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Abstract 

Background  Gut microbiome plays a significant role in longevity, and dysbiosis is indeed one of the hallmarks 
of aging. However, the causal relationship between gut microbiota and human longevity or aging remains elusive.

Methods  Our study assessed the causal relationships between gut microbiome and longevity using Mendelian 
Randomization (MR). Summary statistics for the gut microbiome were obtained from four genome-wide association 
study (GWAS) meta-analysis of the MiBioGen consortium (N = 18,340), Dutch Microbiome Project (N = 7738), German 
individuals (N = 8956), and Finland individuals (N = 5959). Summary statistics for Longevity were obtained from Five 
GWAS meta-analysis, including Human healthspan (N = 300,447), Longevity (N = 36,745), Lifespans (N = 1,012,240), 
Parental longevity (N = 389,166), and Frailty (one of the primary aging-linked physiological hallmarks, N = 175,226).

Results  Our findings reveal several noteworthy associations, including a negative correlation between Bacteroides 
massiliensis and longevity, whereas the genus Subdoligranulum and Alistipes, as well as species Alistipes senegalensis 
and Alistipes shahii, exhibited positive associations with specific longevity traits. Moreover, the microbial pathway 
of coenzyme A biosynthesis I, pyruvate fermentation to acetate and lactate II, and pentose phosphate pathway 
exhibited positive associations with two or more traits linked to longevity. Conversely, the TCA cycle VIII (helicobacter) 
pathway consistently demonstrated a negative correlation with lifespan and parental longevity.

Conclusions  Our findings of this MR study indicated many significant associations between gut microbiome 
and longevity. These microbial taxa and pathways may potentially play a protective role in promoting longevity 
or have a suppressive effect on lifespan.

Introduction
The increases in life expectancy were observed globally 
during the past 50  years [1, 2]. Previous studies have 
described growing evidence highlighting geographical 

disparities in life expectancy at county and sub-county 
levels [3], which may be associated with genetics [4, 5], 
environmental factors including intestinal microbiota 
[6] and socioeconomic factors [7]. Dysbiosis is one 
the twelve hallmarks of aging [8], and it contributes 
to multiple pathological conditions associated with 
age-related diseases, such as diabetes, hypertension, 
and Alzheimer disease [9, 10]. Age-related morbidities 
affect the quality and quantity of life, but the compo-
sition and function and within the intestinal microbi-
ome as we age are not completely understood. Thus, 
identifying aging patterns within the gut microbiome 
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could have clinical implications for both monitoring 
and modifying gut health to achieve healthy aging.

Several studies have characterized the gut microbiota 
in centenarians [7, 11–14], providing potential insight 
into gut microbial trajectories associated with aging. 
For example, Akkermansia  was found to be enriched 
in the gut of centenarians [7, 11–14], while Bacte-
roides and Faecalibacterium were relatively depleted 
in centenarians [7, 13]. However, most observational 
research cannot infer the causal relationship between 
gut microbiota and human longevity or aging. Few 
mechanisms that link longevity- or aging-correlated 
pathophysiology with specific microbes or functional 
pathways have been identified [12, 15]. Some microbial 
pathways that regulate aging were discovered in inver-
tebrates such as Caenorhabditis elegans (C. elegans) 
[16, 17] and drosophila [18], however, the genetics of 
aging is more complex in vertebrates and primates 
(including Homo sapiens) because of their specialized 
systems [19]. Population-scale human genome and 
metagenome sequencing projects combined with com-
prehensive data on lifespan and age-related diseases 
are opening new avenues to understand the genetics 
and microbiome involved in human aging.

In recent years, Mendelian randomization (MR) 
has attracted wide attention by inferring the causal 
relationship of modifiable exposures on an outcome 
such as disease status [20]. For example, a MR analy-
sis indicated a potential causal effect of Morganella 
on major depressive disorder, implying that this bac-
terium may play a role in the metabolic modulation of 
health within the brain-gut axis [21]. Another study 
employed MR to infer causal relationships between the 
gut microbiome and metabolites, discovering a poten-
tial causal role of Eubacterium rectale in decreasing 
plasma levels of hydrogen sulfite-a toxin that affects 
cardiovascular function [22]. These studies uncover 
potential metabolic capabilities of gut microbes that 
exert an influence on human health. Therefore, this 
study assessed the causal relationships between the gut 
microbiome and longevity using MR. Previous micro-
biome-longevity studies utilizing MR analysis relied on 
a limited dataset [23, 24], which resulted in findings 
that were not comprehensive. Here, we have utilized 
the most comprehensive GWAS summary data, as of 
the present moment, pertaining to the gut microbiome 
and longevity. Our findings provide novel clues for 
understanding the roles of gut microbiota in longevity 
and aging development, which may lead to the devel-
opment of microbiome-based therapies and personal-
ized medicine approaches to delay aging and promote 
longevity.

