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post-exertional malaise (PEM), brain fog, tender lymph 
nodes, dizziness, muscle or joint pain, digestive prob-
lems, or unrefreshing sleep [2].

The exact biological mechanism that results in a 
chronic ME/CFS state remains unidentified. However, 
accumulating evidence indicates anomalies in various 
biological systems including energy metabolism [3, 4], 
neuroendocrine function [5], immunology [6, 7], and 
autonomic regulation [8]. ME/CFS may be considered as 
a cluster of related, but distinct pathophysiological con-
structs [9], contrasting the reductionist view of it as a 
singular entity with stages of disease progression. Addi-
tionally, the similarities between long COVID and ME/
CFS pathophysiologies [10]—despite long COVID devel-
oping from a known viral origin (SARS-CoV-2 infec-
tion)—suggest that diverse symptom manifestations may 
be driven more by individual physiological response, 
rather than specific underlying causes.

Introduction
The chronic illness Myalgic Encephalomyelitis/Chronic 
Fatigue Syndrome (ME/CFS) evolves and perpetuates 
from a combination of biological and environmental 
determinants. Onset often occurs after a trigger event 
[1], such as viral infection, trauma, or toxin exposure, 
which induces a physiological response. Such responses 
are typically transient, however are thought to become 
persistent or dysfunctional in ME/CFS, manifest-
ing as idiopathic fatigue lasting for 3-months or longer, 
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Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex and multifaceted disorder that defies 
simplistic characterisation. Traditional approaches to diagnosing and treating ME/CFS have often fallen short due 
to the condition’s heterogeneity and the lack of validated biomarkers. The growing field of precision medicine 
offers a promising approach which focuses on the genetic and molecular underpinnings of individual patients. 
In this review, we explore how machine learning and multi-omics (genomics, transcriptomics, proteomics, and 
metabolomics) can transform precision medicine in ME/CFS research and healthcare. We provide an overview on 
machine learning concepts for analysing large-scale biological data, highlight key advancements in multi-omics 
biomarker discovery, data quality and integration strategies, while reflecting on ME/CFS case study examples. 
We also highlight several priorities, including the critical need for applying robust computational tools and 
collaborative data-sharing initiatives in the endeavour to unravel the biological intricacies of ME/CFS.
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There are currently no definitive laboratory tests, and 
diagnosis is made based on exclusion. One of the signifi-
cant challenges in diagnosing ME/CFS is that the symp-
toms are inherent to a wide range of medical conditions. 
While comorbid conditions like long COVID, fibromyal-
gia (FM), and postural orthostatic tachycardia syndrome 
(POTS) are common in ME/CFS, the more critical diag-
nostic complication arises from symptom presentations 
that resemble pre-malignant states, and undiagnosed 
rheumatic diseases, neurological diseases and endocri-
nopathies, increasing the risk of misdiagnosis. This not 
only delays proper treatment but also makes downstream 
data analysis more difficult by introducing unknown 
sources of heterogeneity into the patient population. 
Consequently, the prolonged and unstructured diagnosis 
and treatment of ME/CFS results in a substantial eco-
nomic loss, estimated at $14.5  billion in Australia [11] 
and a minimum of $149 billion in the USA [12], encom-
passing medical expenses, lost income, disability benefits, 
and increased use of social services.

The heterogeneous nature and healthcare burden of 
ME/CFS present a timely opportunity for precision med-
icine, which aims to understand the molecular and bio-
logical factors that initiate and progress human diseases 
at the individual level [13]. This approach integrates bio-
logical data including genetic profiles, medical history, 
social, and behavioural information, to enable tailored 
decision-making for disease prevention, prediction, and 
treatment [14]. For example, in oncology, precision medi-
cine has transformed care through targeted therapies for 
patients with specific molecular markers, such as HER2 
protein in breast cancer [15] and EGFR gene mutations in 
non-small cell lung cancer [16].

However, applying precision medicine to ME/CFS is 
more challenging due to the lack of well-defined pathol-
ogy, reproducible biomarkers [17], and identifiable treat-
ment targets. The goal in ME/CFS is to move beyond 
symptom-based classifications and focus on the bio-
logical mechanisms driving the disease [13]. This shift 
requires advanced computational tools such as machine 
learning and bioinformatic approaches to model the 
complex, multi-dimensional data and uncover the key 
pathways involved in the diverse ME/CFS presentations. 
Although omics studies have yet to identify definitive 
pathways in ME/CFS, recent advancements in compu-
tational power, growing datasets (data type, volume and 
sample size), and more efficient machine learning algo-
rithms can reveal previously missed or hidden underly-
ing mechanisms. Once these pathways are identified, the 
application of precision medicine can be fully realised 
through endpoints like (differential) biomarker-based 
diagnostics, patient subgrouping, and personalised treat-
ments targeting specific pathways. This review outlines 
the essential machine learning steps, key multi-omics 

findings, and necessary data requirements for future 
ME/CFS studies implementing these computational 
frameworks.

