailed tests were utilized for all p-values, with statis-
tical significance defined as p < 0.05.

Results
The scRNA-seq profiling of UC
Before further analysis, quality control was performed 
on all the included samples (Fig.  1a), and ultimately, 27 
samples (14 from the HC group and 13 from the UC 
group) were selected for analysis. Batch effect correction 
was applied across all samples (Fig. 1b), showing that the 
overall distribution was relatively stable, and sensitivity to 
batch effects was minimal. Following the Seurat pipeline 
analysis, all cells were grouped into 20 subpopulations 
with detailed clustering shown (Fig.  1c). The expression 
patterns of characteristic marker genes related to 11 cell 
subsets were illustrated (Fig.  1d), and cell types were 
identified based on using specific marker genes such as 
NKG7 and CD3D (Fig. 1e). The UMAP plot showed the 
presence of these 11 cell types, including macrophages, 
B cells, T cells, epithelial cells, etc. (Fig.  1f ). To bet-
ter understand the differences between the UC and HC 
groups, we compared the proportion of different single 
cell types between the two groups (Fig. 1g). The propor-
tion of cell types involved in immune response, such as B 
cells, T cells and macrophages, increased significantly in 
the UC group, indicating that immune factors were piv-
otal in the UC pathogenesis mechanism.

Tryptophan metabolism in scRNA-seq data
The tryptophan metabolic pathway played a significant 
role in the progression of IBD, and its metabolic level 
was dysregulated in IBD patients. We employed the 
AUCell, UCell, singscore, ssGSEA, and Add algorithms 
to evaluate tryptophan metabolism at the scRNA-seq 

level, assessing the expression of TrMGs across different 
cell types by averaging the scores from above algorithms 
(Fig. 2a). We found that the activity of TrMGs in differ-
ent cell types showed great heterogeneity (Fig. 2b). Spe-
cifically, these genes were more active in macrophages 
and intestinal epithelial cells but relatively suppressed in 
neutrophils, T cells, and NK cells (Fig. 2c). A comparative 
analysis of the HC and UC groups indicated that TrMGs 
were up-regulated in macrophages and fibroblasts and 
down-regulated in NK cells, plasma cells, and B cells in 
the UC group (Fig. 2d). The UMAP plot further demon-
strated that these genes were predominantly expressed 
in macrophages (Fig. 2e). In summary, TrMGs were sig-
nificantly upregulated in the macrophages of UC group 
compared to the HC group. By using the average expres-
sion scores, 39,080 eligible cells were classified into high-
expression (scores above the mean) and low-expression 
(scores below the mean) groups. The high-expression 
group was primarily comprised of macrophages, fibro-
blasts, and epithelial cells (Fig. 2f ). A Wilcoxon rank-sum 
test identified 78 differentially upregulated genes between 
the high and low expression groups (Fig. 2g). To identify 
the genes most closely associated with tryptophan meta-
bolic activity, we conducted a correlation analysis and 
identified 385 genes significantly related to tryptophan 
expression (r > 0.1, p < 0.01) (Fig.  2h). The intersection 
of these and the differentially expressed genes yielded 
22 upregulated genes highly associated with tryptophan 
metabolism (Fig. 2i).

Cross analysis of the overlapping genes based on bulk data
To verify the reliability of the 22 selected genes, we ana-
lyzed them within the bulk data. By cross-referencing 
these key genes identified from the scRNA-seq data 
with those in the bulk data, we identified 21 overlapping 
genes. Results showed that 10 of these genes, including 
ENO1, SOD2, CTSS, S100A11, and TUBB, were up-reg-
ulated in the UC group (Fig. 3a). Among these up-regu-
lated genes, SOD2, TUBB, CTSS, HLA-DPA1, ENO1, 
and ANXA2 exhibited high DC scores and were closely 
connected with other genes (Fig.  3b). This was further 
corroborated by the heatmap plot (Fig. 3c). Moreover, a 
GO enrichment analysis across biological process (BP), 
cellular component (CC), and molecular function (MF) 
levels revealed that these 21 genes were strongly associ-
ated with biological processes, particularly immune and 
inflammatory responses (Fig. 3d).