Methods
Study design
Figure  1 outlines this study’s overall design and data 
source. Briefly, a two-sample MR analysis was performed 
to verify causal links between gut microbiota and traits 
associated with longevity. It takes genetic variation (sin-
gle nucleotide polymorphisms, SNPs) as the instrumental 
variables (IVs) to deduce the causal effect of the expo-
sure (gut microbiota) on the outcome (longevity-related 
traits), thereby effectively circumventing the confounding 
biases often encountered in traditional epidemiological 
studies. Three MR assumptions are used for the unbiased 
estimation of possible causal relationships: (1) IVs are 
strongly associated with exposure (relevance); (2) IVs are 
independent of any confounding factors (independence); 
and (3) IVs affect the outcome only through the exposure 
(exclusion restriction) [25]. The genome-wide association 
study (GWAS) data source of longevity-related traits and 
gut microbiota has also been summarized in Table S1.

GWAS data of human healthspan, longevity, lifespans, 
parental longevity, and frailty
Five publicly available GWAS datasets of longevity-
related traits were used in this study. The GWAS data of 
human healthspan consists of 300,477 British-ancestry 
individuals from the UK Biobank (UKB) [26]. The GWAS 
data of longevity was derived from 36,745 individuals 
of European ancestry in multiple studies, encompass-
ing 11,262 cases and 25,483 controls, and the cases were 
individuals who lived to age above the 90th percentile 
or 99th percentile [5]. The GWAS data of lifespan con-
sists of 1,012,240 European-ancestry individuals, includ-
ing 512,047 mother and 500,193 father lifespans [27]. 
The GWAS data of parental longevity was collected for 
389,166 UKB participants of European descent with 
data recorded on parents’ current ages or parents’ ages 
of death [28]. Pilling et al. identified all common genetic 
variants associated with longer parental lifespan, includ-
ing 7 traits (mother’s age at death, father’s age at death, 
mother’s attained age, father’s attained age, combined 
parental age at death, combined parental attained age, 
and both parents in top 10%) [28]. Because one of the pri-
mary aging-linked physiological hallmarks is the onset of 
frailty [29], the GWAS data of frailty is also incorporated 
in our study, which included 175,226 individuals of Euro-
pean descent and used the frailty index (FI) to measure 
frailty [30].

GWAS data of gut microbiota
Genetic variants associated with the gut microbiome 
were obtained from four datasets. The first dataset was 
conducted by MiBioGen consortium, and integrated 16S 
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rRNA gene sequencing profiles and genotyping data 
from 18,340 participants across 24 cohorts [31]. Most of 
participants had European ancestry (N = 13,266). Both 
genetic data and gut microbiota data were incorporated, 
and association estimates for a total of 211 bacterial 
taxa were calculated. After excluding 15 taxa of bacteria 
without specific names (unknown family or genus), gut 
microbiota was divided into 196 bacterial taxa including 
9 phyla, 16 classes, 20 orders, 32 families, and 119 gen-
era. The second dataset was obtained from 7,738 partici-
pants of the Dutch Microbiome Project (DMP), and the 
gut microbiota was identified by shotgun metagenomic 
sequencing of stool samples [32]. It contained 207 taxa 
(105 of which are species) and 205 functional pathways 
that reflect the composition and activity of gut micro-
biota.  The third dataset was obtained from 8956 Ger-
man individuals by Ruhlemann et al. [33], which carried 
out a GWAS involving 430 taxa (from phylum to genus, 
examining  the abundance and prevalence in fecal sam-
ples) that reflect the composition of gut microbiota. The 
fourth dataset was a large-scale population-based cohort 
of 5959 Finland individuals enrolled in the FINRISK 2002 
(FR02) cohort, which carried out a GWAS involving 473 
taxa (including species level, examining the abundance in 
stool) that provided insights into the composition of gut 
microbiota[21].