ME/CFS presents new challenges to traditional healthcare
The traditional procedure for classification of a dis-
ease proceeds by identifying the primary dysfunctional 
organ in which the cardinal symptoms manifest [18]. 
ME/CFS does not fit neatly into this approach as symp-
toms can arise from the musculoskeletal, immunologi-
cal, cardiovascular, gastrointestinal, and neuroendocrine 
systems (Fig. 1). It challenges the current diagnosis pro-
cedure which are based on observable characteristics [19] 
(generic symptoms and subjective questionnaires) and 
rely on continuously evolving case definitions (Fukuda 
1994 [20], Canadian Consensus Criteria 2003 [21], Inter-
national Consensus Criteria 2011 [2], National Acad-
emy of Medicine 2015 [22], UK National Institute for 
Health and Care Excellence 2021 [23]). ME/CFS patients 
undergo extensive family and medical history assess-
ments, series of tests, and may see numerous general 
practitioners and specialists to receive a clinical diagno-
sis [24]. Physical examination, clinical measurements and 
pathology tests often return results within the expected 
reference range, which does not eliminate ME/CFS diag-
nosis but can be used to exclude other conditions or to 
guide further testing.

The definition of a “reference range” includes lower 
and upper bounds determined by a population average, 
with conventional medical practises suggesting only an 
outlier can indicate an afflicted state. However, this para-
digm does not account for the possibility that a shift from 
an individual’s healthy baseline can occur and still lie 
within this predefined range [25] (Fig. 2). Patients often 
have high baseline variation, so what is “normal” for one 
individual might not be for another. This is relevant for 
ME/CFS, where symptoms and severity fluctuate, and 
patients experience periods of relative wellness and exac-
erbation. Thus, there are limitations to relying on single 
measurements taken at an isolated timepoint, empha-
sising the importance of capturing dynamic changes 
over time in the individual, for both research and clini-
cal settings. Once continuous data is collected, machine 
learning algorithms such as time series forecasting and 
anomaly detection, can be employed to model an individ-
ual’s baseline, identify deviations from this baseline, and 
predict adverse events, such as PEM accordingly [26]. 
Previous small-scale study in intensive care units dem-
onstrated that customised reference ranges significantly 
reduced false positive alerts [27]. In addition, individual-
ised baselines have been developed to detect COVID-19 
pre-symptomatically using wearable data including heart 
rate and step count [28]. The integration of advanced 
technologies such as wearable devices (for continuous 
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passive data collection), at-home testing kits (for con-
venience), and high-throughput profiling now enables 
repeated, real-time measurements and standardised 
dynamic data collection, which were not previously 
accessible or widely utilised.

Treatment strategies for ME/CFS prioritise manag-
ing symptoms through social, physical, and occupational 
support, and energy conservation via pacing [24]. How-
ever, similar symptoms can arise from different aetiologi-
cal events and pathophysiological mechanisms, causing 
varied responses to the same therapies. Although both 
pharmacologic and nonpharmacologic interventions are 

available to alleviate symptoms [29], they are often pre-
scribed on a trial-and-error basis. This uncertainty has 
led to a growing online community of ME/CFS patients 
sharing their self-medication experiences, highlighting 
the urgent need for personalised treatment approaches 
that target the underlying biology of the individual.

The promise of “big” biological data
Advances in analytical instrumentation including higher 
throughput and lower running costs have made deep 
phenotyping increasingly popular. Such developments 
have led to comprehensive multi-omics measurements, 

Fig. 1  ME/CFS symptom manifestations and biological characterisation opportunities. ME/CFS can be characterised by external symptom observations 
which affect the neurological, immune, cardiovascular, neuroendocrine, gastrointestinal, and musculoskeletal systems (right). Symptom descriptions are 
often subjective, however biological characterisation of various biofluids such as saliva, whole blood, and its fractions: serum/plasma, peripheral blood 
mononuclear cells (PBMCs), cerebral spinal fluid (CSF), stool, urine, and tissue, can offer objective systemic and localised insight into the molecular per-
turbations that underlie disease pathology and symptoms (left). Relevant analytical experiments including metabolomics, proteomics, microbiome, and 
biological functions such as blood flow, immune cell function and neuroinflammation are listed below the biofluid types
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the collection of imaging data, and detailed physical 
and pathology results. Here, the term “big data” extends 
beyond the sheer volume of data to include the hypoth-
esis-generating nature of system biology experiments, 
where the exploration and analysis of large datasets leads 
to the formation of a testable hypothesis to initiate a sub-
sequent hypothesis-driven approach [30].

The four main pillars of the omics cascade, genomics, 
transcriptomics, proteomics, and metabolomics, offer 
insights into the intricate networks and pathways that 
drive cellular functions, disease mechanism, and organis-
mal behaviours [31]. Genomics has had the most success 
in precision medicine, especially in monogenic diseases 
(due to direct link to a single gene mutation) and can-
cer applications. The inherent stability of DNA against 
changes in the environment (cellular or external) facili-
tates the standardisation of genetic testing in different 
settings. This contrasts with more sensitive biomolecules 
like RNA, proteins, and metabolites which require spe-
cific analytical instruments or the development of vali-
dated assays to be translated into clinical practise. While 
genomic analyses require advanced bioinformatic meth-
ods, once candidate variants are identified, the results 
can be biologically interpreted in a relatively simple, i.e., 
binary manner (e.g., presence or absence of a mutation) 
compared to the continuous and context-dependent 
variations seen in the downstream omics. Nevertheless, 
transcriptomics can identify dysregulated gene path-
ways through gene expression data, while proteomics can 

validate, or independently identify and quantify proteins 
and enzymes involved in (mostly downstream)  disease 
processes. Metabolomics offers a dynamic snapshot of 
the biological state, influenced by genetics, pathogens, 
diet, lifestyle, and environmental factors, and is valuable 
for biomarker discovery and real-time tracking of dis-
ease progression and treatment response. The various 
roles of metabolites in multiple pathways (e.g., substrate, 
intermediate, end-product etc.) can also complicate the 
linkage of small molecule biomarkers to specific disease 
mechanisms.