Identification of the optimal genes by machine learning
Five machine learning algorithms, including the LASSO 
algorithm (Fig.  4a), the Boruta algorithm (Fig.  4b), the 
GBM algorithm (Fig.  4c), the SVM algorithm (Fig.  4d), 
and the random forest model (Fig.  4e), were employed 
to screen for the most relevant candidate feature genes 
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Fig. 1  Explanation of cellular subpopulations. (a) Quality control for inclusive data. (b) Excluding batch effects between samples. (c) Seurat clusters of 
eligible cells in umap plot. (d) Cellular annotations unveil 11 distinct cell phenotypes. (e) Bubble plot of relative expression of marker genes for each cell 
type. (f) UMAP plot reveals marker gene expression levels across diverse cell types. (g) The proportion of each single cells in HC and UC groups
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Fig. 2  Heterogeneity among the expression of TrMGs. (a, b, c) Bubble plot (a), Violin plot (b), and Density map (c) showed expression scores of TrMGs for 
each cell type using AUCell, UCell, singscore, ssGSEA, and Add algorithms. (d) Violin plot showed the difference in TrMGs score of the HC and UC groups. 
(e) UMAP plot showed the activity of TrMGs. (f) Scoring groups reflecting TrMGs activity in each cell was projected, with red denoting the high group and 
blue indicating the low group. (g) Percentage difference (Delta means percent of cells) and log-fold change based on the Wilcoxon rank-sum test results 
for differential expressed genes between high and low expression group. (h) Correlation analysis between Scoring expression and TrMGs. (i) Venn plots 
identified the up-regulated genes most associated tryptophan metabolism
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Fig. 3  Cross analysis of the key genes based on bulk data. (a) The expression of overlapping genes in bulk data. (b) The volcano plot showed the sig-
nificances and links in overlapping genes. (c) The heatmap of overlapping genes expression: blue means low expression; red means high expression. (d) 
Gene Ontology (GO) enrichment analysis of the overlapping genes
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Fig. 4  Identification of the marker genes by using machine learning. (a-e) The LASSO algorithm (a), Boruta algorithm (b), GBM algorithm (c), SVM algo-
rithm (d) and random forest (e) determined the candidate optimal feature genes. (f) Venn diagram displayed the three optimal key genes overlapped by 
the five above-mentioned machine learning outputs. (g) The expression levels of the three genes in the training set. (h) ROC curves in the training set. (i) 
The expression levels of the three genes in the validation set. (j) ROC curves in the validation set

 



Page 9 of 14Chen et al. Journal of Translational Medicine         (2024) 22:1121 

in the training set. Through intersection analysis of the 
marker genes co-selected by these algorithms, three fea-
ture genes were identified: S100A11, CTSS, and TUBB 
(Fig. 4f ). We further clarified the distribution and predic-
tion efficiency of the three genes in the training set. The 
results showed that S100A11, CTSS, and TUBB were sig-
nificantly up-regulated in the UC group (Fig. 4g). Accord-
ing to receiver operator characteristic (ROC) curve 
analysis, all three genes had good diagnostic perfor-
mance, with S100A11(AUC = 0.926) having the strongest 
distinguishing ability, followed by TUBB (AUC = 0.866), 
and CTSS (AUC = 0.663) (Fig. 4h). The reliability of these 
core genes was then re-examined in an external valida-
tion set. The results showed the expression of these genes 
was significantly elevated in the UC group (Fig. 4i), and 
also showed good diagnostic ability (Fig. 4j).