Selection of instrumental variables (IVs)
We extracted the gut microbiota taxa as exposure data, 
including 196 bacterial taxa from the MiBioGen consor-
tium, 412 bacterial traits (207 taxa and 205 pathways) 
from the DMP, 430 taxa from 8956 German individu-
als, and 473 taxa from 5,959 Finland individuals. To 
ensure the authenticity and accuracy of the causal rela-
tionship between gut microbiota and longevity, the fol-
lowing quality control procedures were implemented to 
select IVs. Firstly, we selected IVs for each gut bacte-
rial trait by using a loose cutoff of P < 1 × 10–5. Secondly, 
the independent IVs with the lowest P-value for each 
trait (r2 < 0.001 and distance = 10,000 kb) were retained 
to reduce the influence of correlations among SNPs. 
Thirdly, we calculated the F-statistic to evaluate the 
strength of the IVs. SNPs with F-statistics < 10 was dis-
regarded to avoid weak IV bias. Fourthly, the screened 
SNPs were used as IVs to harmonize with summary sta-
tistic of longevity and the palindromic SNPs and fuzzy 
alleles were removed. At last, we removed SNPs with 
P < 1 × 10–5 of outcome in harmonized data to avoid 
strong correlations between SNPs and outcome [14].

Fig. 1  The study design of the MR investigation pertaining to the associations between gut microbiota and longevity
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Statistical analysis
We primarily employed the inverse-variance weighted 
(IVW) method for our analysis. To assess the hetero-
geneity among SNPs, we conducted Cochran’s Q test. 
If significant heterogeneity was observed (P < 0.05), 
we adopted the random-effects model; otherwise, the 
fixed-effects model was utilized [34]. The IVW method 
generated effect estimates for each SNP on gut micro-
biota and the likelihood of longevity, enabling us to 
compute the Wald estimates. Additionally, we per-
formed sensitivity analyses to evaluate the robustness 
of our findings. The weighted median method was used 
to estimate the potential causal effects when IVs vio-
lated standard assumptions to provide a reliable esti-
mate [35]. For the reliability of the final analysis results, 
the following screening criteria were used as filters 
for robust significant causality: (1) At least the IVW 
method suggested a significant causal relationship; 
(2) The direction of MR analysis results (beta value) 
was consistent among the three methods (IVW, MR-
Egger, and weighted median); 3) We apply the maxi-
mum likelihood method or simple median method to 
replicate significant causal relationships, considering 
our reliance on the IVW method. MR-Egger method 
was used to detect directional pleiotropy, and intercept 
of P > 0.05 was deemed to be no horizontal pleiotropy 
[36]. Besides, the MR pleiotropy residual sum and out-
lier (MR-PRESSO) method was also applied to test for 
possible bias from horizontal pleiotropy and outlier 
variants removal [37]. Furthermore, the leave-one-
out test was conducted to confirm that MR estimates 
were not driven by strong effect SNPs. The results were 
visually analyzed by forest plots and scatter plots. All 
MR analyses were performed in the R software (v4.2.3) 
using “Mendelian Randomization”, “TwoSampleMR”, 
and “MRPRESSO” packages. We considered suggestive 
evidence of a potential causal association when P < 0.05.

Results
Influence of the 403 gut bacterial taxa on longevity‑related 
traits
We first investigate the causal relationships between 
the gut microbiome and longevity by performing a two-
sample MR analysis using GWAS summary data of 403 
gut bacterial taxa (196 taxa sourced from MiBioGen 
consortium, and 207 taxa from DMP) and longevity-
associated traits. We observed suggestive evidence for 
many bacterial taxa to be associated with longevity, and 
these causal relationships were statistically significant 
with a P-value of less than 0.05, at least when employ-
ing the IVW method (Table S2).