Omics data can be enriched by analysing different 
biofluids and cell types as they provide complementary 
insights into the mechanistic roles of potential biomark-
ers, especially in metabolomics [32]. Each type of biofluid 
provides either systemic or localised biomarker informa-
tion. For example, blood serves as a key transporter of 
circulating nutrients, hormones, and metabolites, reflect-
ing systemic metabolic processes that help maintain 
homeostasis. Different fractions of blood, such as plasma 
and peripheral blood mononuclear cells (PBMCs), 
serve distinct roles—plasma in transport and PBMCs in 
immune function. Urine captures metabolic by-products 
and toxins highlighting detoxification pathways and the 
body’s clearance efficiency. Cerebrospinal fluid (CSF), 
separated from blood by the blood-brain barrier, mirrors 
the central nervous system’s biochemical environment, 
aiding in diagnosing neurological conditions. Saliva 

Fig. 2  Visual comparison of a conventional reference range and an individual baseline. A conventional reference range is defined by a population aver-
age. Here, the reference range is visualised as the interquartile range (blue) of a boxplot (left) with the upper and lower limits extended into the dynamic 
monitoring panel (right). Biological outliers (*) in the boxplot may lie in the 1st, 4th quartile, or beyond. The dynamic monitoring panel (right) shows 
an individual baseline (black dashed line) determined by minor fluctuations from continuous monitoring (green solid line). The panel shows a sudden 
drastic change that may induce an at-risk or afflicted state (red solid line) which does not penetrate the limits of the reference range and eludes detection
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contains hormones, antibodies, and proteins useful for 
non-invasive monitoring of stress, infection, and endo-
crine function.

While single-biofluid biomarkers may be sufficient as 
diagnostic biomarkers, the complexity of ME/CFS sug-
gests that correlating biomarker levels in blood with 
those in other biofluids may offer a more comprehensive 
understanding of their mechanistic roles. This cross-
compartmental correlation is particularly important in 
ME/CFS, where the interplay between multiple biologi-
cal systems (e.g., immune, metabolic, and neurological) 
is likely driving disease pathology. Several biofluids—
including interstitial fluid, urine, and sweat—are either 
directly influenced by blood or result from its filtra-
tion and exchange processes. Furthermore, metabolites 
related to energy metabolism are transported via the 
bloodstream and consumed at the tissue level. Correlat-
ing biomarker levels between these biofluids can validate 
biological processes by confirming consistent patterns 
and changes across the different compartments [33]. 
However, it is important to note that collecting some of 
these biofluids may require invasive procedures.

Omics technologies are now routinely employed in ME/
CFS studies, offering numerous opportunities to explore 
potential biomarkers. Due to the hypothesis-generating 
nature of these omics datasets, study outcomes can vary 
based on several factors including the chosen omics plat-
form, batch effects, sample collection methods, analyti-
cal instrument [34], storage and handling. Increasing the 
sample size is often considered one of the most effective 
strategies for minimising the influence of technical outli-
ers and strengthening statistical power without indirectly 
introducing bias. However, this approach can be limited 
by practical constraints such as cost and data availabil-
ity. In such cases, normalisation and batch effect correc-
tion techniques can be applied post-data acquisition to 
reduce variability [35], however, different techniques may 
change study outcomes. When sufficient quality control 
data or internal standards are available, technical varia-
tion can be measured and subsequently removed [36]. 
Once the data is appropriately pre-processed, advanced 
bioinformatics tools and machine learning algorithms 
can be implemented to make sense of multi-modal data 
and to analyse inter-individual variation.

Machine learning concepts
State-of-the-art machine learning techniques are increas-
ingly becoming reliable tools for addressing complex 
biological problems. Machine learning is a branch of arti-
ficial intelligence (AI) that aims to emulate human deci-
sion making by learning patterns from previous examples 
drawing on statistics, probability, and optimisation. 
These patterns are represented as “features” including 

quantitative, categorical, and unstructured variables such 
as text or images.

There are three types of machine learning: supervised, 
unsupervised and reinforcement. Supervised algorithms 
learn patterns from labelled training data to predict 
responses, which can be either binary/multi-class (clas-
sification) or continuous (regression). Different algo-
rithms can be employed to find patterns without initial 
data assumptions [37], utilising Boolean logic (AND, 
OR, NOT), absolute conditionality (IF, THEN, ELSE), 
conditional probabilities (the probability of X given Y) 
or optimisation [38], which enable predictions for new 
input with unknown labels. This method provides more 
flexibility for data that are non-linear or are interdepen-
dent, especially suitable for biological data. Unsuper-
vised learning is employed to identify dissimilarities in 
unlabelled data for clustering purposes. Reinforcement 
learning is a dynamic process in which the model trains 
by reward and punishment mechanisms. Machine learn-
ing capabilities that can be applied in ME/CFS, and dis-
eases in general, using classification algorithms involve 
diagnosis, predicting treatment efficacy and risk suscep-
tibility, and unsupervised algorithms can be employed 
for disease subtyping via clustering and dimensionality 
reduction.