Validation CTSS gene in scRNA-seq data
We identified core genes in sc-RNA seq that up-regu-
lated tryptophan metabolism in macrophages. TUBB 
was predominantly expressed in B cells and fibroblasts, 
CTSS showing significant expression in macrophages, 
and S100A11 was highly expressed in macrophages, 
fibroblasts, and neutrophils (Fig. 5a and b). A compara-
tive analysis of these genes revealed that CTSS had the 
most concentrated expression and the highest average 
expression level in macrophages (Fig.  5c). In the high-
expression and low-expression groups previously defined 
(Fig. 2f ), all three genes were significantly enriched in the 
high-expression group (p < 0.01) (Fig.  5d). Furthermore, 
we conducted a correlation analysis using the bulk data, 
comparing the expression of these three genes against 48 
TrMGs. The analysis demonstrated that TUBB, CTSS, 
and S100A11 all showed significant positive correlations 
with these genes, with CTSS exhibiting the highest cor-
relation (Pearson r = 0.62, p = 6.18e − 13) (Fig.  5e and 
f ). Based on the expression levels of the CTSS gene in 
macrophages, we divided the samples into high and low 
CTSS expression groups and performed a GSEA enrich-
ment analysis using the KEGG database. The results 
indicated that the tryptophan metabolism pathway was 
significantly up-regulated in the high CTSS expression 
group (NSE = 1.2918) (Fig. 5g).

Cellular communication and trajectory analysis in 
CTSS + macrophages
To elucidate the biological function of the CTSS gene 
in macrophages, we classified macrophages from UC 
samples into two groups based on CTSS expression: 
CTSS+ (1213 cells) and CTSS- (230 cells). We analyzed 
the quantity and intensity of cellular communication 
between the two groups and other cell types. The analysis 
revealed that CTSS + macrophages significantly engaged 
in more interactions with other cells, particularly with 

neutrophils, endothelial cells, and fibroblasts, suggest-
ing potential synergistic relationships (Fig.  6a). Addi-
tionally, the GALECTIN and VEGF pathways were more 
active in CTSS + than in CTSS- macrophages. Among 
the incoming signals, IFN-II, IL16, and CSF were pre-
dominantly expressed in CTSS + macrophages (Fig.  6b). 
Furthermore, CTSS + macrophages exhibited a higher 
total volume of intercellular communication compared 
to CTSS- macrophages (Fig. 6c). Figure 6d further inves-
tigated the ligand-receptor interactions between vari-
ous cell types and both CTSS + and CTSS- macrophages 
within UC intestinal mucosal tissues. It was found that 
CTSS + macrophages communicated with endothelial 
through NAMPT - (ITGA5 + ITGB1) and NAMPT-INSR 
signaling pathways. In terms of signal reception, endo-
thelial, neutrophils, and NK cells communicated more 
frequently with CTSS + macrophages via ANXA1-FPR1, 
NAMPT - (ITGA5 + ITGB1), and ANXA1-FPR1 ligand-
receptors. By using Monocle 2 for trajectory analysis of 
macrophages, we observed that as pseudo-time pro-
gressed, macrophages differentiated from left to right, 
with the proportion of CTSS + cells initially increasing 
in the early stages of development before declining in 
the later stages (Fig. 6e). CytoTRACE was also employed 
to further define the developmental order and starting 
point of macrophages, revealing that CTSS + macro-
phages primarily resided in the early stages of devel-
opment (Fig.  6f ). Examination across different groups 
showed that CTSS expression in macrophages gradually 
increased over time, aligning closely with the distribution 
in the UC group (Fig. 6g).

Discussion
The dysregulation of tryptophan metabolism has been 
increasingly recognized as a pivotal factor in the patho-
physiology of UC. Prior researches have established that 
tryptophan metabolism through the kynurenine pathway 
plays a crucial role in modulating and activating immune 
responses in various inflammatory conditions, including 
UC [6, 9]. However, the regulation mechanism and the 
key genes still unclear. In this study, we utilized scRNA-
seq integrated with machine learning algorithms to dis-
sect the complex interplay of tryptophan metabolism 
in UC. Our innovative approach allowed for the precise 
identification of cellular subtypes that exhibit distinct 
metabolic signatures linked to UC pathogenesis.