In terms of healthspan, our findings revealed 
that Intestinimonas (β = 0.033, P = 0.049), Olsenella 
(β = 0.044, P = 0.002), and Turicibacter (β = 0.045, 
P = 0.016) were positively correlated with health-
span, while Anaerostipes (β = −  0.051, P = 0.034), 
Tyzzerella3 (β = −  0.030, P = 0.026), Rumini-
clostridium9 (β = −  0.059, P = 0.012), Ruminococcus 
obeum (β = −  0.045, P = 0.030), Bacteroides xylani-
solvens (β = −  0.034, P = 0.020), Bacteroides vulga-
tus (β = -0.059, P = 0.009), and Bacteroides eggerthii 
(β = − 0.038, P = 0.004) were negatively correlated with 
healthspan. In the MR-Egger regression, there was no 
evidence of directional pleiotropic effects (intercept 
p-value > 0.05). There is a significant heterogeneity 
only for Ruminococcus obeum in the Cochran’s Q test 
(p = 0.031).

For lifespan, Defluviitaleaceae UCG​-011(β = 0.038, 
P = 0.014), Erysipelotrichaceae UCG003 (β = 0.038, 
P = 0.016), Senegalimassilia (β = 0.052, P = 0.002), 
Tyzzerella3 (β = 0.036, P = 0.025), Odoribacter (β = 0.031, 
P = 0.030), Alistipes senegalensis (β = 0.038, P = 0.008), 
Bacteroides faecis (β = 0.013, P = 0.033), Holdemania 
unclassified (β = 0.019, P = 0.040), and Bilophila unclas-
sified (β = 0.030, P = 0.045) were positively associated 
with lifespan. In comparison, Butyricimonas (β = − 0.034, 
P = 0.016), Lachnospira (β = −  0.073, P = 0.012), Lachno-
spiraceae UCG​-001 (β = -0.037, P = 0.014), Streptococcus 
salivarius (Wald ratio, β =−  0.040, P = 0.046), and Col-
linsella aerofaciens (β = − 0.04, P = 0.005) were negatively 
associated with lifespan. Intercept of MR-Egger regres-
sion also showed no potential horizontal pleiotropy. 
There is a significant heterogeneity only for Tyzzerella3 
(Cochran’s Q test, p = 0.009).

In relation to longevity, our findings revealed a positive 
correlation between Bilophila wadsworthia (β = 0.309, 
P = 5 × 10⁻4) and Adlercreutzia equolifaciens (β = 0.172, 
P = 0.022) with individuals who attained a lifespan 
exceeding the 90th percentile. Lachnospiraceae bacte-
rium 3_1_46FAA was positively associated with longevity 
(> 90th percentile, β = 0.195, P = 0.014; > 99th percentile, 
β = 0.328, P = 0.008). On the contrary, Blautia (β = -0.246, 
P = 0.001), and Escherichia coli (β = -0.131, P = 0.016) 
were negatively correlated with longevity (> 90th percen-
tile). Akkermansia muciniphila was negatively correlated 
with longevity (> 99th percentile, β = -0.219, P = 0.030). 
Bacteroides massiliensis was negatively associated with 
longevity (> 90th percentile, β = − 0.179, P = 0.006; > 99th 
percentile, β = −  0.216, P = 0.038). The forest plot and 
scatter plot about B. massiliensis were presented in Fig. 2 
and Figure S1, while the outcomes of the leave-one-out 
analysis confirmed that the MR estimates were not driven 
by strong effect SNPs (Figure S2). In addition, Haemophi-
lus parainfluenzae was also negatively associated with 
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longevity (> 90th percentile, β = -0.154, P = 0.011; > 99th 
percentile, β = − 0.231, P = 0.016).

For parental longevity, genus Anaerofilum (β = 0.019, 
P = 0.023) was positively associated with father’s age 
at death, while Collinsella (β = 0.035, P = 0.035), and 
Eubacterium rectale group (β = 0.046, P = 0.005) were 
positively associated with mother’s age at death. Des-
ulfovibrio (β = 0.031, P = 0.036), and Eubacterium 
xylanophilum group (β = 0.061, P = 0.001) were posi-
tively associated with combined parental age at death. 
Slackia (β = 0.033, P = 0.002), Enterorhabdus (β = 0.025, 
P = 0.031), and Lachnospiraceae bacterium 5_1_63FAA 
(β = 0.013, P = 0.004) increased parental longevity odds 
of father’s attained age, while Erysipelatoclostridium 
(β = 0.017, P = 0.044), and Eubacterium rectale group 
(β = 0.041, P = 0.038) increased parental longevity odds 
of mother’s attained age. Meanwhile, Akkermansia 
muciniphila was positively associated with mother’s age 
at death (β = 0.021, P = 0.033), combined parental age 
at death (β = 0.025, P = 0.012), and both parents in top 
10% (β = 0.012, P = 0.047). Bacteroides fragilis (β = 0.009, 
P = 0.034) and Coprobacter fastidiosus (β = 0.022, 
P = 0.006) were causally associated with mother’s 

