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Abstract 

Background  Diabetic retinopathy (DR) is the most important complication of Type 2 Diabetes (T2D) in eyes. Despite 
its prevalence, the early detection and management of DR continue to pose considerable challenges. Our research 
aims to elucidate potent drug targets that could facilitate the identification of DR and propel advancements in its 
therapeutic strategies.

Methods  A broad multi-omics exploration of DR was presented to decipher the drug targets of DR and proliferative 
diabetic retinopathy (PDR). Transcriptome-Wide Association Studies (TWAS), fine-mapping and conditional analysis 
were applied to unearth potential tissue-specific gene associations with DR. Summary Data-based Mendelian Ran-
domization (SMR) provided secondary analysis of high confidence genes. Cis-instrument of druggable genes were 
extracted from the eQTLGen Consortium and PsychENCODE, facilitating drug-target MR supported by colocalization 
analysis. Phenome-Wide Association Studies (PheWAS) was conducted on the high confidence genes. Metabolomic 
and immunomic MR-profiling further augmented our research as complement.

Results  TWAS identified multiple robust genetic loci in both DR and PDR (WFS1, RPS26, and SRPK1) through genetic 
associations across different tissues. Meanwhile, we have delineated both the commonalities and discrepancies 
between DR and PDR at the transcriptomic level, represented by DCLRE1B as the hub gene that DR progressed 
into PDR. SMR revealed 92 key DR-related genes and 55 PDR-related genes. HLA-DQ family genes have a frequent 
occurrence, while RPS26, WFS1 and SRPK1 were validated as the genetic network’s linchpins. Drug-target MR casted 
ERBB3 and SRPK1 as candidate effector genes for DR and PDR susceptibility. In addition, metabolomics and immu-
nomics analyses also revealed multifaceted pathogenic factors for DR.

Conclusions  Our research offers targeted therapeutic insights for early-stage DR and facilitates multi-omic compari-
sons of it and PDR.
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Introduction
Diabetic retinopathy (DR) stands as a significant micro-
vascular complication inherent in both type 1 and type 2 
diabetes [1]. Its prominence as a leading cause of vision 
loss among the working-age population underscores its 
critical status in medical research and intervention [2]. 
Traditional treatments for DR encompass a spectrum 
of interventions, ranging from surgical modalities such 
as laser therapy, intravitreal injections, and vitrectomy 
to non-surgical approaches targeting the management 
of hyperglycemia, hypertension, and hyperlipidemia [2]. 
However, current surgical interventions for DR are typi-
cally reserved for advanced stages and frequently fall 
short in preserving vision [3]. Concurrently, pharma-
cological therapies have demonstrated limited efficacy, 
leaving patients at considerable risk of irreversible blind-
ness [2]. It is imperative to shift focus towards early path-
ogenic stages to optimize patient treatment outcomes, a 
pursuit of paramount clinical significance as it directly 
impacts vision preservation and mitigates the societal 
health burden associated with DR. In our endeavor, a 
thorough exploration of pharmacological interventions 
and the identification of novel therapeutic targets are 
indispensable. By embracing a holistic approach, we can 
advance with more effective strategies to combat this 
sight-threatening condition.

DR is recognized as a systemic ailment characterized 
by intricate and multifaceted pathogenic pathways. The 
etiology of DR encompasses various proposed hypoth-
eses, including the activation of NLRP3 inflammatory 
vesicles, neutrophil extracellular trap-mediated damage, 
circRNA induction, and thickening of the retinal capillary 
basement membrane [4]. Distinctive retinal alterations 
have been identified as potential discriminators between 

proliferative diabetic retinopathy (PDR) and DR, with the 
vitreous also showing promise as a differentiating factor 
[5–7]. Despite the informative nature of studies elucidat-
ing the pathogenic mechanisms underlying DR, definitive 
conclusions remain elusive. Leveraging genetic correla-
tions with DR offers a promising avenue for pinpointing 
single nucleotide polymorphisms (SNPs), elucidating piv-
otal genes at the transcriptomic level, identifying target 
loci, and uncovering DR-related biomarkers.

Our comprehensive multi-omic investigation delved 
into both DR and its advanced form, PDR, commencing 
with genome-wide association data. Through Transcrip-
tome-Wide Association Studies (TWAS), conditional 
analyses, and permutation testing, we unveiled tran-
scriptomic connections to DR/PDR. The identified genes 
underwent annotation using the Gene Ontology data-
base. Leveraging Summary Data-Based Mendelian Ran-
domization (SMR) with expression quantitative trait loci 
(eQTL)-derived SNPs, we employed the HEIDI test for 
validation. Druggable genes sourced from drug databases 
underwent MR analysis, targeting DR/PDR while adjust-
ing for co-localization and false discovery rate (FDR). 
Additionally, our study encompassed Phenome-Wide 
Association Studies (PheWAS) and metabolomics-MR 
analyses to glean pharmacogenetic insights. An immuno-
histology-MR scan of 731 immune markers further elu-
cidated key molecules. Despite significant advancements 
in existing therapies, such as anti-VEGF agents and laser 
treatments, substantial limitations remain. These treat-
ments often do not adequately address the multifactorial 
nature of diabetic retinopathy, leading to the urgent need 
for more effective options that can comprehensively man-
age the condition [8]. This study identifies critical genes, 
such as RPS26, WFS1, and SRPK1, as novel therapeutic 
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targets, thereby paving the way for improved treatment 
strategies and advancing the field of diabetic retinopathy 
research.

Methods
The overview of the study could be viewed in Fig. 1.

DR traits
In our multi-omic analysis, we identified SNPs asso-
ciated with DR using summary statistics from the 
FinnGen R9 dataset, which includes 319,046 individuals 
and 10,413 DR cases [9]. FinnGen provides a valuable 
resource for exploring genetic variants tied to disease 
progression, particularly within isolated populations. 
To further enrich the analysis, we integrated data on 
PDR from the FinnGen R6 dataset, which consists of 
253,168 individuals, including 10,860 PDR cases. This 

combined approach enhances the representativeness 
and robustness of our findings [9].

Gene expression weights for transcriptomic imputation
To explore the relationship between SNP transcription 
and diabetic retinopathy outcomes in a tissue-nonspe-
cific manner, we utilized sparse canonical correlation 
analysis (sCCA) across multiple tissues to obtain gene 
expression weights [10]. For histologically localized 
transcriptomic insights into diabetic retinopathy, we 
focused on three distinct tissues—pancreas, kidney, 
and whole blood—using transcriptomic expression data 
from the GTEx V8 database [11]. This approach allowed 
us to assess tissue-specific gene expression profiles rel-
evant to the progression of diabetic retinopathy.

Fig. 1  Study overview. An overview of the data sources, analysis process, methodology and broad results of this study. TWAS transcriptome-wide 
association study, SNP single nucleotide polymorphism, eQTL expression quantitative trait loci, FDR false discovery rate, PP.H4 posterior probability 
of H4, GTEx Genotype-Tissue Expression Project, PheWAS phenome-wide association study, IVW inverse variance weighted, DR diabetic retinopathy, 
MR-PRESSO Mendelian Randomization Pleiotropy RESidual Sum and Outlier test, MR Mendelian randomization
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Transcriptomic imputation
We applied a transcriptome-wide association study 
(TWAS) approach [12], which mediates the relation-
ship between genetic variation and transcriptional regu-
lation, transforming associations between individual 
genetic variants and phenotypes into gene or transcript-
level insights. To predict tissue-specific gene expression, 
we used the FUSION pipeline, leveraging our genome-
wide association study (GWAS) summary statistics [12]. 
Unlike focusing solely on individual SNPs, FUSION 
allows for gene-level analysis, offering deeper insight into 
gene function and uncovering additional associations. 
The pipeline selects the most appropriate algorithm 
(such as susie, lasso, enet, or topl) to generate significant 
findings. We identified key genes by applying Bonferroni 
correction and used false discovery rate (FDR) correction 
for supplementary analysis. Specifically, we considered 
TWAS P < 0.05/ feature number each tissue after Bonferroni 
correction (Pancreas of 5734, Whole blood of 7938, Kid-
ney cortex of 1203) and P < 1.32 e-06 of sCCA.

Colocalization, permutation testing, and conditional 
analyses
Colocalization analysis for TWAS-significant genes (with 
a significance threshold of P < 0.05) was conducted using 
the coloc R package (version 5.1.0.1) within the FUSION 
framework [13]. This Bayesian-based method estimates 
the posterior probability (PP) of five models related to 
associations between GWAS and TWAS results. Specifi-
cally, we assessed the probability that our TWAS asso-
ciations reflected either: (1) PP.H3: Linkage between 
distinct causal SNPs. (2) PP.H4: A single causal SNP. By 
comparing PP.H3 and PP.H4, we discerned whether a 
genuine causal relationship exists between traits and DR. 
We defined positive genes as those with PP.H4 exceeding 
0.9. To validate our findings, we employed permutation 
testing and considered a P-value < 0.05 as a positive indi-
cator [14]. Additionally, we utilized conditional analysis 
to identify co-expression sites and distinguish between 
independent and conditional features [12]. Conditioned/
marginal features were significantly associated with DR 
only in the unadjusted model, where their associations 
depended entirely on the expression of other proximate 
features. After correction, independently/jointly signifi-
cant features remained associated with the phenotype 
at a nominal significance level (p < 0.05). Our condi-
tional analysis followed the procedures outlined on the 
FUSION webpage (http://​gusev​lab.​org/​proje​cts/​fusion/).