Notably, we identified three genes—CTSS, S100A11 
and TUBB—that are significantly upregulated and 
strongly associated with the dysregulated tryptophan 
metabolic pathways in affected UC. These findings have 
never been reported before, and are supported by our 
differential gene expression analyses and the functional 
enrichment analyses, which further validated the sig-
nificant upregulation of these genes in UC compared to 
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Fig. 5  Validation CTSS gene in scRNA-seq data. (a-b) The distribution of TUBB, CTSS, and S100A11 expression across different cells types. (c) Bubble 
map illustrated the percentage of cells expressing each gene in different cell types. (d) Violin plots showed the distribution of expression levels for CTSS, 
S100A11, and TUBB in high and low tryptophan metabolism expression group with p < 0.01. (e) Correlation analysis between CTSS, S100A11, and TUBB 
against 48 TrMGs. (f) The heatmap showed the correlation between CTSS, S100A11, TUBB and tryptophan metabolism. (g) Gene set enrichment analysis 
(GSEA) enrichment analysis focused on CTSS expression in macrophages with tryptophan metabolism
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healthy controls. Moreover, the application of machine 
learning algorithms enhanced the robustness of our gene 
selection process, ensuring that the genes identified are 
not only statistically significant but also biologically rel-
evant to UC pathogenesis. The identification of these 
genes provides new insights into the molecular mecha-
nisms underpinning UC and highlights potential targets 
for therapeutic intervention.

CTSS (Cathepsin S) is a protease highly expressed in 
immune cells such as macrophages, where it plays a key 
role in protein degradation and antigen presentation. 
Increased activity of CTSS can contribute to the break-
down of the extracellular matrix and disruption of epi-
thelial barrier function [37]. Notably, CTSS are found 

primarily in immune cells, including antigen-presenting 
cells, B cells, dendritic cells and macrophages, showing 
its special function in immune system. In UC, macro-
phages destroy extracellular matrix by secreting CTSS, 
which may aggravate colitis by promoting paracellu-
lar permeability and influx of inflammatory cells [38]. 
Moreover, CTSS is expressed strongly macrophages in 
colon tissue of UC, and are preferentially secreted into 
the colon lumen, amplifying the visceral motor response 
to rectal dilation and inducing overexcitation of colonic 
pain receptors [39]. CTSS expression has been associated 
with tryptophan metabolism-related pathways, either. 
For instance, in breast cancer, the expression pattern of 
CTSS correlates with Tryptophan hydroxylase 1 (TPH1) 

Fig. 6  Cellular communication and trajectory analysis in CTSS + macrophages. (a) Number and strength of cellular communications between CTSS + mac-
rophages and other type cells. (b) Signaling patterns between macrophages and other cell types. (c) The interaction dynamics among different cell types. 
(d) Ligand-receptor bubble diagram of different types of cells acting on CTSS + and CTSS- macrophages. (e) Macrophages’ differentiation trajectories, 
pseudotime distribution, and cell clusters on pseudotime. (f) CytoTRACE and phenotype of CTSS + macrophages. (g) Absolute expression of CTSS + mac-
rophages in pseudo-time
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and 5-Hydroxytryptamine receptor 7 (5-HT7), and 
knockdown of these genes downregulates CTSS expres-
sion, suggesting a strong link between CTSS and the 
tryptophan metabolic pathway [40]. Given these roles, 
CTSS may serve as a therapeutic target, where inhibit-
ing CTSS activity could potentially reduce UC-related 
inflammation and alleviate symptoms.