When a model is trained on more features than sam-
ples (a phenomenon known as the curse of dimensional-
ity), it may become overfitted, meaning that the patterns 
learnt are too specific to the dataset. Consequently, the 
model may not make reliable predictions on new input, 
especially from different data sources. There are various 
methods to prevent overfitting including feature selec-
tion which removes redundant information (see next 
section), dimensionality reduction and cross-validation. 
Dimensionality reduction condenses a large number of 
features into a smaller set that retains the explained vari-
ance in the original data. Techniques include principal 
components analysis (PCA), linear discriminant analy-
sis (LDA) and t-SNE. Cross-validation involves training 
the model on different subsets of the training data which 
introduces controlled variability and validates the model 
on the remaining data subset. Additionally, for a machine 
learning model to serve as a clinical support tool, it 
must be interpretable (explainable AI) so clinicians and 
researchers can understand and trust its predictions. For 
example, decision trees, regression models, and SHAP 
(SHapley Additive exPlanations) values [39] provide 
intellectual oversight by explaining the contribution of 
individual features to the model’s predictions.

Classification tasks in ME/CFS
The classification pipeline includes data partitioning, 
data preparation, feature selection, model selection, 
training, and evaluation with a blind test set (Fig. 3). In 
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ME/CFS, classification applications have focused on 
biomarker discovery and diagnosis. The main difference 
between these endpoints is that the biomarker discovery 
studies typically do not choose a single optimal model; 
instead, important features from all candidate mod-
els are considered as potential biomarkers. Both types 
of studies are summarised in Table  1, and this section 
explores the detailed steps involved in these classification 
applications.

Feature selection simplifies the machine learning model 
and prevents overfitting caused by high dimensional data 
(e.g., > 500 features for sample sizes < 100) [38]. There are 
three main feature selection methods. The first method is 
a filter approach, which selects features based on statisti-
cal tests, independent of the machine learning algorithm. 
For example, Yagin et al. [40] selected features based on 
F-value by performing Analysis of Variance (ANOVA) on 
892 different plasma metabolomic features. They trained 
six algorithms on varying decremental feature groups 
and found that the top 50 features trained on an Extreme 
Gradient Boosting (XGBoost) classifier was the most 
optimal model. In another study, Xu et al. [41] performed 
supervised LDA to extract 76 important features from 
1019 Raman spectroscopic peaks based on contribution 
scores. The advantage of the filter method is the reduced 
computation burden during model training, though it 
may not consider the direct contribution of important 
features to the model’s predictions. The second method is 
the wrapper method which searches for the best combi-
nation of features in the dataset by iteratively adding (for-
ward feature selection) or removing (backward feature 

selection) features until the best model performance is 
achieved. This method is algorithm-specific, so differ-
ent algorithms may choose different feature sets from 
the same initial features. The third method has feature 
selection embedded into the algorithm such as LASSO 
(least absolute shrinkage selector operator) regression. 
It can involve using algorithm-specific metrics to extract 
feature importance as demonstrated by Yagin et al. [42]. 
They trained an initial model on the entire feature set, 
computed the feature importance using Gini’s impurity 
score which measures the contribution of each feature to 
the likelihood of a misclassification, and then retrained 
the model with the top 20 ranked features.

A blind test set is crucial for evaluating any model or 
diagnostic tool to ensure unbiased, accurate, and gen-
eralisable performance. Best practices involve holding 
out the blind test set at the start of the machine learn-
ing pipeline and not exposing it during training. This step 
is often overlooked especially if exploratory data analysis 
and machine learning steps overlap at column-wise data 
standardisation and filter feature selection. Only a few 
studies had performed model evaluation using a blind 
test set, likely due to the limited sample sizes (Table 1). 
Xiong et al. [43] did not use a blind test set. Instead, they 
validated their model with data from a second time point 
(on the same individuals) and an additional external 
cohort [44]. Their metabolomics-only classifier achieved 
an area under the receiver operating characteristic curve 
(AUC) of 0.82 from a 10-fold cross validation, 0.90 for 
the temporal validation and 0.72 for the external valida-
tion. Through temporal validation, they showed that their 

Fig. 3  The classification pipeline. The first step in the pipeline involves partitioning the data into training (blue) and blind test (green) sets. Next, the 
training data is pre-processed with the following steps: data preparation (normalisation and standardisation), feature engineering, and feature selection. 
Feature engineering is an optional step that transforms raw data into a more informative set of variables. Data pre-processing is performed without 
exposure to the blind test set. Model selection chooses the optimal machine learning algorithm. During this process, 5- or 10-fold cross validation can 
be performed with hyper-parameter tuning (e.g., choosing the optimal number of trees in a random forest). The training process is evaluated using cross-
validation. Model performance is assessed using the blind test set which is processed using the same parameters as the training set. Finally, a validation 
set (yellow) from an external data source is required to evaluate the generalisability of the model
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classifier had stable performance over time, and external 
validation was possible as raw metabolomics data was 
shared publicly and acquired using the same analytical 
platform (Metabolon). In the future, assessing the model 
with a blind test set should be prioritised to demonstrate 
a rigorous and unbiased evaluation process.

Model performance can be improved by combining a 
set of learners into an ensemble model, where the final 
prediction is derived from aggregating the outputs of 
several individual models. Ensemble methods such as 
random forest and XGBoost use decision trees as their 
base learner but differ in how they aggregate predic-
tions. Random forest employs a technique known as bag-
ging, where multiple decision trees are built on random 
subsets of the data, and their predictions are averaged, 
thereby reducing variance and mitigating overfitting. In 
contrast, XGBoost uses boosting, a sequential method 
where each new model corrects the errors of the previ-
ous one, gradually improving accuracy. Additionally, 
ensemble models can be constructed through stacking, 
a method in which different algorithms are combined, 
with a meta-model learning to optimise the final predic-
tion. For example, Xu et al. [41] used eight different and 

uncorrelated classification models, each achieving indi-
vidual accuracies between 47.1 and 61.2%. By stacking 
these models using a gradient boosted machine model 
(the meta model) increased the test accuracy to 83.3%.