Fine‑mapping of TWAS associations and high confidence 
features
We employed FOCUS to identify genes with causal 
associations to DR. FOCUS is a TWAS fine-mapping 

method that, similar to the statistical fine-mapping of 
GWAS results, estimates the posterior inclusion prob-
ability (PIP) of each feature being causally linked within 
the association region. A PIP value greater than 0.5 sug-
gests that the locus is more likely to be causally associ-
ated with DR than any other locus in the region. FOCUS 
accommodates multiple causal SNPs and genes while 
integrating gene effect sizes using conjugate priors. In 
our analysis, we defined high-confidence genes as those 
with PIP > 0.8, a notable TWAS P-value, and a significant 
conditional analysis P-value [15].

Functional annotations of significant loci
To further explore the functions of key loci and genes, we 
annotated the results of transcriptome analyses on Gene 
Ontology (GO) databases accordingly to interpret the 
results in terms of both functions and gene expression 
pathways. GO analysis was able to annotate the results 
from the GO analysis can interpret genes in terms of cel-
lular component (CC), and molecular function (MF). The 
analysis was computed using the hypergeometric test and 
run with the R package clusterProfiler v4.10.0 [16, 17]. 
Additionally, the visualisation of the enrichment results is 
implemented using the R package aPEAR [18].

SMR
SMR can elucidate associations between expression 
quantitative trait loci (eQTL) and phenotypic outcomes 
[19]. Specifically, we utilized SMR for our analysis. To 
assess linkage disequilibrium (LD) and estimate potential 
co-localization, we performed the HEIDI test using an 
external reference. Our criteria for defining final signifi-
cant genes were as follows: (1) SMR FDR: Genes with an 
SMR FDR P-value < 0.05 were considered significant. (2) 
Genome-Wide Significance: We required that both eQTL 
and GWAS results were significantly different at the 
genome-wide level (P < 1 × 10-5). (3) HEIDI Test Results: 
Genes were retained if the HEIDI test indicated a result 
greater than 0.05. These stringent criteria allowed us to 
identify genes with robust associations related to diabetic 
retinopathy.

Selection of cis‑eQTL associated with druggable genes
Focusing on the use of cis-expression quantitative trait 
loci (cis-eQTLs) can better associate with key target 
genes during drug development. We obtained filtered and 
significant cis-eQTL data from the eQTLgen consortium 
[20]. The eQTLgen consortium collected and measured 
peripheral blood samples from 31,684 projects. These 
data provide valuable insights into the genetic regulation 
of gene expression. We also extracted multidimensional 
genomics data from the NIH-funded PsychENCODE 
program [21], which focuses on the developing and adult 

http://gusevlab.org/projects/fusion/
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human brain, encompassing both healthy and diseased 
states, validating the positive genes that extracted from 
eQTLgen consortium [20].

To identify gene-associated instrumental variables, we 
selected SNPs within a 100 kb range. These SNPs had an 
association P-value < 5e−8 with the target gene. R2 was 
set as 0.1 to obtain more effective SNPs. Since the origi-
nal gene database eQTLgen and PsychENCODE was not 
sufficient to cover existing genes, we selected some genes 
from the gene database constructed by Vosa U to sup-
plement the MR analysis [20]. The criteria for selecting 
genes are as follows: (1) All the genes that the P value of 
TWAS analysis was < 0.05/gene number, the PPH4 > 0.8 
of colocalization analysis, the P value of permutation test 
was < 0.05, the P value of conditional analysis was < 0.05, 
the P value of fine-mapping was > 0.9. (2) The genes that 
the P value of TWAS analysis was < 0.05/gene number, 
the PPH4 > 0.8 of colocalization analysis, the P value of 
permutation test was < 0.05, while their P value of SMR 
analysis was < 1e−05 with the P value of HEIDI analysis 
was > 0.05.

In total, 2499 genes were screened from eQTLgen, 
1367 genes were included from PsychENCODE and 
11 genes (RPS26, SRPK1, WFS1, BABAM1, SUXO, 
TP53INP1, EIF2S2P3, CCNE2, KRT8P46, LRRC37A15P, 
SENP2) were selected from Vosa U.

Drug‑target MR
Given a sufficient number of high-confidence SNPs, we 
avoided the use of proxies. To ensure robust instrumental 
variables, we set the F-statistic threshold at > 10, exclud-
ing SNPs with insufficient statistical power [22, 23]. 
For traits or genes with a single SNP as an instrumen-
tal variable, we applied the Wald ratio to assess causal 
associations. When two SNPs were available, Inverse 
Variance Weighted (IVW) analysis was employed [24]. 
For cases with more than two SNPs, we primarily used 
IVW, supplemented by MR-Egger, Weighted Median, 
Simple Mode, and Weighted Mode analyses [25–27]. 
To enhance robustness and reduce potential confound-
ing, we applied the false discovery rate (FDR) correction 
to p-values. Additionally, we conducted the MR Steiger 
test for directional validation and investigated the pos-
sibility of reverse causality [28]. The MR-Egger intercept 
test was utilized to detect horizontal pleiotropy. Hetero-
geneity among the instruments was evaluated using the 
Cochran’s Q test. These MR analyses provided valuable 
insights into the causal relationships between genetic 
variants and DR. All analyses adhered to the Strength-
ening the Reporting of Observational Studies in Epi-
demiology  Using MR (STROBE-MR) guidelines  [29]. 
Furthermore, we complemented our findings with 
TWAS and SMR analyses, incorporating drug-targeted 

investigations. All MR analyses were performed using the 
TwoSampleMR v0.5.11 package in R.

Integration multiomics evidence of DR‑related genes
We combine three main analysis methods to make a 
comprehensive exploration of DR-related risk genes. Our 
classifier requires that all candidate genes be related to 
or mostly related to these three methods. Therefore, we 
classify candidate genes into three tiers based on specific 
criteria: Tier 1: The P value of TWAS analysis was < 0.05/
gene number, the PPH4 > 0.8 of colocalization analysis, 
the P value of permutation test was < 0.05, the P value of 
conditional analysis was < 0.05, the P value of fine-map-
ping was > 0.9, the P value of SMR analysis was < 1e−05 
with the P value of HEIDI analysis was > 0.05, and the P 
value of MR verification analysis was significant by the 
criteria of each gene database. Tier 2: The P value of 
TWAS analysis was < 0.05/gene number, the PPH4 > 0.8 
of colocalization analysis, the P value of permutation test 
was < 0.05, the P value of conditional analysis was < 0.05, 
the P value of fine-mapping was > 0.9, while the P value of 
SMR analysis was < 1e−05 with the P value of HEIDI anal-
ysis was > 0.05, or the P value of MR verification analysis 
was significant by the criteria of each gene database. Tier 
3: The P value of TWAS analysis was < 0.05/gene number, 
the PPH4 > 0.8 of colocalization analysis, the P value of 
permutation test was < 0.05, the P value of SMR analysis 
was < 1e-05 with the P value of HEIDI analysis was > 0.05, 
and the P value of MR verification analysis was significant 
by the criteria of each gene database. Tier 4: The other 
genes that the P value of SMR analysis was < 1e−05 with 
the P value of HEIDI analysis was > 0.05, and the P value 
of MR verification analysis was significant by the criteria 
of each gene database. The other genes that the P value of 
TWAS analysis was < 0.05/gene number, the PPH4 > 0.8 
of colocalization analysis, the P value of permutation test 
was < 0.05, the P value of conditional analysis was < 0.05, 
the P value of fine-mapping was > 0.9. The integration of 
TWAS, colocalization, permutation testing, conditional 
analysis, fine-mapping, along with SMR and MR, pro-
vides a comprehensive and robust framework for iden-
tifying potential drug targets for diabetic retinopathy. By 
leveraging both association and causal inference meth-
ods, this approach allows for the precise identification of 
genes and variants that are not only associated with the 
disease but also likely to have a direct functional impact 
on its pathogenesis. The cross-validation between dif-
ferent analytical methods ensures high confidence in the 
findings, while fine-mapping and MR help to pinpoint the 
most likely causal variants, significantly increasing the 
biological relevance of the identified targets. This com-
bined strategy is particularly effective in disentangling 
confounding factors such as linkage disequilibrium and 
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pleiotropy, offering a high-resolution view of the genetic 
mechanisms underlying diabetic retinopathy and thereby 
facilitating the discovery of viable therapeutic targets.

MR‑PheWASs
Functional implications of drug target loci significantly 
associated with DR (with a significance threshold of 
P < 0.05) could be explored by employing MR-PheWAS. 
We selected the top snp of each gene as inputs to explore 
their association with different trait GWAS summary 
data on a large scale. The tic analyses were all imple-
mented using the ieugwasr v0.2.2 R package [30]. The 
biological pathways of the salient genes were queried in 
the GeneCards database (Supplementary Data 39).

Metabolomics and immunomics biomarkers data
Metabolome-exposure data from 8229 individuals from 
the Canadian Longitudinal Study of Aging (CLSA) 
cohort were used to select 1091 metabolites and 309 
metabolite ratios [31]. And as exposure data from 3757 
individuals from Sardinia, 731 immune cells (118 abso-
lute cell (AC) counts, 389 median fluorescence intensities 
(MFI) reflecting surface antigen levels, 32 morphologi-
cal parameters, and 192 relative cell (RC) counts) related 
traits were selected [32]. DR-related traits were used as 
outcomes. We filtered for SNPs associated with 1400 
metabolites (P = 5E−08) and SNPs associated with 731 
immune markers (P = 1E−05). r2 was set as 0.001, and 
the clump was within 100  kb. These biomarkers were 
selected to investigate whether there were casual associa-
tions between them and DR, which will be of help to us 
in understand of the deeper mechanisms of the progress 
of DR (Supplementary Data 30, 32).