attained age. Moreover, Eubacterium eligens was posi-
tively associated with parental longevity (both parents 
in top 10%, β = 0.018, P = 0.007), while Eubacterium rec-
tale was positively associated with combined parental 
age at death (β = 0.030, P = 0.045) in the IVW method. 
Regarding negative association, Bacteroides (β = − 0.060, 
P = 0.006), Butyricicoccus (β = -0.025, P = 0.036), Fla-
vonifractor (β = −  0.041, P = 0.036), Lachnospiraceae 
UCG008 (β = -0.018, P = 0.020), Odoribacter (β = − 0.045, 
P = 0.043), Tyzzerella3 (β = −  0.015, P = 0.022), Bacte-
roides dorei (β = −  0.021, P = 0.021), and Eubacterium 
biforme (β = − 0.012, P = 0.011) were negatively linked to 
specific traits of parental longevity. Notably, Oxalobacter 
in the MiBioGen dataset was negatively associated with 
mother’s age at death (β = − 0.019, P = 0.038), but Oxalo-
bacter in the DMP dataset was positively associated with 
father’s attained age (β = 0.011, P = 0.048).

Finally, frailty, which often accompanies aging, was 
analyzed as well. Genus Bifidobacterium (β = 0.042, 
P = 0.013), Clostridium innocuum group (β = 0.023, 
P = 0.036), Eubacterium coprostanoligenes group 
(β = 0.054, P = 0.003), Flavonifractor (β = 0.023, P = 0.046), 
and species Ruminococcus torques (β = 0.035, P = 0.032) 

Fig. 2  The forest plot depicts the causal associations between Bacteroides massiliensis and traits associated with human longevity. The slope value 
equals the β-value calculated using the three methods (IVW, weighted median, and MR Egger), and it signifies the magnitude of the causal effect. 
A positive slope indicates that exposure is a contributory factor in promoting the outcome, whereas a negative slope suggests the opposite effect. 
Abbreviations: CI, confidence interval; OR, odds ratio; Nsnp, the number of single nucleotide polymorphisms (SNPs)
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were positively associated with the frailty index (FI). The 
positive associations between the Clostridium innocuum 
group, the Eubacterium coprostanoligenes group, and 
frailty are consistent with a previous study[38].

Influence of the 903 gut bacterial taxa on longevity‑related 
traits
The MR results of the significant associations between 
903 gut bacterial taxa (430 taxa from 8956 German indi-
viduals, and 473 taxa from 5,959 Finland individuals in 
the FR02 cohort) and longevity-related phenotypes are 
summarized in Table S3.

For human healthspan, Porphyromonadaceae 
(β = 0.033, P = 0.001), Atopobiaceae (β = 0.065, P = 0.042), 
Ruminococcaceae (β = 0.021, P = 0.005), Caloranaerobac-
ter (β = 0.140, P = 0.003), Sutterella (β = 0.035, P = 0.002), 
Oscillibacter prevalence (β = 0.019, P = 0.036), Bifido-
bacterium breve (β = 0.060, P = 0.018), Lawsonibacter 
sp002161175 (β = 0.124, P = 0.037), and Monoglobus pec-
tinilyticus (β = 0.048, P = 0.017) were positively correlated 
with healthspan. On the contrary, Alphaproteobacte-
ria (β = -0.038, P = 0.007), and Coprococcus (β = 0.124, 
P = 0.037) were negatively correlated with healthspan.