Snapshot of ME/CFS omics biomarkers
This section offers an overview of the current state of 
ME/CFS research into biomarkers (for the main omics 
levels), highlighting what is known, unknown, needed, 
and should be prioritised. We do not discuss in detail 
specific biomarkers as many published reviews have col-
lated findings from genomics [45], immunology [29], and 
metabolomics [46] studies, and biomarkers in general 
[17].

The search for genetic markers has focused on identi-
fying single nucleotide polymorphisms (SNPs) through 
genome wide association studies (GWAS) [47] and can-
didate gene studies [48, 49]. Traditional GWAS in ME/
CFS have lacked statistical power, revealing only a few 
significant SNPs, which have not been replicated across 
studies, even within the same UK Biobank cohort. This 
suggests variation in variant quality control, sample 
quality control (e.g., ethnicity, gender, relatedness) and 

Table 1  Summary of recent ME/CFS studies with a machine learning focus
Data Biofluid Sample size Feature selection 

method (No. features)
Algorithm Model 

evaluation
Reference

Metabolomics Plasma ME/CFS n = 32
HC n = 19

ANOVA/F-value (50) XGBoost CV only Yagin et al. 
(2024) [40]

Raman spectroscopic 
peaks

PBMCs ME/CFS n = 61
HC n = 37

LDA contribution scores 
(76)

Model stack with 
GBM

CV, blind test Xu et al. 
(2023) [41]

Metagenomics
Plasma metabolomics

Stool
Plasma

ME/CFS n = 154
HC n = 79

Top 30 features (top 10 
from three individual 
models)

GBM CV, external 
validation

Xiong et al. 
(2023) [43]

Proteomics and 
cytokines

Plasma ME/CFS n = 49
HC n = 49

Gain (20) XGBoost CV only Giloteaux et 
al. (2023) [87]

microRNA Plasma ME/CFS n = 41
ME/CFS + FM n = 29
FM n = 38
HC n = 32

LDA score Random forest CV, blind test Nepot-
chatykh et al. 
(2023) [88]

Metabolomics Plasma ME/CFS n = 26
HC n = 26

Impurity score (20) Random forest CV only Yagin et al. 
(2023) [42]

Antibody, blood 
pathology

Serum ME/CFS n = 40
HC n = 40

Mann-Whitney U test GBM, XGBoost CV only Vogl et al. 
(2022) [89]

Metabolomics Plasma ME/CFS n = 106
HC n = 91

Bayesian factor Bayesian model 
average of five 
algorithms

CV, blind test Che et al. 
(2022) [56]

microRNA Plasma ME/CFS n = 43
HC n = 25

Differentially expressed 
miRNAs from fold 
change analysis (11)

Random forest Blind test only Neptchatykh 
et al. (2020) 
[90]

Routine pathology Serum ME/CFS n = 85
HC n = 17

Impurity score (6) Random forest, 
SVM, GBM, deci-
sion trees

Training only Lidbury et al. 
(2019) [25]

Proteomics Plasma ME/CFS n = 39
HC n = 41

LASSO (20), mean de-
crease in accuracy (20), 
gain (20)

LASSO, random 
forest, XGBoost

CV only Milivojevic 
et al. (2019) 
[91]

ANOVA: analysis of variance, LDA: linear discriminant analysis, GBM: gradient boosted machine, XGBoost: Extreme Gradient Boosting, GLM: generalised linear 
model, CV: cross validation, SVM: support vector machine
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analytical methods can lead to discrepancies in the 
results and require standardised parameters and larger, 
and more diverse populations. Recently, a combinatorial 
analysis identified 199 significant SNPs in five biological 
domains related to viral/bacterial susceptibility, metabo-
lism, autoimmune and sleep. The analysis iteratively 
tested combinations of 3–5 SNPs in 1000 bootstrapped 
samples of case and control groups [50]. The sensitive 
nature of this approach suggested that the identified 
SNPs were relevant to potential subgroups within ME/
CFS, rather than the entire disease. However, the compu-
tational burden of fully sampling the entire cohort space 
and SNP combinations remains a limitation. Nonetheless, 
this approach targets the polygenicity and heterogeneity 
of ME/CFS cohorts and represents a shift from seeking a 
single genetic aetiological variant to recognising multiple 
common variants [51], each with small effects that can 
cumulatively contribute to ME/CFS presentations. For 
future directions these broader searches may be prefer-
able, for example exploring options for generating poly-
genic risk scores that enhance GWAS association signals 
[52] and performing a PheWAS [53] on putative ME/CFS 
SNPs to elucidate genetic signals shared between other 
diseases or traits.

Transcriptomic studies have examined differentially 
expressed genes at both the single cell level [54] and the 
population level [55] in PBMCs before and after an exer-
cise challenge. At the single cell level, ME/CFS patients 
exhibited increased monocyte dysregulation and was 
unable to respond to tissue damage caused by high 
energy demands due to improper platelet activation [54]. 
At the population level, no significant differences in gene 
expression of immune cells were found between the two 
timepoints in ME/CFS, while the healthy control group 
showed overexpression of genes in multiple pathways 
[55].