Metabolomics and immunomics MR on DR‑related traits
To ensure that there were enough SNPs that could be 
analysed, we proxied on the 1000 Genomes Project Euro-
pean Reference Sample. R2 = 0.8 was set as the screening 
threshold. SNPs in the MHC region were not removed. 
NSNP <  = 3 would be removed. TwoSampleMR v0.5.11. 
was used to conduct a MR analysis from metabolomics 
and immunomics biomarkers to DR. The method was 
the same as drug-target MR unless otherwise specified. 
In addition to Egger intercept test, we used MR-PRESSO 
as a test for horizontal multiple validity [33]. We exploit 
the power of multiple genetic variants to consider link-
age disequilibrium (LD) between variants. To under-
stand if the associations in terms of genetic variation 
and outcome were diminished after adjusting for expo-
sure, we carried out leave-one-out analyses in which we 
progressively removed each SNP, calculated the meta-
effects of the remaining SNPs, and observed whether the 
results changed after removing each SNP. Meanwhile, 

we employed heatmaps to represent our aggregated MR 
results.

Querying the MGI database
To investigate what happens to our remarkable genes 
in the mouse knockout model, we interrogated Mouse 
Genome Informatics (MGI) for significant features 
revealed [34]. MGI serves as an invaluable international 
resource for laboratory mice, offering comprehensive 
genetic, genomic, and biological data. Its standardized 
nomenclature facilitates the categorization of various 
mouse strains and their associated features.

Result
TWAS revealed significant transcriptomic results with DR
In our investigation, we leveraged GWAS datasets 
directly or indirectly associated with DR. Employing the 
FUSION method, along with colocalization and permu-
tation testing, we sought to identify genes significantly 
linked to DR-related traits (Supplementary Data 1–4). 
And the summary results could be seen in Supplemen-
tary Data 34. Genes exhibiting Z-scores above zero were 
categorized as up-regulated, while those with Z-scores 
below zero were considered down-regulated. These reg-
ulatory patterns are visually depicted in Fig.  2 (Supple-
mentary Fig. 2–1, 2–2).

Furthermore, we conducted colocalization analysis 
to ascertain whether the genetic signals associated with 
these genes and DR traits at a specific locus originate 
from the same causal polymorphism. Our study identified 
23 significant loci associated with DR, 5 features associ-
ated with PDR (Supplementary Data 27). All of results 
passed permutation testing (23/23 in DR, 5/5 in PDR). As 
it is known, estimated association statistics are well cali-
brated in the absence of GWAS associations, but may be 
exaggerated by chance QTL colocalization when GWAS 
motifs are highly significant and LDs are widespread. Per-
mutation testing rearranges the QTL weights and recal-
culates the empirical association statistics conditional 
on the locus GWAS effect. This effectively tests whether 
identical distributions of QTL effect sizes can produce 
significant associations by chance, which will help us 
determine the veracity of the causal associations between 
these genes and DR-related traits, rather than just resting 
on the correlation of the huge GWAS data. Additionally, 
we then performed conditional analysis on the genes cor-
responding to the key transcription sites (Supplementary 
Data 5). Next, we used FOCUS fine mapping to pinpoint 
prospective high-confidence causal genes. 9 features 
(including RPS26, WFS1, SRPK1, BABAM1, RAB5B and 
SENP2) in DR and 1 (DCLRE1B) in PDR passed the fine-
mapping test (Table  1, Supplementary Data 6, Supple-
mentary Fig. 2-1, 2-2). This indicates that these genes are 
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highly DR-associated. The plots of conditional analysis 
and fine-mapping were showed to observe the superior 
performance of significant genes (Figs. 3, 4, 5, 6).

Functional annotations of significant loci
Functional analysis revealed that our TWAS significant 
genes were mainly associated with intracellular orga-
nelle lumen, postsynaptic specialization, cell-substrate 

junction, endoplasmic reticulum subcompartment, and 
intracellular vesicle from the perspective of cellular 
component. And they were also correlated with tran-
scription cis-regulatory region binding, purine ribo-
nucleotide binding, serine hydrolase activity, GTPase 
regulator activity, peptidase inhibitor activity, channel 
activity and, carboxylic acid transmembrane trans-
porter activity from molecular function (Fig. 7, Supple-
mentary Data 7).

Fig. 2  Circular heat map of TWAS results. A The results of DR. B The results of FDR. The heatmap is divided into five circles with five metrics, namely 
TWAS-P, COLOC-PPH4, FDR, Conditional Analysis, and FOCUS fine-mapping. The selected molecules have FDR-P values less than 0.05

Table 1  TWAS significant high confidence genes

High confidence results from TWAS analyses of two DR related phenotypes. TWASs were conducted using cross-tissue expression weights generated from the GTEx v8 
release using specific tissues (Pancreas, Whole blood and Kidney cortex) and sparse canonical correlation analysis (sCCA). Significance was defined using a Bonferroni 
threshold of TWAS P < 0.05/ feature number each tissue after Bonferroni correction (Pancreas of 5734, Whole blood of 7938, Kidney cortex of 1203) and P < 1.32 × 10−6 
(0.05/37,917 cross-tissue sCCA features) in sCCA. Significant TWAS associations were deemed high confidence if they passed a conditional test (joint P value < 0.05) 
and FOCUS fine-mapping (PIP > 0.5). A gene was defined as novel if it was located greater than 500 kilobases from a lead variant in the source GWAS. Colocalization 
and permutation analyses were used to further assess the robustness of TWAS findings. TWAS transcriptome-wide association study, PIP posterior inclusion 
probability, FOCUS Fine-mapping Of CaUsal gene Sets, PP.H4 posterior probability that two traits are associated with a single causal variant, IEAA intrinsic epigenetic 
age acceleration, GTEx v8 Genotype-Tissue Expression Project version 8, GWAS genome-wide association study

Phenotype Tissue Gene NEW TWAS Z score TWAS P value FOCUS PIP Joint P value 
(conditional 
analysis)

PP.H4 
(colocalization 
analysis)

Permutation 
test P value

DR Pancreas RPS26 Yes 5.8621 4.57E−09 0.965 4.60E−09 0.99 0.002583

SRPK1 Yes 4.88043 1.06E−06 0.838 1.10E−06 0.93 0.014019

Whole blood RPS26 Yes 5.92052 3.21E−09 0.992 3.20E−09 0.992 0.001371

WFS1 Yes 5.48151 4.22E−08 1 4.20E−08 0.96 0.00136

Kidney cortex RPS26 Yes 5.919 3.24E−09 1 3.20E−09 0.99 0.00911

sCCA​ RAB5B Yes 5.37171 0.000000078 0.999 7.80E−08 0.908 0.045977

SENP2 Yes 5.48889 4.04E−08 0.988 4.00E−08 0.916 0.042705

WFS1 Yes 6.01018 1.85E−09 1 1.90E−09 0.938 0.01872

BABAM1 Yes 5.50408 3.71E−08 0.991 3.70E−08 1 0.000297

PDR sCCA​ DCLRE1B Yes 5.15539 2.53E−07 0.896 2.50E−07 0.016 0.01939
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High‑confidence SMR multi‑tissue findings for DR
Within the range of 49 tissues analysed in the transcrip-
tome, we performed a large summary data-based Men-
delian randomization (SMR) analysis comprehensively 
covering most of the possibilities, looking for 92 key DR-
regulated genes that were significantly positive in 49 tis-
sues a total of 446 times (Table 2, Supplementary Data 8, 
9). The screening thresholds were SMR P value < 1E−05 
along with FDR P value < 0.05, HEIDI test P value > 0.05. 
Sixty of these genes are protein-codable. Of the genes, 
the most significantly related in terms of association are 
the HLA-DQ family genes, with HLA-DQB1, B2, HLA-
DQA2 showing the top three significance, the latter two 
being the most significant in the blood, and the topmost 
being the most specifically and significantly expressed 
in sun-exposed skin. From the perspective of gene over-
lap, the most frequent occurrences of our genes were 
the HLA-DQ family. What excited us is that RPS26 and 
WFS1 are two novel co-significant genes revealed in 
multi DR weights corresponding with the result of TWAS 
analyses (Tables 1, 2). We identified that the genetic loci 
of RPS26 and WFS1 are in close proximity, suggesting a 
potential combined influence on the development of DR 
(Fig. 8). Furthermore, SUXO exhibited significantly posi-
tive SMR_P values (Fig. 9), appearing across 14 different 
tissue types. These three genes constitute the most piv-
otal elements identified in the SMR analysis, highlighting 
their critical relevance to the findings.

GO enrichment analysis made a co-ordinated statisti-
cal analysis of the functions of the significant genes. The 
results showed that numerous genes collectively pointed 
to eight immune-related pathways, which suggested a 
close relationship between the progression of DR and 
immune molecules, especially the assembly of the MHC 
class II protein complexes among them, which may be a 
key link in the process of DR development (Supplemen-
tary Data 10, 11).

High‑confidence SMR multi‑tissue findings for PDR
A total of 327 positive results were seen in 49 tissues con-
taining 55 genes (Table  3, Supplementary Data 12, 13). 
The screening conditions were as in the previous section. 
A total of 37 protein-codable genes were included. In 
terms of significance results, the top five were all HLA-
DQ family: HLA-DQB1, B2, B6, A1 and A2.In terms of 
frequency of occurrence, a total of 13 genes appeared 
with a frequency of greater than or equal to five times, of 
which, in addition to the top ranked HLA-DQB2, which 
was the most prominently expressed in the blood, and 
the results of other HLA-DQ family genes, there was also 
the result of SKIV2L expressed in the Artery_Aorta with 
a total of 23 occurrences. Also, the gene TNXA is a locus 
of interest with a total frequency of 15 occurrences.