S100A11, a member of the S100 protein family, is impli-
cated in various inflammatory and metabolic diseases, 
where it influences cell proliferation, differentiation, 
and cytokine production [41–43]. In rheumatoid arthri-
tis, S100A11 are increased in patients’ synovial tissue 
and synovial fluid, stimulating the synthesis of the pro-
inflammatory mediator IL-6, suggesting an association 
in inflammation and disease activity [44]. Additionally, 
S100A11 expression correlates with HbA1c levels, indi-
cating a role in glucose metabolism and in the pathogen-
esis of type 2 diabetes (T2D), thus further supporting its 
association with metabolic and inflammatory pathways 
[45]. TUBB (tubulin beta class I), a structural component 
of microtubules, is essential for cell division, intracellu-
lar signaling, and transport. Upregulation of TUBB in 
immune cells is associated with increased cell migration 
and motility, which are critical for immune responses in 
inflammatory diseases like UC [46, 47]. The upregula-
tion in TUBB has been considered with worse prognosis, 
metastasis, and tumor cell survival in breast cancer, lung 
adenocarcinoma and other malignant tumor [48–50]. The 
migration of immune cells to inflammatory tissue also 
needs tubulin proteins in cell division and motility. This 
migratory function in immune cells highlights TUBB as 
a possible intervention target in UC, where moderating 
immune cell mobility could help manage disease activity. 
These connections between our findings and the existing 
literatures underscore the importance of investigating the 
regulatory mechanisms underlying tryptophan metabo-
lism in UC and highlight the potential of CTSS, S100A11, 
and TUBB as therapeutic targets in UC.

Another interesting finding is that the activity of 
TrMGs in different cell types showed great heterogeneity, 
and are more active and up-regulated in macrophages. 
This elevated activity in macrophages suggests their criti-
cal role in UC pathogenesis, as they are key players in the 
inflammatory response and tissue remodeling associ-
ated with the disease. Macrophages, as a type of innate 
immune cell, significantly increased during active phase 
of UC, indicating their potential involvement in the 
inflammatory response and tissue remodeling processes 
associated with UC [51]. Macrophages engage multiple 
tryptophan metabolism pathways, which allow them to 
influence immune responses by producing metabolites 
like kynurenine and indole derivatives with diverse bio-
logical activities. The kynurenine pathway, for instance, is 
known to inhibit T cell proliferation and activation and 

to induce the generation of regulatory T cells, thereby 
playing a role in maintaining immune tolerance [8]. This 
immunosuppressive effect is particularly relevant in the 
inflamed intestinal environment of UC, where immune 
balance is disrupted. Additionally, tryptophan metabo-
lites interact with the aryl hydrocarbon receptor (AhR), 
which plays a key role in maintaining intestinal homeo-
stasis by regulating interactions between epithelial cells 
and macrophages. This suggests that tryptophan metabo-
lism could influence not only immune cell behavior but 
also intestinal barrier integrity, further contributing to 
UC pathology [52, 53]. The observed heterogeneity of 
TrMG activity across cell types provides new insights 
into the cell-specific roles of tryptophan metabolism in 
UC, highlighting macrophages as potential therapeutic 
targets due to their significant contribution to immune 
dysregulation and inflammation in UC.

Our study also has several limitations that must be 
acknowledged. Firstly, relying on public datasets to build 
this model may introduce biases related to dataset vari-
ability and patient selection, though we have used mul-
tiple algorithms and databases to minimize these biases.
More diverse cohorts and in vivo or in vitro experiments 
could be conducted to verify the results. Additionally, 
while we employed multiple machine learning algorithms 
to improve robustness, algorithm performance could still 
be influenced by data biases and feature selection, poten-
tially affecting the reliability of identified genes. Applying 
cross-validation with independent datasets would help to 
enhance the model’s generalizability. Moreover, our study 
focuses primarily on transcriptomic alterations within 
the UC landscape, which does not account for post-tran-
scriptional modifications, protein-level changes, or the 
metabolic environment, all of which play crucial roles in 
disease pathology. This highlights the need for integrative 
studies that combine transcriptomics with proteomics 
and metabolomics to provide a more comprehensive 
understanding of UC.

Conclusion
Our study identified three key genes—CTSS, S100A11, 
and TUBB—associated with dysregulated tryptophan 
metabolism, providing new insights into UC pathogen-
esis. Our findings emphasize the critical role of mac-
rophages in the inflammatory response of UC, with 
significant heterogeneity observed in tryptophan metab-
olism activity across different cell types. These genes not 
only enhance our understanding of UC’s metabolic alter-
ations but also highlight potential therapeutic targets for 
future interventions.
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