Proteomic, immunologic, and metabolomic studies 
have demonstrated significant variability, especially when 
identifying biomarkers in non-invasive and minimally 
processed biofluids such as serum, plasma, and urine. 
Not only has a diverse array of biomarkers been identi-
fied, but their concentration levels in ME/CFS have also 
been contradictory. For example, sphingomyelins, a class 
of lipids involved in cell membrane structure and signal-
ling, were found to be both increased [44], and decreased 
[56] in ME/CFS patients, suggesting potential disruptions 
in membrane fluidity or lipid metabolism. Other lipids, 
such as phosphatidylcholines, ceramides, cholesterol, 
cholesterol esters, and triglycerides have also generated 
inconsistent results [4, 44, 56]. This variability highlights 
the importance of focusing on divergent biochemical 
pathways rather than individual biomarkers, where both 
increased and decreased biomarker levels present via-
ble perturbed pathways for different subgroups in ME/

CFS. Many studies have identified pathways through 
pathway enrichment analysis or manual inference from 
surveying literature. However, a more robust approach 
would involve validating the findings through integrating 
multi-omics data, which holistically reflects the state of 
disrupted pathways in ME/CFS and incorporating longi-
tudinal monitoring.

Understanding whether a biomarker (or a pathway) 
is merely correlated with ME/CFS or plays a causative 
role is essential for developing effective treatments [57]. 
While correlational biomarkers can aid in early detection 
and monitoring, causal biomarkers can lead to interven-
tions that modify the disease course. Determining cau-
sality requires prospective studies, where biomarkers are 
measured before disease onset and tracked over time. 
One prospective study identified various dysregulated 
pathways including glutathione metabolism, nucleotide 
metabolism, the TCA cycle, glycolysis and urea cycle 
between individuals that recovered from infectious 
mononucleosis and those that went on to develop severe 
ME/CFS [58]. In addition to prospective designs, Men-
delian randomisation and randomised controlled trials 
can further support causal inferences by demonstrating 
that targeting a biomarker affects disease outcomes [59]. 
However, in the absence of long-term large scale pro-
spective data for ME/CFS, meta-analysis of case-control 
studies still offer valuable insights [17, 46, 60]. Meta-
analyses can help assess whether reported biomarkers 
consistently correlate with demographics, symptoms, or 
external influences, helping to refine biomarker for future 
causal investigations [61]. While not sufficient for prov-
ing causality, this approach is critical for identifying pat-
terns in existing data and guiding the design of future 
prospective studies.

Integrating multi-omics and multi-modal data
Multi-omics describes two or more omics, which can be 
integrated simultaneously or in parallel [62]. The parallel 
method involves analysing each omics dataset individu-
ally and benefits from efficient workflows. Simultaneous 
analysis considers multiple omics datasets together, offer-
ing the advantage of identifying shared sources of varia-
tion across different data modalities [63]. This integrated 
approach contrasts with parallel analysis which does not 
explicitly link the biological relevance of each individual 
dataset. Simultaneous integration methods draw on sta-
tistical concepts and can be broadly implemented using 
multivariate analyses, graph-based methods, marginal 
associations, and unsupervised methods.

The parallel method is analysis-agnostic and offers 
a simple and flexible solution to multi-omics integra-
tion. For example, Xiong et al. [43] integrated three data 
sets: species abundance (obtained from shotgun metage-
nomics on gut microbiota), normalised KEGG gene 
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abundance and normalised metabolite profile (plasma 
metabolomics), into a multi-omics classifier. They first 
built three individual gradient boosted models for each 
dataset, ranked features based on their importance 
and extracted the top 10 features for each model which 
were then used to train the multi-omics classifier. This 
approach enabled the identification of potential biomark-
ers within each omics layer, including low abundance of 
butyrate-producing microbes and decreased plasma iso-
butyrate from a correlation analysis post-classification. 
Kitami et al. [64] performed deep molecular phenotyp-
ing on 48 ME/CFS and 52 health controls and collected 
clinical lab tests, metabolome, immunophenotype, tran-
scriptome and microbiome. They identified 26 significant 
molecular markers across the five data modalities using 
two-tailed Mann-Whitney U-test with Benjamini-Hoch-
berg correction and integrated the features using partial 
least square discriminant analysis.

Multivariate integration methods, applied in simul-
taneous analysis, are highly effective for disease classi-
fication and biomarker elucidation. Giloteaux et al. [65] 
integrated 353 features including extracellular vesicle 
(EV) cytokines, plasma cytokines and plasma proteomics 
with a multi-omics classifier. Feature importance scores 
were assigned to all the molecular entities based on their 
direct contribution to the model performance. The top 
20 performing features comprised of 15 plasma pro-
teins and 5 EV proteins. This approach contrasts Xiong 
et al. [43] who had arbitrarily included features into the 
multi-omics classifier based on prior individual models. 
Multivariate integrations can also be performed with 
mixOmics [66] and MetaboAnalyst [66].