Fig. 3  Conditional analysis plots for key positive genes for specific tissues. A RPS26 in pancreas. B RPS26 in whole blood. C SRPK1 in pancreas. 
D WFS1 in whole blood. E RPS26 in kidney cortex. These are the genes that characterize DR. Conditioned/marginal features were significantly 
associated with DR only in the unadjusted model. After correction, independently/jointly significant features remained associated 
with the phenotype at a nominal significance level (p < 0.05)
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Fig. 4  Fine-mapping diagrams of key genes. A RPS26 (ENSG00000197728.9, 12:56041351-56044697) in DR from pancreas. B RPS26 
(ENSG00000197728.9, 12:56041351-56044697) in DR from whole blood. C RPS26 (ENSG00000197728.9, 12:56041351-56044697) in DR 
from kidney cortex. RPS26 is a hub gene in regulation of DR, which was significant in multiple analysis results. D WFS1 (ENSG00000109501.13, 
4:6269849-6303265) in DR from whole blood. E SRPK1 (ENSG00000096063.15, 6:35832966-35921342) in DR from pancreas. All of these genes pass 
the fine-mapping exam. It means that they have a casual effect of the regulation of DR. The direction of their effect can be analysis by the TWAS-Z 
score



Page 10 of 25Yi et al. Journal of Translational Medicine         (2024) 22:1146 

We explored the functional annotations of related 
genes on the GO database and found nine immune-
related functional annotations including MUC class II 
protein complex, myeloid dendritic cells and antigen–
antibody binding (Supplementary Data 14, 15).

Drug‑target MR
We extracted and screened cis-eQTL data from each of 
the two databases, eQTLgen, Psychencode, and ended up 
with 2499 and 1367 corresponding genes (Supplementary 
Data 16, 17). We did a large-scale drug target MR analy-
sis of them with outcomes of DR and PDR respectively. 
The p-value thresholds for MR analyses were determined 
using a Bonferroni correction approach, calculated as 
0.05 divided by the total number of genes analyzed, 
resulting in thresholds of MR p-value < 0.00002001 for 
eQTLgen (with 2499 genes), p-value < 0.00003658 for 
Psychencode (with 1367 genes) and p-value < 0.00455 for 
Vosa U (with 11 genes). FDR was also used to observe 
the corrected change in P values as a primary screening 
index. Q test P value of heterogeneity > 0.05 and Egger 
intercept test P value > 0.05 were applied as sensitive test 
(Table 4). The Steiger filter is used to check the direction-
ality of MR results in eQTLgen (Supplementary Data 20, 
25).

We obtained a range of 14 significant genes in the 
eQTLgen with DR as well as 13 with PDR (Supplemen-
tary Data 19, 24). Shared genes between DR and PDR 

amounted to five (ITGB7, TEK, ITPR3, C4A, PRKD2, 
ERBB3) in eQTLgen consortium in primary screen-
ing (P < 0.00002001 for IVW) (Fig. 10). After colocaliza-
tion analysis, a total of 11 high confidence features were 
selected from eQTLgen (RPS26 of DR, EIF2S2P3 of DR, 
KRT8P46 of DR, LRRC37A15P of DR, TP53INP1 of DR, 
CDH2 of DR, CTLA4 of DR, ITGB7 of DR, ERBB3 of 
DR, KSR1 of PDR, ITGB7 of PDR) (Table 4, Supplemen-
tary Data 18, 37). Gene ERBB3 of PDR in eQTLgen was 
also closed to positive with a COLOC.PP.H4 of 0.949, 
which might be a hub gene in the regulation of DR and 
PDR. When performing a double test using Psychencode 
for DR, we found that two genes (SRPK1, ERBB3) were 
positive for both eQTLgen and Psychencode in primary 
screening (Supplementary Data 18). In the Psychencode’s 
test, both the ERBB3 and HLA-B genes showed positive 
results in both DR and PDR (Supplementary Data 21, 
26). All of these results suggested that ERBB3 and SRPK1 
might be candidate effector genes for DR and PDR sus-
ceptibility. The results of Egger intercept test and Q het-
erogeneity test could be seen in Supplementary Data 22, 
23, 27, 28.

Integrated multi‑omics evidence of DR‑related genes
We integrated and analyzed the results of the three 
main methods. All significant genes are divided 
into four tiers (Table  5, Supplement Data 36). We 
found that the RPS26 gene in Whole blood showed 

Fig. 5  Conditional analysis plot of significant key genes in the tissue-wide database sCCA. A WFS1. B RAB5B. C SENP2. D DCLRE1B. E BABAM1. 
Among them, WFS1, RAB5B, SENP2 and DCLRE1B are characteristic genes of DR, and DCLRE1B is the important characteristic gene of PDR, 
distinguishing it from DR. Conditioned/marginal features were significantly associated with DR only in the unadjusted model. After correction, 
independently/jointly significant features remained associated with the phenotype at a nominal significance level (p < 0.05)
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significant positive effects on DR development in all 
three methods (TWAS.Z = 5.92052, SMR.Beta = 0.071, 
MR.Beta = 0.180). These suggest that there is a causal 
effect between RPS26 and the development of DR. WFS1 
and SRPK1 (Tier 2) also show a causal relationship 
with the development of DR (TWAS.Z.WFS1 = 5.4815, 
SMR.Beta.WFS1 = 0.157814, TWAS.Z.SRPK1 = 4.88043, 

MR.Beta.SRPK1 = 0.124). In the tier 3: TP53INP1, 
KRT8P46 and LRRC37A15P in Whole blood showed 
a positive effect on the development of DR in TWAS, 
SMR and MR. While EIF2S2P3 in Whole blood shows 
a negative effect on the regulation of DR in TWAS, 
SMR and MR. A controversial point is that the TWAS 
results of the CCNE2 gene show positive regulation 

Fig. 6  Fine-mapping diagrams of key genes. A WFS1 (ENSG00000109501.13, 4:6269849-6303265) in DR from sCCA. It is a new discovery that marks 
the mechanism of DR occurrence, which also corresponding with results in TWAS. B RAB5B (ENSG00000111540.15, 12:55973913-55996683) in DR 
from sCCA. C BABAM1 (ENSG00000105393.15, 19:17267376-17281249) in DR from sCCA. D SENP2 (ENSG00000163904.12, 3:185582496-185633551) 
in DR from sCCA. E DCLRE1B (ENSG00000118655.4, 1:113904619-113914086) in PDR from sCCA. It is the only essential gene found to distinguishes 
DR from PDR. All of these genes pass the fine-mapping exam. It means that they have a casual effect of the regulation of DR. The direction of their 
effect can be analysis by the TWAS-Z score
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(TWAS.Z = 6.17164), and the SMR and MR results show 
a negative causal relationship (SMR.Beta = -0.176809, 
MR.Beta = -0.2664). In the tier 4: EHMT2, C4A, ERBB3 
and SUOX show a negative effect on the development 

of DR. SENP2 and RAB5B show a positive effect on the 
regulation of DR.

Fig. 7  Functional analysis of significant causal genes for DR-related traits. A Cellular component of key genes. B Molecular function of key genes

Table 2  High-confidence SMR multi-tissue gene results for DR

SMR results for DR. Summary data-based Mendelian randomization (SMR) analysis were conducted, looking for 92 key DR-regulated genes that were significantly 
positive in 49 tissues a total of 446 times. The screening thresholds were SMR P value < 1E−05 along with FDR P value < 0.05, HEIDI test P value > 0.05. Genes with high 
significance in 5 or more tissues are shown. We defined protein-coding according to HGNC, Ensembl, or NCBI Gene by GeneCards. RNA gene according to HGNC, 
Ensembl, or NCBI Gene or genes that are mined from RNAcentral and its external sources are defined as ncRNA genes. Pseudogene were defined according to HGNC, 
Ensembl, or NCBI Gene. All of the Category were obtained in https://​www.​genec​ards.​org/. PR Protein Coding; PS Pseudogene

Gene No.of Tissue Result in the most associated tissue Category

β SE P value Tissue

HLA-DQB2 40 0.425821 0.0180877 1.5158E−122 Whole_Blood PR

HLA-DQB1 37 − 0.38162 0.0154173 2.904E−135 Skin_Sun_Exposed_Lower_leg PR

RPS26 36 0.0701062 0.0123345 1.31778E−08 Nerve_Tibial PR

HLA-DQA2 35 0.403143 0.0219115 1.34585E−75 Whole_Blood PR

HLA-DRB6 32 0.417842 0.0229237 3.12088E−74 Muscle_Skeletal PS

HLA-DQA1 30 − 0.601957 0.0393946 1.03619E−52 Skin_Sun_Exposed_Lower_leg PR

HLA-DRB1 25 − 0.882803 0.0619456 4.40165E−46 Lung PR

SUOX 14 − 0.258211 0.0440463 4.5658E−09 eQTLGen PR

HLA-DQB1-AS1 13 − 0.508678 0.0512114 2.994E−23 Testis PR

SKIV2L 12 − 0.345387 0.0389783 7.93073E−19 Pancreas PR

RPL32P1 10 − 0.212719 0.0254583 6.51015E−17 Skin_Sun_Exposed_Lower_leg PS

LEMD2 10 − 0.506115 0.0915501 3.2339E−08 Heart_Left_Ventricle PR

HCG17 9 − 0.212533 0.0351113 1.42069E−09 Adrenal_Gland RNA Gene (lncRNA)

WFS1 8 0.157814 0.0278138 1.39537E−08 Skin_Not_Sun_Exposed_Suprapubic PR

TNXA 7 − 0.344274 0.0363142 2.53255E−21 Adipose_Subcutaneous PS

UQCC2 7 − 0.525417 0.0777439 1.39613E−11 Skin_Sun_Exposed_Lower_leg PR

NELFE 6 0.957561 0.152764 3.65149E−10 Skin_Not_Sun_Exposed_Suprapubic PR

HLA-DRB5 5 − 0.41296 0.0382841 3.97741E−27 Ovary PR

HLA-J 5 0.14534 0.0253651 1.00486E−08 Artery_Aorta PS

https://www.genecards.org/
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MR‑PheWAS
To further explore the potential impact of our signifi-
cant genes, we did MR-PheWAS analysis using top SNPs 
for each gene. p-values less than 1E−05 were defined 
as positive. The results showed that three out of 12 fea-
tures duplicated the top SNP: rs223490 (LRRC37A15P, 
KRT8P46 and RP11-10L12.2). This snp shows its poten-
tial role includes the effects of elevating β-mannosidase, 
lowering cystatin C levels, lowering serum creatinine, 
and elevating glomerular filtration rate levels. The causal 
effect of EIF2S2P3 and WFS1 in DR shown by PheWAS 
was to induce the onset of type 2 diabetes. And RPS26 
and SUOX in DR were to induce rheumatoid arthri-
tis and reduce asthma. And these two genes along with 
EIF2S2P3 and SRPK1 in DR can also reduce the level 
of eosinophil count. And rs223490 (LRRC37A15P, 
KRT8P46 and RP11-10L12.2), RPS26 and SUOX elevate 
the level of lymphocyte count in DR. The total effects of 
these genes point to predisposing factors of DR. Detailed 
results could be viewed in Supplementary Data 29. It 
also points out that DR might associated with a range of 
different diseases through the effects of different genes, 
which need further studies in the future.