For lifespans, Clostridium XlVa (β = 0.074, P = 0.007), 
Oscillibacter abundance (β = 0.049, P = 0.005), 
Ruminococcus(β = 0.009, P = 0.020), and Faecalibacte-
rium prausnitzii E (β = 0.063, P = 0.024) were positively 
correlated with lifespans, while Roseburia (β = −  0.042, 
P = 0.016), Helicobacter (β = − 0.121, P = 0.004), Alistipes 
(β = −  0.112, P = 0.038), Photobacterium (β =−  0.145, 
P = 0.024), Desulfovibrio (β = − 0.022, P = 0.001), Parasut-
terella prevalence (β = −  0.011, P = 0.049), Oscillibacter 
prevalence (β = − 0.016, P = 0.031), and Lactococcus lac-
tis (β = -0.050, P = 0.036) were negatively correlated with 
lifespans. The significant causal relationship between 
Oscillibacter and longevity-related traits were summa-
rized in Figure S3.

For longevity, Parabacteroides (β = 0.116, P = 0.035), 
Gordonibacter (β = 0.219, P = 0.030), Sutterella abun-
dance (β = 0.103, P = 0.015), and Alistipes shahii 
(β = 0.166, P = 0.007) abundance in stool were linked 
to increased longevity (> 90th percentile). Prevotella 
sp900317685 (β = −  0.218, P = 0.013) and Blautia A 
sp900066355 (β = −  0.272, P = 0.026) were negatively 
correlated with longevity (> 90th percentile). Prevo-
tella (β = −  0.065, P = 0.045), Bacteroides (β = −  0.068, 
P = 0.004), Escherichia flexneri (β = −  0.341, P = 0.002), 
and Coprobacillus cateniformis (β = −  0.376, P = 0.007), 
and Parabacteroides johnsonii (β = −  0.261, P = 0.047) 
were negatively correlated with longevity (> 99th per-
centile). Both the Parasutterella prevalence (β = − 0.085, 
P = 0.035) and Parasutterella abundance (β = −  0.078, 

P = 0.001) were negatively correlated with longevity 
(> 90th percentile).

Many of the 430 gut bacterial taxa from 8956 Ger-
man individuals have been causally associated with 
parental longevity. Alistipes (β = 0.020, P = 0.009), and 
Subdoligranulum prevalence (β = 0.011, P = 0.025) were 
positively correlated with combined parental age at 
death. Alongside the previously mentioned results, more 
correlations between Alistipes and longevity were iden-
tified (Fig. 3A), especially the two Alistipes species of A. 
senegalensis and A. shahii (Fig.  3B). The results of the 
“leave-one-out” test showed that there was no abnormal 
IV in this analysis affecting the overall results (Figure S4). 
In addition, the Desulfovibrio abundance was negatively 
correlated with two parental longevity traits (both par-
ents in top 10%, β = − 0.007, P = 0.038; combined paren-
tal age at death, β = − 0.015, P = 0.016), but was positively 
correlated with another two parental longevity traits 
(combined parental attained age, β = 0.016, P = 2 × 10–4; 
father’s attained age, β = 0.013, P = 0.001). The Sutterella 
prevalence was negatively correlated with combined 
parental age at death (β = − 0.015, P = 0.045). Faecalibac-
terium abundance was negatively correlated with father’s 
age at death (β = −  0.021, P = 0.008). More results were 
summarized in Table S3.

In addition, many of the 473 taxa from 5,959 Finland 
individuals have been causally associated with parental 
longevity. For example, Leuconostoc mesenteroide was 
positively associated with combined parental attained 
age (β = 0.019, P = 0.046). Prevotella sp000436915 was 
positively associated with combined parental attained age 
(β = 0.013, P = 0.048), but was negatively correlated with 
father’s age at death (β = − 0.022, P = 0.005). Bifidobacte-
rium breve was negatively correlated with both parents in 
top 10% (β = −  0.031, P = 0.002), but was positively cor-
related with combined parental attained age (β = 0.034, 
P = 0.010). Bifidobacterium angulatum was negatively 
correlated with mother’s age at death (β = −  0.019, 
P = 0.043). Dorea phocaeense was negatively corre-
lated with combined parental age at death (β = −  0.050, 
P = 0.025), but was positively associated with mother’s 
attained age (β = 0.034, P = 0.018) and combined paren-
tal attained age (β = 0.035, P = 0.045). Coprobacillus 
cateniformis abundance was positively associated with 
father’s age at death (β = 0.021, P = 0.036), but was nega-
tively associated with mother’s age at death (β = -0.030, 
P = 0.004). Eubacterium callanderi abundance was posi-
tively correlated with parental longevity (father’s age at 
death) (β = 0.050, P = 0.020), but was negatively associ-
ated with father’s attained age (β = −  0.042, P = 0.010). 
The abundance of Lactococcus lactis was positively cor-
related with father’s attained age (β = 0.034, P = 0.025), 
and on the contrary, Clostridium tertium was negatively 
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associated with it (β = − 0.051, P = 0.010). The abundance 
of Enterococcus faecalis in stool was positively corre-
lated with mother’s attained age (β = 0.027, P = 0.045), 
while Blautia A sp900066355 was negatively linked to 
it (β = -0.036, P = 0.007). Enorma massiliensis was posi-
tively correlated with mother’s attained age (β = 0.027, 
P = 0.013) but was negatively correlated with father’s 
attained age (β = − 0.025, P = 0.022).