Biological networks are complex systems of intercon-
nected components, making graph-based methods ideal 
for mapping multi-omics interactions [67]. Nagy-Szakal 
et al. [4] performed a topological data analysis [68] on 
the AYASDI platform (Ayasdi, Menlo Park, California) 
integrating 562 plasma metabolites, 574 faecal bacterial 
relative abundances, 587 metabolic bacterial variables, 
61 immune molecules, and 81 questionnaire items for 50 
ME/CFS and 50 health controls. To compare how both 
continuous and categorical variables were related, they 
used a measure called Jaccard distance, which looks at 
how dissimilar the variables are between two groups. 
They also used dimensionality reduction methods to sim-
plify the data for easier visualisation. Their visualisations 
showed clear class distinctions in the network graphs 
and showed that bacterial relative abundance features 
were stronger drivers for class separation than plasma 
metabolomic features. However, the study lacked bio-
logical interpretation from the network analysis, relying 
instead on univariate logistic regression and independent 
correlation analysis between bacteria, metabolites, and 
questionnaire scores (parallel method). Other network 

analysis approaches include similarity network fusion 
[69], which is also an unsupervised method that could 
be used to cluster ME/CFS into subgroups with both dis-
crete and continuous data types.

Marginal association and unsupervised multi-omics 
integration methods are yet to be rigorously applied 
in ME/CFS studies but hold significant potential for 
future applications. Generalised linear models are often 
employed for case-control studies to identify biomarker 
associations. Alternatively, marginal association tests 
can be performed between two different omics, simi-
lar to expression quantitative trait loci (eQTLs) analy-
sis, which tests for association of genetic variants and 
gene expression levels [70], or metabolite GWAS which 
combines functional genomics and metabolomics [71]. 
Unsupervised techniques worth exploring include Multi-
Omics Factor Analysis (MOFA) [63], and PathME [72], 
which both have open-source code available for imple-
mentation. The primary use case for MOFA is to identify 
unbroken axes of variation across different data modali-
ties targeted towards heterogenous diseases. Multiple 
different omics datasets are decomposed into a single 
matrix comprising of factors ×  samples. These factors 
can be queried to identify the variance explained by each 
data modality and the individual contributions of the fea-
tures using loadings scores. PathME provides direct path-
way interpretations and clustering capabilities. Different 
omics features are first mapped to specific pathways, a 
score is then assigned to each sample for the different 
pathways using a sparse denoising autoencoder. Bi-clus-
tering is performed on samples and pathways to generate 
subgroups.

Here, we have only briefly discussed a few integration 
methods that could be applied in ME/CFS. As ME/CFS 
studies are now generating higher volumes of data with 
greater variety, the application of advanced data integra-
tion tools [73] should be prioritised. These tools are more 
effective and reliable than having researchers manually 
link significant findings from different datasets, as there 
is a possibility to miss connections or introduce errors.

Future endeavours
Biobanks
Efforts to build ME/CFS-specific biobanks have gained 
momentum, with initiatives like the UK ME/CFS Bio-
bank [74], AusME Biobank, and DecodeME project [75] 
leading the way. The UK ME/CFS Biobank has been 
instrumental in collecting and providing biological sam-
ples and datasets to researchers worldwide. Similarly, 
the DecodeME project aims to conduct a large-scale 
genetic study by recruiting 25,000 individuals with ME/
CFS, dramatically boosting the statistical power com-
pared to previous studies. In addition, non-disease spe-
cific biobanks such as the UK Biobank, Biobank Japan, 
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Estonian Biobank, China Kadoorie Biobank, and the All 
of Us Research Program in the United States contain vast 
amounts of genetic, phenotypic, and health data from 
diverse populations. These resources are invaluable for 
creating control groups with different ethnicities and for 
comparing comorbid conditions. Analysing biobanks 
with linked electronic health records could also help elu-
cidate whether individuals diagnosed with ME/CFS have 
specific health trajectories that differ from other disease 
groups [76]. In particular, the ability to cross-reference 
comorbid diagnoses and sequential disease develop-
ment provides an opportunity to address the diagnostic 
ambiguity and develop more precise clinical profiles for 
ME/CFS. The volume of biobank data also requires stan-
dardised collection and processing procedures, ensuring 
consistency and reliability across timepoints. Conse-
quently, validating multiple small-scale studies with bio-
bank data enhances the accuracy and robustness of their 
research findings.

Data harmonisation and data sharing
There is also the challenge of managing the vast amounts 
of data collected from small- and medium-scale stud-
ies. Studies often employ different questionnaires such 
as Bell CFIDS disability scale, Chalder fatigue scale, 
DePaul Symptom Questionnaire, Short Form 36-Item 
Health Survey, Fatigue Severity Scale, and others, to 
assess symptoms, severity, and functionality; with each 
questionnaire having their own focus and format. Devel-
oping an intermediary data format that can summarise, 
or map questionnaire responses to standardised values 
using schema matching and machine learning [77] would 
be a more productive solution than continuously creating 
or updating questionnaires. This approach will facilitate 
data integration and meta-analysis, allowing researchers 
to combine and compare results across older and newer 
studies more effectively. Additionally, the National Insti-
tutes of Health (NIH) has also released a data sharing 
portal, mapMECFS [78], for registered researchers to 
upload their data, including metadata and biological data, 
to be compiled into summary statistics. Depositing raw 
biological data in repositories is also strongly encouraged 
so different data harmonisation and normalisation strate-
gies can be trialled.