Integrative metabolomic and immunomic insights 
into the progression of DR
Given the prevalence of positive associations in blood 
tissue and immune molecules in SMR analysis, we pro-
pose employing immunohistology and metabolomics 
to further investigate the identified genes and uncover 
potential biomarkers. Positive results in metabolomics 
and immunomics were defined using the following: P 
value of IVW < 0.05, and positive FDR test as well as Q 
teat P value of heterogeneity > 0.05, Egger_intercept 
test P value > 0.05, and also a p-value of > 0.05 for MR-
PRESSO. At the same time, we used the MR Egger to test 
for horizontal multiple validity and its P-value should 
also be greater than 0.05. After our multiple sensitivity 
test screening, we screened the positive results with high 
confidence (Supplementary Data 31, 33).

We obtained 38 positive results from 1,400 metabo-
lites, the first five known metabolite positive results were: 
1-stearoyl-GPG (18:0) levels (β = −  0.255), 1-palmitoyl-
GPE (16:0) levels (β = − 0.224), Caffeine levels (β = 0.434), 
1-stearoyl-2-oleoyl-GPE (18:0/18:1) levels (β = −  0.149), 
Hexanoylglutamine levels (β = 0.169) (Table  6). Most of 
these identified molecules are rarely studied molecules, 

Fig. 8  SMR LOCUS Plot of RPS26 and SUXO. These two genes (RSP26 and SUXO) inherited together with their locus nearby. They have a significant 
correlation with DR, which validates the casual relation with DR in TWAS analysis again



Page 14 of 25Yi et al. Journal of Translational Medicine         (2024) 22:1146 

Fig. 9  SMR LOCUS Plot of WFS1. WFS1 is an essential gene in the regulation of DR. It has a significant correlation with DR, which validates the casual 
relation with DR in TWAS analysis again

Table 3  High-confidence SMR multi-tissue gene results for PDR

SMR results for PDR. SMR analysis were conducted, looking for 55 key PDR-regulated genes that were significantly positive in 49 tissues a total of 327 times. The 
screening thresholds were SMR P value < 1E−05 along with FDR P value < 0.05, HEIDI test P value > 0.05. Genes with high significance in 5 or more tissues are shown. 
We defined protein-coding according to HGNC, Ensembl, or NCBI Gene by GeneCards. RNA gene according to HGNC, Ensembl, or NCBI Gene or genes that are mined 
from RNAcentral and its external sources are defined as ncRNA genes. Pseudogene were defined according to HGNC, Ensembl, or NCBI Gene. All of the Category were 
obtained in https://​www.​genec​ards.​org/. PR Protein Coding; PS Pseudogene

Gene No.of Tissue Result in the most associated tissue Category

β SE P value Tissue

HLA-DQB2 41 0.355233 0.0178844 8.55356E−88 Whool Blood PR

HLA-DQB1 37 − 0.318443 0.0154726 4.05585E−94 Skin_Sun_Exposed_Lower_leg PR

HLA-DRB6 32 0.404109 0.0240224 1.6803E−63 Muscle Skeletal PS

HLA-DQA1 30 − 0.58236 0.0404634 5.78595E−47 Skin_Sun_Exposed_Lower_leg PR

SKIV2L 23 − 0.205019 0.0302312 1.1876E−11 Artery_Aorta PR

HLA-DRB1 22 − 0.907715 0.075105 1.25313E−33 Thyroid PR

HLA-DQB1-AS1 19 − 0.378579 0.0358677 4.8227E−26 Putuitary RNA Gene (lncRNA)

TNXA 15 − 0.327415 0.05003 5.97452E−11 Skin_Sun_Exposed_Lower_leg PS

RPL32P1 11 − 0.132668 0.0249025 9.95779E−08 Skin_Sun_Exposed_Lower_leg PS

HLA-DRB5 8 − 0.279709 0.0261476 1.04771E−26 Liver PR

NELFE 7 0.973061 0.18913 2.67607E−07 Muscle Skeletal PR

C4A 6 − 0.296959 0.0338264 1.65056E−18 Esophagus_Mucosa PR

UQCC2 5 − 0.387118 0.0719026 7.28782E−08 Skin_Sun_Exposed_Lower_leg PR

https://www.genecards.org/
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perhaps to be added to future studies (Fig.  11). More 
detailed can be seen in Supplementary Data 31.

The MR analysis of 731 immunomarkers with DR and 
obtained 26 positive results according to the MR result 
positivity test described above. Among them, several 
clusters of key interest were demonstrated by molecular 
clusters expression on different immune cells predomi-
nantly: expression of RAFF-R on different immune cells 
(β < 0), prominent expression of CD3 (β < 0), and expres-
sion of CD80 molecules on dendritic cells and monocytes 
(β > 0). The top five prominent immune markers were 
Plasmacytoid Dendritic Cell Absolute Count, Activated 
CD4 regulatory T cell Absolute Count, Central Memory 

CD8 + T cell %T cell, Naive CD8 + T cell %CD8 + T cell 
and CD4 + T cell Absolute Count. But disappointingly 
after FDR correction most of the molecules were shown 
to be insignificant. More detailed can be seen in Supple-
mentary Data 33.

Mouse knock‑out models for novel genes identified 
by TWAS or drug‑target MR
We interrogated the Mouse Genomics (MGI) resource 
for relevant trait expression in knockout mice. In this 
way, we reached to demonstrate direct post-experi-
mental validation of correlation between key genes and 
DR. Among the 12 key genes searched, we found WFS1 

Table 4  High confidence genes of drug-target MR

Drug-target MR results of DR. Data was sourced from eQTLgen and Vosa U studies. IVW Inverse variance weighted

Gene Phenotype Source method snp Beta SE pval FDR-adjusted 
P value

COLOC.PP.H4

RPS26 DR Vosa U MR Egger 14 0.148 0.068 0.048 2.06E−07 0.999

Weighted median 0.181 0.031 5.98E−09

IVW 0.180 0.034 9.38E−08

EIF2S2P3 DR Vosa U MR Egger 10 − 0.428 0.119 0.007 1.49E−09 0.999

Weighted median − 0.287 0.052 2.76E−08

IVW − 0.266 0.042 2.70E−10

KRT8P46 DR Vosa U MR Egger 16 0.115 0.067 0.108 4.65E−08 0.997

Weighted median 0.159 0.037 9.44E−06

IVW 0.151 0.027 1.69E−08

LRRC37A15P DR Vosa U MR Egger 23 0.056 0.056 0.332 2.21E−09 0.996

Weighted median 0.151 0.031 1.03E−06

IVW 0.144 0.023 6.02E−10

TP53INP1 DR Vosa U MR Egger 27 0.116 0.075 0.134 1.45E−16 0.999

Weighted median 0.192 0.038 3.02E−07

IVW 0.225 0.026 1.32E−17

CDH2 DR eQTLgen MR Egger 28 0.059 0.058 0.314 0.003 0.833

Weighted median 0.151 0.038 7.17E−05

IVW 0.127 0.030 2.00E−05

CTLA4 DR eQTLgen MR Egger 6 − 0.342 0.282 0.292 0.002 0.974

Weighted median − 0.474 0.099 1.80E−06

IVW − 0.340 0.075 6.40E−06

ITGB7 DR eQTLgen MR Egger 10 0.104 0.043 0.040 0.003 0.738

Weighted median 0.110 0.034 0.001

IVW 0.109 0.026 2.13E−05

ERBB3 DR eQTLgen MR Egger 4 − 0.838 0.484 0.226 5.37E−07 0.949

Weighted median − 0.478 0.087 3.53E−08

IVW − 0.479 0.078 7.58E−10

KSR1 PDR eQTLgen MR Egger 19 − 0.138 0.054 0.021 0.0004 0.611

Weighted median − 0.145 0.037 9.50E−05

IVW − 0.131 0.026 7.79E−07

ITGB7 PDR eQTLgen MR Egger 10 0.104 0.045 0.050 0.002 0.852

Weighted median 0.145 0.035 2.77E−05

IVW 0.120 0.027 8.90E−06
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Fig. 10  Results of drug-target MR in eQTLgen consortium. A Volcano plot of DR results from Mendelian randomization of drug targeting. B Volcano 
plot of PDR results from Mendelian randomization of drug targeting. C Plots of colocalization results of CDH2 in DR for Mendelian randomization 
of drug targets. D Plots of colocalization results of CTLA4 in DR for Mendelian randomization of drug targets. E Plots of colocalization results 
of ITGB7 in DR for Mendelian randomization of drug targets. F Plots of colocalization results of ERBB3 in DR for Mendelian randomization of drug 
targets. G Plots of colocalization results of KSR1 in PDR for Mendelian randomization of drug targets. H Plots of colocalization results of ITGB7 in PDR 
for Mendelian randomization of drug targets
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directly associated with DR. The annotated information 
we found to be highly correlated with significant gene 
presentations included abnormal insulin levels, abnor-
mal cellular function, and abnormal reproductive sys-
tem function. (Supplementary Data 35).