The MR results of the association between 903 gut 
bacterial taxa and frailty indicated that Sutterella preva-
lence (OTU99_116, β = 0.009, P = 0.009; TestASV_22, 
β = 0.014, P = 0.002) was positively correlated with FI, 
while the Sutterella abundance (β = −  0.040, P = 0.004) 
and Parasutterella abundance (β = -0.008, P = 0.021) 
were negatively correlated with FI. The abundance of 
Faecalibacterium (β = 0.033, P = 0.015), and Anaero-
massilibacillus sp001305115 (β = 0.047, P = 0.003) were 
positively correlated with FI. Bacteroides sp002160055 
(β = − 0.036, P = 0.017), Bacteroides stercoris (β = − 0.025, 
P = 0.032), Lawsonibacter sp002161175 (β = −  0.081, 

P = 0.037), Morganella (β = −  0.038, P = 0.042), and Sub-
doligranulum abundance (β = − 0.037, P = 0.009) in stool 
were negatively correlated with FI, at least in the IVW 
method. To sum up, Subdoligranulum was causally asso-
ciated with multiple longevity-correlated traits (Fig.  4), 
and no abnormal IV in this analysis affecting the overall 
results (Figure S5). Moreover, all the notable associations 
between Parasutterella and longevity-related traits indi-
cate Parasutterella has a negative impact on lifespan, lon-
gevity, and frailty (Figure S6).

Influence of the 205 gut functional pathways 
on longevity‑related traits
The gut microbial taxa potentially regulate longevity 
through their associated metabolic pathways, prompting 
us to also analyze the influence of gut functional path-
ways on longevity‑related traits. Only the gut microbi-
ome from 7,738 participants of the DMP encompassed 
205 functional pathways [32], whereas the other three 
GWAS datasets of gut microbiota exclusively comprised 

Fig. 3  MR results reveal the causal associations between Alistipes and traits associated with human longevity. A Forest plot depicting 
the associations between Alistipes and longevity-correlated traits. B Scatter plot depicting the associations between Alistipes senegalensis 
and lifespan, and between Alistipes shahii and longevity (> 90th percentile)
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microbial taxa.  A total of 65 pathways have been dis-
covered to exhibit significant and robust associations 
with traits linked to longevity (Table  S4). There was 
no evidence of directional pleiotropic effects (inter-
cept p-value > 0.05), and no significant heterogeneity 
(Cochran’s Q test, p-value > 0.05).

For human healthspan, microbial pathways of PPGPP-
MET-PWY: ppGpp biosynthesis (β = 0.037, p = 0.028), 
and PWY-6507: 4-deoxy-L-threo-hex-4-enopyranuro-
nate degradation (β = 0.017, p = 0.044) showed a positive 
association, in the IVW method. In contrast, pathways 
such as PWY-6284: superpathway of unsaturated fatty 
acids biosynthesis (E. coli) (β =  − 0.049, p = 0.005), 
HOMOSER-METSYN-PWY: L-methionine biosynthe-
sis I (β =  − 0.051, p = 0.011), DENOVOPURINE2-PWY: 
superpathway of purine nucleotides de novo biosynthe-
sis II (β =  − 0.042, p = 0.030), PWY-6163: chorismate bio-
synthesis from 3-dehydroquinate (β =  − 0.043, p = 0.035), 
and PWY-5913: TCA cycle VI obligate autotrophs 
(β =  − 0.047, p = 0.004), were negatively correlated with 
healthspan.