Increasing reproducibility
The varying results across ME/CFS omics studies can 
also be attributed to the different statistical and machine 
learning methods employed. The exploratory nature of 
omics studies means researchers often apply various 
analytical techniques until a novel pattern is detected, 
which may lead to inconsistent findings. To improve the 
reproducibility and transparency of these studies, adopt-
ing open science practices, such as study pre-registration 

(e.g., COS Preregistration [79]) and the use of AI/
Machine Learning checklists (e.g., AIMe Registry [80]), 
can be invaluable. Pre-registration ensures that study 
objectives, hypotheses, and analysis plans are clearly 
defined in advance, reducing biases and selective report-
ing. Meanwhile, checklists for AI and machine learning 
algorithms promote the use of standardised, transpar-
ent practises, helping to mitigate the impact of varying 
analytical approaches. These measures are not meant 
to restrict research, but to provide a clear distinction 
between exploratory and confirmatory studies and guide 
robust hypothesis testing designs in future research.

Longitudinal studies
Longitudinal studies provide insights into the progres-
sion and fluctuations of ME/CFS. A recent case study 
(n = 1) combined various types of data, such as cytokine 
profiles and clinical information, with AI techniques like 
natural language processing and sentiment analysis [7]. 
This approach extracted functional capacity information 
from blog posts written during periods of exacerbation, 
effectively mapping out the patient’s journey through 
ME/CFS onset, progression, and their responses to dif-
ferent treatments over the span of twenty years. Addi-
tionally, the study showcased the untapped potential of 
integrating electronic health records and personal writ-
ings in a retrospective study to identify patterns or signs 
that could predict disease onset or relapses before physi-
cal symptoms appear. Additional tools such as integrative 
personal omics profile (iPOP) [81] and multiscale, mul-
tifactorial response network (MMRN) [82] can provide 
objective interpretations as sample sizes for longitudinal 
studies increase.

Wearables and digital biomarkers
Integrating digital biomarkers collected through wear-
able devices offers a transformative approach to moni-
toring ME/CFS in both longitudinal studies and general 
settings [83]. Wearables can continuously track various 
physiological parameters that are highly relevant to ME/
CFS. For example, reduced physical activity, tempera-
ture, and disrupted sleep patterns can serve as objective 
indicators of disease severity, while heart rate variabil-
ity reflects autonomic dysfunction, indicating the body’s 
stress response and overall cardiovascular health [84]. 
These insights are unattainable through periodic clini-
cal visits, provide an alternative to patient symptom 
descriptions, can help establish individualised patient 
reference ranges and be used to identify early signs of 
flare-ups. Additionally, because wearable data is pas-
sively collected, it mitigates potential sampling bias and 
captures comprehensive data on both good and bad days. 
ME/CFS researchers can incorporate continuous digital 
monitoring into their study designs by utilising platforms 
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like the Digital Medicine Society’s playbook for standard 
protocols.

Embracing AI
While this review primarily focused on machine learn-
ing applications, there is also a growing body of research 
highlighting how deep learning (another branch of AI) 
can address the heterogeneity of ME/CFS. Deep learning 
uses neural networks comprising of layers of connected 
nodes that pass information from one layer to another 
depending on model parameters such as weights, and 
biases, and activation functions [85]. The learning pro-
cess is dynamic and iterative, involving forward propaga-
tion to predict output labels and backward propagation 
(a feedback loop) which adjust the model parameters 
according to the prediction error, thereby refining the 
learning process. Deep learning offers several advantages 
over machine learning for ME/CFS, including the ability 
to predict multiple outcomes (e.g., phenotypes, clinical 
scores) for an individual, rather than assigning a single 
outcome (e.g., ME/CFS or non-ME/CFS label). Hence, 
this capability is crucial for identifying distinct clinical 
or biological features of ME/CFS, where heterogeneous 
individuals can be classified based on their unique com-
binations of features influenced by symptoms, genetic 
markers, immune responses, and other biomarkers. 
Recently, a deep learning framework called BioMapAI 
was developed to simultaneously integrate microbiome, 
immune and metabolomic profiles, which were mapped 
onto 12 clinical symptoms [86]. The model reconstructed 
clinical symptoms from biological data and elucidated 
non-linear and biphasic relationships between the two 
data types through explainable AI [39]. This framework 
can also be extrapolated to predict other multi-label 
endpoints, and to include genomic data, demonstrating 
the effectiveness of deep learning in handling raw, high-
dimensional, and multi-modal data necessary to holisti-
cally capture the diverse ME/CFS symptomatology.

Conclusion
There is immense potential for harnessing big data and 
AI for precision medicine in ME/CFS. The heterogene-
ity, unestablished aetiology, and suspected multifactorial 
disease mechanisms in ME/CFS pose significant chal-
lenges to biomarker discovery and treatment develop-
ment, where progress is limited through conventional 
workflows. Many current studies lack sufficient statistical 
power, employ diverse study designs, and often rely on 
manual interpretations of multi-omics data, leading to 
inconsistent findings. While machine learning and other 
computational approaches are gaining traction, the limi-
tations of recruitment, small sample sizes, and a lack of 
standardisation hinder their full potential. However, it is 
important to acknowledge that AI and machine learning 

are not magic bullets capable of solving all the complexi-
ties of ME/CFS. Their success depends heavily on high-
quality, relevant input data and defining specific training 
endpoints to be modelled. Without these, even the most 
advanced algorithms may struggle to produce actionable 
insights. Looking ahead, the future of ME/CFS research 
looks promising. Continued efforts to expand data inte-
gration, biobank resources, transparent reporting, and 
collaborative research efforts will improve statistical 
power and reproducibility. With these advancements, we 
can move from exploratory studies to confirmatory ones, 
enabling the identification of complex biological patterns 
at the individual level. Ultimately, these predictive mod-
els may positively influence clinical decision making and 
lead to more effective and personalised treatments for 
ME/CFS.
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