Discussion
Our study utilized extensive genomic data of DR and 
PDR, employing a multi-omics approach structure to 
elucidate the relationship between various drug-target 
features and DR-related traits (Fig.  1). In addition to 
identifying seven positively associated genes (RPS26, 
SRPK1, WFS1, RAB5B, SENP2, BABAM1) linked to 
DR, we specifically highlighted DCLRE1B as a gene 
unique to PDR. These genes are associated with condi-
tions such as Wolfram Syndrome [35], anemia [36, 37], 
and non-alcoholic steatohepatopathy [38]. Notably, 
RPS26, WFS1 and SRPK1 exhibited significant causal 
effects in the validation processes of SMR and drug-
targeted MR (Tables  2, 4). Beyond their association 
with DR, we focused more on their pleiotropic effects, 

delving into the multi-trait impacts of these genes. 
The loci and proteins identified in this study represent 
promising pharmacological targets, thereby enhancing 
the evidence hierarchy in the drug discovery process 
and laying a foundational basis for subsequent drug 
research and its translational applications.

Key genes RPS26, WFS1, and SRPK1: exploring their roles 
and mechanisms in diabetic retinopathy
Among the genes co-expressed in our SMR and TWAS, a 
remarkably important positive gene appeared: the RPS26. 
It appeared positive in TWAS four times in different tis-
sues (Both 3 specific tissues and sCCA showed positiv-
ity), as well as manifested in SMR with positive results 
in 36 tissues. The most prominent tissues were whole 
blood and nerve tibial respectively. Remarkably, RPS26 
mediates the ribosomal stress response, and in the face 
of stress, the cysteines in RPS26 and Rpl10 are readily 
oxidized and then released from the ribosome via their 
chaperones Tsr2 and Sqt1, followed by targeted repair 
of the damaged ribosome with newly made proteins [39, 

Table 5  The grading table of article results

Tier 1: The P value of TWAS analysis was < 0.05/gene number, the PPH4 > 0.8 of colocalization analysis, the P value of permutation test was < 0.05, the P value of 
conditional analysis was < 0.05, the P value of fine-mapping was > 0.9, the P value of SMR analysis was < 1e−05 with the P value of HEIDI analysis was > 0.05, and the 
P value of MR verification analysis was significant by the criteria of each gene database. Tier 2: The P value of TWAS analysis was < 0.05/gene number, the PPH4 > 0.8 
of colocalization analysis, the P value of permutation test was < 0.05, the P value of conditional analysis was < 0.05, the P value of fine-mapping was > 0.9, while the P 
value of SMR analysis was < 1e−05 with the P value of HEIDI analysis was > 0.05, or the P value of MR verification analysis was significant by the criteria of each gene 
database. Tier 3: The P value of TWAS analysis was < 0.05/gene number, the PPH4 > 0.8 of colocalization analysis, the P value of permutation test was < 0.05, the P 
value of SMR analysis was < 1e−05 with the P value of HEIDI analysis was > 0.05, and the P value of MR verification analysis was significant by the criteria of each gene 
database. Tier 4: The other genes that the P value of SMR analysis was < 1e−05 with the P value of HEIDI analysis was > 0.05, and the P value of MR verification analysis 
was significant by the criteria of each gene database. The other genes that the P value of TWAS analysis was < 0.05/gene number, the PPH4 > 0.8 of colocalization 
analysis, the P value of permutation test was < 0.05, the P value of conditional analysis was < 0.05, the P value of fine-mapping was > 0.9

Grading Genes Tissue TWAS.P TWAS.Z PP.H4 PIP SMR.P SMR.Beta MR_IVW.P MR.Beta

Tier 1 RPS26 Whole Blood 3.21E−09 5.92052 0.992 0.992 1.318E−08 0.0701062 9.38E−08 0.180357536

Tier 2 WFS1 Whole Blood 4.22E−08 5.48151 0.96 1 1.395E−08 0.157814 0.02107 0.150781049

SRPK1 Pancreas 1.06E−06 4.88043 0.93 0.838 NA NA 2.67E−05 0.124082046

Tier 3 TP53INP1 Whole Blood 1.06E−07 5.3157 0.982 NA 5.54287E−08 0.311773 1.32E−17 0.225211828

EIF2S2P3 Whole Blood 4.23E−07 − 5.06 0.791 NA 8.23845E−06 − 0.176809 2.70E−10 − 0.266404116

CCNE2 sCCA​ 6.76E−10 6.17164 1.00 NA 2.58816E−07 − 1.18355 0.0879 − 0.512961065

KRT8P46 Whole Blood 5.01E−06 4.56437 0.965 NA 6.15695E−06 0.115008 1.69E−08 0.151250504

LRRC37A15P Whole Blood 5.01E−06 4.56437 0.965 NA 5.84132E−06 0.1018 6.02E−10 0.144487695

Tier 4 EHMT2 eQTLGen NA NA NA NA 8.53393E−11 − 2.57416 2.45E−103 − 2.654362913

C4A Cells_Cul-
tured_fibro-
blasts

NA NA NA NA 3.04948E−19 0.547908 5.72E−14 − 0.668123099

ERBB3 eQTLGen NA NA NA NA 1.37764E−08 − 0.507111 7.58E−10 − 0.478940464

SUOX Pancreas 1.34E−07 − 5.2729 1.00 NA 4.5658E−09 − 0.258211 0.001066 − 0.102746816

BABAM1 sCCA​ 3.71E−08 5.50408 1.00 0.991 NA NA 3.53E−04 − 0.156962244

SENP2 sCCA​ 4.04E−08 5.48889 0.916 0.988 NA NA 0.60281 − 0.077820202

RAB5B sCCA​ 7.80E−08 5.37171 0.908 0.999 NA NA NA NA
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40]. We must emphasize that oxidative stress is one of 
the key mechanisms of diabetes and diabetic retinopathy. 
Oxidative stress of RPS26 leads to ribosomal damage and 
is likely to play a special role in the process that leads to 
the occurrence of DR. RPS26 mediates the formation of 
anemia, which may be one of the reasons why it is most 
prominent in whole blood. As we know, diabetic patients 
often develop anemia, this may be one of the important 
co-regulated genes [36, 37]. However, it has been shown 
that RPS26 is more strongly expressed in multiple tissues, 
it means that it is more likely to affect a number of differ-
ent phenotypes with some pleiotropy [41]. This suggests 
that the mechanism by which RPS26 works may be per-
vasive in multiple tissues throughout the body. Pathway 
analysis found that it was strongly associated with both 
Pre-mRNA and rRNA (Supplement Data 39). Therefore, 
it is very likely that the mechanism of gene regulation 
will be implemented. Simultaneously, it is important to 
note the close genetic relationship between SUXO and 
RPS26, as evidenced by numerous overlapping SNP vari-
ants observed in the regional location map. From our 
pathway analysis, RPS26 and SUXO share two biological 

pathways: Metabolism and Nervous system develop-
ment. It is reasonable to assume that neurometabolites 
are likely to be mediators of the interaction or co-action 
of the two. Further research is required to explore their 
regulatory interactions in relation to DR.

Except for RPS26, SMR analyses also highlighted 
the conclusiveness of positivity for WFS1. WFS1, a 
high confidence DR gene, associated with Wolfram 
Syndrome, which is characterized by juvenile-onset 
diabetes and diabetes insipidus [42]. It binds directly 
to vesicular cargo proteins, including insulinogen, 
through the C-terminal segment of its endoplasmic 
reticulum lumen, and its deficiency leads to an abnor-
mal accumulation of insulinogen in the endoplasmic 
reticulum, impeding insulinogen processing and insulin 
secretion [43]. Transcriptomic studies using the WFS1 
mouse model have revealed the molecular pathways 
affected after WFS1 gene knockout, including the G 
protein signaling pathway, the ER stress pathway, and 
the proteasome/lysosomal pathway. In pancreatic cells 
of WFS1 mice, insulin secretion is reduced, which is 
associated with a decrease in TRPM5 gene expression 

Table 6  MR reveals causal relationship between metabolomics and DR

Results of MR analyses for DR and metabolomics. Genes with both IVW_P values and FDR_P values less than 0.05 were included as positive high-confidence results. 
MR Mendelian randomization, FDR false discovery rate, IVW inverse variance weighted

Phenotype Exposure IVW_Beta IVW_SE IVW_P IVW_P_FDR MR Egger_pval Weighted median_
pval

Weighted 
mode_pval

Diabetic retinopathy 1-stearoyl-GPG (18:0) 
levels

− 0.255 0.067  < 0.001  < 0.001 0.957 0.000145309 0.132

1-palmitoyl-GPE (16:0) 
levels

− 0.224 0.064  < 0.001  < 0.001 0.526 0.000411367 0.024

X-16087 levels − 0.204 0.048  < 0.001  < 0.001 0.096 3.71659E−06 0.014

Caffeine levels 0.434 0.135 0.001 0.028538 0.499 0.005268488 0.22

1-stearoyl-2-oleoyl-GPE 
(18:0/18:1) levels

− 0.149 0.047 0.001 0.028538 0.124 0.000604548 0.03

Hexanoylglutamine 
levels

0.169 0.049 0.001 0.028538 0.213 1.66621E−06 0.039

Deoxycholic acid 
glucuronide levels

− 0.134 0.039 0.001 0.028538 0.277 0.002586349 0.101

Tetradecanedioate 
(C14-DC) levels

− 0.097 0.03 0.001 0.028538 0.375 0.003026664 0.092

X-25371 levels − 0.243 0.075 0.001 0.028538 0.214 7.7527E−07 0.021

1-linoleoyl-GPG (18:2) 
levels

− 0.12 0.035 0.001 0.028538 0.754 0.00098631 0.134

Octadecenedioylcarni-
tine (C18:1-DC) levels

− 0.089 0.028 0.001 0.028538 0.234 0.002113406 0.088

1-stearoyl-GPE (18:0) 
levels

− 0.194 0.062 0.002 0.043647 0.575 0.001295219 0.021

Hexadecenedioate 
(C16:1-DC) levels

− 0.082 0.026 0.002 0.043647 0.754 0.000768446 0.142

Deoxycholic acid 
12-sulfate levels

− 0.119 0.039 0.002 0.043647 0.731 0.0052984 0.111

Hexadecanedioate 
(C16-DC) levels

− 0.091 0.029 0.002 0.043647 0.253 0.01100617 0.102
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[44]. WFS1 was highly correlated with type 2 diabe-
tes-related traits, which is the most closely related. 
To further understand the biology behind it. Regula-
tion of Insulin-like Growth Factor (IGF) transport and 
uptake by Insulin-like Growth Factor Binding Proteins 
(IGFBPs) and CAMKK2 pathway might be its pathways 
to DR (Supplement Data 34, 39).

Our drug-targeted MR analysis revealed numerous key 
genes. SRPK1 (serine-rich protein kinase-1) promotes 
angiogenesis by phosphorylating serine-rich splicing fac-
tor-1 (SRSF1), a regulator of vascular endothelial growth 

factor splicing [45]. Inhibition of SRPK1 contributes to 
selective down-regulation of pro-angiogenic VEGF iso-
forms [46, 47]. Therefore, SRPK1 inhibitors can be deliv-
ered as ophthalmic drops to diminish retinal permeability 
and edema in the DR [48, 49]. In addition to this, SRPK1 
can selectively splicing exacerbate non-alcoholic steato-
hepatopathy through SRSF6-related RNA [38]. It focuses 
on the pro-metastatic effect on epithelial hepatocellular 
carcinoma cells and the pro-productive effect on mes-
enchymal stroma [50]. As for SRPK1, we could discover 
that it corelated with mean corpuscular hemoglobin and 

Fig. 11  Circular heatmap of positive Mendelian randomisation results on initial screening for metabolomics and immunomics. Results with IVW_P 
values < 0.05 were included. We consider that these results suggest that there may be a causal association of these numerous molecules with DR, 
especially a certain few molecules that occur in clusters in multicellularity
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eosinophil cell count. We discovered that it contributes 
to RNA Polymerase I Promoter Opening, Packaging of 
Telomere Ends, Processing of Capped Intron-Containing 
Pre-mRNA and VEGFA-VEGFR2 signaling (Supplement 
Data 34, 39). Our analysis highlights genes like RPS26, 
WFS1 and SRPK1 as essential targets for future therapeu-
tic strategies aimed at diabetic retinopathy. By develop-
ing treatments that specifically target these genes, we can 
address the underlying causes of the disease more effec-
tively. This approach not only aligns with the pressing 
need for improved treatment options but also enhances 
the potential for personalized medicine in managing DR.

Other mechanistic insights into DR: central roles of SUMO, 
DCLRE1B, and PRKD2
TWASs analysis revealed 9 meaningful features in dif-
ferent tissues that are associated with DR and 1 with 
PDR (Table  1). BABAM1 was identified as a key gene 
associated with breast cancer [51]. It regulates damage-
dependent BRCA1 localization by acting early in the 
DNA damage response [52]. This may be a potential DR-
related mechanism. RAB5B is a regulator of exosome 
secretion, which may contribute to the development of 
DR by promoting exosome secretion [35–54]. SUMO-
specific protease 2 (SENP2) is a de-SUMO-enzymes. Our 
results suggest that its elevated expression may promote 
DR leading to endothelial dysfunction and atherosclero-
sis [55]. Most of the other initial screen-positive genes 
were excluded during fine-mapping and conditional 
analyses, but they still need to be studied further. Aging 
regulator DCLRE1B may serve as a candidate effector 
gene for T1D susceptibility [56]. It uses its activity to help 
remove common oxidative damage in telomeres and has 
a good leading telomere excision effect [57, 58]. As a key 
gene that distinguishes DR from PDR, it may induce an 
exacerbation of disease severity through the mechanism 
of telomere resection.

In addition to these, there is a special gene to focus on. 
PRKD2 (protein kinase D) is a biomolecule with multidi-
rectional functions. It showed multiple positives or near-
positive results in our multiplex analysis, which suggested 
that it might also be a hub gene. A nonsense mutation in 
the gene for PRKD2 was found in rhesus monkeys with 
very high insulinemia. In PRKD2-KO mice, the deletion/
downregulation of PRKD2 was found to mediate hyper-
insulinemia, leading to insulin resistance (IR) and meta-
bolic disorders [59]. And IR is the primary disease that 
mediates the formation of DR [60]. This is consistent with 
our TWAS and DrugMR results: PRKD2 reduces the 
risk of DR (β < 0), and when PRKD2 is down-regulated, 
the probability of DR onset is greatly increased. In addi-
tion to this, PRKD2 has a correlation for tumor growth 
and angiogenesis, which coincides with the possible 

mechanism of DR pathogenesis [61]. And it has been 
shown that PRKD2 can also control neutrophil differenti-
ation by participating in the HAX1-dependent control of 
mitochondrial protein homeostasis dysregulation, which 
fully illustrates the possibility of immune-mediated 
mechanisms involved, and fits with our immune explora-
tion [62].

ERBB3 acts as a regulator of cytoskeletal dynamics 
in microvascular endothelial cells, affecting vascular 
endothelial permeability and tight junction levels [63], 
suggesting that MSC-CM improves impaired vascular 
endothelial permeability in diabetic patients by regulat-
ing ERBB3. This indicated that the results that ERBB3 has 
a protective effect on the occurrence of DR and PDR is 
credible and has a research basis, which is promising to 
continue to explore it in depth.

In the SMR analysis, significant positive gene expres-
sion for chromosome 6 can first be observed. The co-
occurrence of HLA-DQA1, HLA-DQA2, HLA-DQB1, 
HLA-DQB2 characterizes the importance of the immune 
milieu for the development of DR. HLA molecules have 
been shown to be positive for diabetes-inducing proper-
ties in European and African populations, and our results 
reaffirm the reliability of this result [64, 65]. In terms of 
tissue specificity, when we excluded the results of chro-
mosome 6, the SMR results of PDR were excluded, leav-
ing only partial DR results. Among the most frequent 
tissues were blood (eQTLgen) and Skin_Sun_Exposed_
Lower_leg. The top five genes with the highest number 
of positives were RPS26, SUOX, SKIV2L, RPL32P1 and 
LEMD2. Together, these genes were shown to regulate 
organelle membranes, cellular processes, endoplasmic 
reticulum, and biological processes in GO analysis.

SRPK1 and EHMT2 collaboratively facilitate the open-
ing of the RNA polymerase I promoter, while WFS1 and 
C4A are involved in regulating the transport and uptake 
of Insulin-like Growth Factor (IGF) through Insulin-like 
Growth Factor Binding Proteins (IGFBPs). Additionally, 
CCNE2 and ERBB3 may contribute to the development 
of DR via the GPCR pathway. Both C4A and RAB5B are 
also linked to the innate immune system, suggesting their 
involvement in immune-related processes. Furthermore, 
TP53INP1, CCNE2, and EHMT2 may play a role in DR 
by regulating TP53 activity, which is critical in cellular 
stress responses and apoptosis (Supplement Data 39).

Elevated glycohyocholate and BAFF‑R deficiency 
as protective factors against diabetic retinopathy: insights 
from metabolomics and immunohistology
Metabolomics research has highlighted numerous bright 
biomarkers. Glycine-bound bile acids may be protective 
against both atrophic and neovascular AMD [66]. And 
there are also clinical studies indicating that elevated 
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glycocholic acid is present in T2D [67]. Our findings 
advance the research above that elevated Glycohyocho-
late levels are protective against the development of DR, 
correlating pre-existing research mechanisms with DR 
diseases. The rise in hexanoylcarnitine has a contribu-
tory effect on the development of DR. In a case–control 
study, the hexanoylcarnitine concentration was higher 
than usual in T2D, DR, and NPDR in decreasing order 
[68].Another metabolic marker of note is 1-palmitoyl-
2-oleoyl-GPE (16:0/18:1) levels, which negatively regu-
late the development of DR. Its link with triglycerides 
and another 11 methylated genes suggests that methyla-
tion may be associated with diabetes risk/complications 
shared by these genes [69]. To summarise, metabolomics 
studies have greatly enriched our vision of DR mecha-
nisms, and in addition to the representative molecules 
mentioned above, many potential molecules deserve to 
be explored.

Our deep dive into immunohistology showed poten-
tial results. Although the corrected results were mostly 
excluded, we believe that most of these positive results 
from the primary screening have potential research 
value. Data from clinical studies suggest a correlation 
between elevated levels of expression of molecules of the 
BAFF system and elevated B-cell responses. Although 
pathogen-mediated increases in ligand and/or recep-
tor expression levels appear to facilitate microbial clear-
ance, certain pathogens have evolved to ablate the B-cell 
response by inhibiting TACI and/or BAFF-R expression 
on B cells [70]. Human BAFF-R deficiency is character-
ized by a paucity of circulating B cells, very low serum 
IgM and IgG concentrations, but normal or high IgA lev-
els [71]. Our results show a potential causal association 
between BAFF-R on different B cells and reduced prob-
ability of DR. This supports our hypothesis that BAFF-
R expression is decreased in patients with DR. More 
in-depth studies are needed to explore specific BAFF-
R-related DR pathogenesis for DR diagnosis and treat-
ment. NKT cells exacerbate retinal white matter stasis 
and permeability [72]. Our results show that CD16-CD56 
on Natural Killer T cells are causally responsible for exac-
erbating the occurrence of DR. This complements stud-
ies that Natural Killer T cells may exacerbate the onset 
of PDR and suggests a new surface marker: CD16-CD56 
[73]. In conclusion, for multiple states of DR, Natural 
Killer T cells may have a corresponding mediating role. 
Our study also pointing out that plasmacytoid dendritic 
cells, plasma blast cell and hematopoietic stem cells are 
causally associated with a decline in the onset of DR. This 
further deepens the understanding of the association 
between these three types of cells and DR [74].

Strengths and limitations
Our study has multiple strengths. Firstly, we used exten-
sive GWAS data (DR and PDR) and functional enrich-
ment of the transcriptome. The cross-tissue (Pancreas, 
Kidney, and Whole Blood) gene expression weights cre-
ated from the tri-tissue data we used increased the sta-
tistical power of TWAS, allowing us to mine more genes. 
Secondly, FUSION post-analysis, such as conditional 
analysis and permutation testing, helps us identify genes 
causally related to DR. FOCUS fine-mapping highlights 
the presence of false-positive genes in our genes. Our 
cis-eqtl instrument for drug targets defines each target 
more precisely, allowing us to localize to causally linked 
genes more accurately. Third, we chose whole-histology 
weights and targeted three tissues for in-depth explora-
tion (pancreas, renal cortex, and whole blood). Multiple 
tissues give us a comprehensive and sophisticated view of 
the tissue of specific interest. Finally, we used PheWAS to 
explain other multidirectional effects that may have the 
potential for significant top SNPs. Beyond transcriptom-
ics, we used 731 immune cell databases and 1400 blood 
metabolite databases for MR analysis on DR. In addi-
tion, we validated the knockout mouse expression of 
the significant genes on the MGI database. Collectively, 
the comprehensive multi-omics approach of our study 
expands the horizons of the new wave of diagnosis, pre-
vention, and treatment of DR. We present numerous new 
insights into drug targets for DR and PDR and present a 
biological characterization of these targets. Currently, no 
similar study mines the underlying genes of DR from a 
drug target multi-omics direction, and our study can pro-
vide a valuable contribution to the progress of this part 
of the research. The molecules in the results of DR play 
an important role in the early screening and treatment of 
DR. What’s more, the difference between PDR and DR 
can be applied in curbing the progression of DR and help 
control the precious rescue and cure time window.

There are several limitations to our study. Firstly, we 
selected only the cis-eQTL data for analysis to minimize 
confounding factors; however, trans-eQTL data can also 
provide valuable insights into gene expression. This limi-
tation may have led to the omission of potentially positive 
results. Secondly, the demographic source of our data is 
restricted to European populations, which may hinder 
the generalization of our findings to Asian and other pop-
ulations. To address this, access to a more diverse data-
base is needed to complement our study. Our databases 
for DR and PDR are derived from the Finnish database, 
raising the possibility of population overlap that could 
influence our results. Additionally, we did not incorpo-
rate databases from other diseases for comparison, which 
limits our macro-level perspective on disease differen-
tiation and shared mechanisms. Furthermore, while all 
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results from each analysis (e.g., TWAS) are included in 
Supplementary Data 34, it is important to note that some 
specific genes may be excluded as false negatives, which 
could impact our understanding of the factors mediating 
DR occurrence. To enhance the clinical relevance of our 
findings, future research should address these limitations 
by examining potential biases in the data and considering 
how these insights can inform clinical practice and man-
agement of DR and PDR. Researchers can further inter-
pret our study in light of these considerations.

Future research should focus on elucidating the bio-
logical mechanisms of RPS26, SRPK1, and WFS1—three 
critical molecules involved in DR—and the development 
of drug targets related to them. Our study has established 
a foundation for advancements in this area. Additionally, 
there is a need to prioritize early diagnosis and treatment 
of DR, as well as to analyze its progression from a multi-
omics perspective.

Conclusions
In conclusion, our multi-omic transcriptomic analysis 
of DR and PDR identified key genes, including RPS26, 
WFS1, and SRPK1, and highlighted differences between 
DR and PDR at the transcriptomic level, particularly with 
DCLRE1B. While revealing complex pathogenic fac-
tors through metabolomics and immunomics, our study 
is limited by potential biases from population stratifica-
tion and environmental confounders. Future research 
should validate these findings through functional studies 
and explore diverse populations to better understand the 
molecular mechanisms underlying DR and PDR. These 
insights could guide public health strategies for early 
detection and targeted therapies, reducing diabetic com-
plications and supporting policies for equitable access to 
advanced treatments.
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Supplementary Material 2. Figure 2-1. Heatmap of TWAS analysis results 
in DR. The threshold is bonferroni correction. It is calculated as follows: Zcr
itical=qnorm(1−0.05/2n). (A)Results of DR in pancreatic tissue. (B)Results 
of DR in whole blood tissue. (C)Results of DR in kidney cortex tissue. (D)
Results of DR in sCCA1. (E)Results of DR in sCCA2. (F)Selection process for 
significantly positive genes. T: TWAS, T.C: TWAS and colocalization, T.C.P: 
TWAS, colocalization and permutation testing, T.C.P.C: TWAS, colocaliza-
tion, permutation testing and conditional test, T.C.P.C.F: TWAS, colocaliza-
tion, permutation testing, conditional test and fine-mapping. 

Supplementary Material 3. Figure 2-2. Heatmap of TWAS analysis results in 
PDR. The threshold is bonferroni correction. It is calculated as follows: Zcri
tical=qnorm(1−0.05/2n). (A) Results of PDR in pancreatic tissue. (B) Results 
of PDR in whole blood tissue. (C)Results of PDR in kidney cortex tissue. (D) 
Results of PDR in sCCA1. (E) Results of PDR in sCCA2. (F) Selection process 
for significantly positive genes. T: TWAS, T.C: TWAS and colocalization, T.C.P: 
TWAS, colocalization and permutation testing, T.C.P.C: TWAS, colocaliza-
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dataset: https://​s3.​us-​west-1.​amazo​naws.​com/​gtex.​v8.​fusion/​ALL/​GTExv8.​ALL.​
Kidney_​Cortex.​tar.​gz; sCCA weights dataset: http://​gusev​lab.​org/​proje​cts/​
fusion/​weigh​ts/​sCCA_​weigh​ts_​v8_2.​zip; 1000 Genomes Project Phase 3 Euro-
pean genomic reference data (used for transcriptomic imputation and MR): 
http://​gusev​lab.​org/​proje​cts/​fusion/; eQTLgen whole blood eQTL data used 
for MR of the druggable genome: https://​www.​eqtlg​en.​org/; Psychencode 
dataset: http://​devel​opment.​psych​encode.​org/; 1400 metabolomics GWAS 
summary statistics used for MR: https://​www.​ebi.​ac.​uk/​gwas/, GCST90199621-
902010209; Immune cell trait GWAS summary statistics used for MR: https://​
gwas.​mrcieu.​ac.​uk/, ebi-a-90001391 through ebi-a-90002121; Dataset used for 
PheWAS analyses: https://​gwas.​mrcieu.​ac.​uk/​phewas/.

 Code availability
The software used in this study are available at the following online reposi-
tories. R package TwoSampleMR version 0.5.11: https://​github.​com/​MRCIEU/​
TwoSa​mpleMR/​relea​ses/​tag/​v0.5.​11; R package ggplot2 version 3.5.1: https://​
github.​com/​tidyv​erse/​ggplo​t2/​relea​ses/​tag/​v3.5.1; Python package FOCUS 
version 0.6.10: https://​github.​com/​gusev​lab/​fusion_​twas; Python package 
FOCUS (Fine-mapping Of CaUsal gene Sets): https://​github.​com/​bogda​nlab/​
focus; SMR software: http://​cnsge​nomics.​com/​softw​are/​smr/. R package 
coloc version 5.2.3: https://​cran.r-​proje​ct.​org/​web/​packa​ges/​coloc/​index.​html; 
Fig. 1 was made using Office Power Point 2021. Figures 2 and 11 were made 
using the R package circlize version 0.4.11: https://​joker​goo.​github.​io/​circl​ize/. 
Figure 3 and 5 were made using R package TWAS Plotter version 1.0: https://​
github.​com/​opain/​TWAS-​plott​er. Figure 4, 6 were made using Python pack-
age FOCUS (Fine-mapping Of CaUsal gene Sets): https://​github.​com/​bogda​
nlab/​focus; Fig. 7 were made using R package aPEAR version 1.0.0: https://​
cran.r-​proje​ct.​org/​web/​packa​ges/​aPEAR/​index.​html; Fig. 8, 9 were made using 
SMR software: https://​yangl​ab.​westl​ake.​edu.​cn/​softw​are/​smr/. Figure 10 were 
made using R package ggplot2 version 3.5.1: https://​github.​com/​tidyv​erse/​
ggplo​t2/​relea​ses/​tag/​v3.5.1; and locuscomparer version 1.0.0: https://​github.​
com/​boxia​ngliu/​locus​compa​rer.
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