For lifespan, pathways of NONOXIPENT-PWY: 
pentose phosphate pathway (non-oxidative branch) 
(β = 0.055, P = 0.002), PWY-6630: superpathway of 
L-tyrosine biosynthesis (β = 0.023, P = 0.008), PWY-
7196: superpathway of pyrimidine ribonucleosides sal-
vage (β = 0.047, P = 0.011), PWY-7209: superpathway 
of pyrimidine ribonucleosides degradation (β = 0.022, 
P = 0.032), and PWY0-162: superpathway of pyrimi-
dine ribonucleotides de novo biosynthesis (β = 0.030, 
P = 0.033) were positively associated. In contrast, 
UBISYN-PWY: superpathway of ubiquinol 8 biosyn-
thesis (prokaryotic) (β = -0.040, P = 0.001), KDO-
NAGLIPASYN-PWY: superpathway of (Kdo)2-lipid 
A biosynthesis (β = −  0.024, P = 0.006), PWY-7211: 
superpathway of pyrimidine deoxyribonucleotides de 
novo biosynthesis (β = -0.032, P = 0.017), PWY_RED-
CITCYC: TCA cycle VIII (helicobacter) (β = -0.030, 
P = 0.007), PWY-5918: superpathway of heme biosyn-
thesis from glutamate (β = -0.028, P = 0.022), PWY0-
1338: polymyxin resistance (β = −  0.020, P = 0.023), 
and ENTBACSYN-PWY: enterobactin biosynthesis 

Fig. 4  The causal associations between Subdoligranulum and traits associated with human longevity. The forest plot A and scatter plot B depicting 
the association between Subdoligranulum prevalence and Parental longevity (combined parental age at death), and between Subdoligranulum 
abundance and frailty index, respectively
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(β = − 0.039, P = 0.028) demonstrated negative associa-
tions with lifespan.

Regarding longevity, the abundances of PWY-6731: 
starch degradation III was positively associated with 
age > 90th percentile (β = 0.084, P = 0.020), while PWY-
5941: glycogen degradation II (eukaryotic) was posi-
tively associated with age > 99th percentile (β = 0.262, 
P = 0.030). Moreover, THRESYN-PWY: superpathway 
of L-threonine biosynthesis (β = −  0.338, P = 0.017), 
and PWY0-1261: anhydromuropeptides recycling 
(β = −  0.346, P = 0.020) were negatively correlated with 
longevity (age > 99th percentile).

Regarding parental longevity, 46 associations have 
been identified. For instance, PWY-7197: pyrimidine 
deoxyribonucleotide phosphorylation was positively 
associated with father’s attained age in the IVW method 
(β = 0.019, P = 0.045). PWY-7254: TCA cycle VII (acetate 
producers) was positively associated with mother’s age 
at death (β = 0.016, P = 0.046). PWY-7456: mannan deg-
radation was positively associated with father’s attained 
age (β = 0.031, P = 0.001). PWY-6897: thiamin salvage II 
was positively associated with both parents in top 10% 
(β = 0.023, P = 0.007). PWY-5088: L-glutamate degrada-
tion VIII to propanoate were positively associated with 
father’s attained age (β = 0.015, P = 0.009). GALAC-
TARDEG-PWY: D-galactarate degradation I was posi-
tively associated with mother’s attained age (β = 0.014, 
P = 0.021), and combined parental attained age (β = 0.014, 
P = 0.045). On the contrary, PWY-7323: superpathway 
of GDP-mannose derived O-antigen building blocks 
biosynthesis (β = -0.026, P = 0.014) was negatively asso-
ciated with parental longevity (father’s age at death). 
PWY-5838: superpathway of menaquinol-8 biosynthesis I 
(β = − 0.022, P = 0.043), and HOMOSER-METSYN-PWY: 
L-methionine biosynthesis I (β = −  0.029, P = 0.043) 
were negatively correlated with mother’s age at death. 
PWY-5667: CDP-diacylglycerol biosynthesis I was nega-
tively correlated with father’s attained age (β = −  0.019, 
P = 0.012). PWY0-1415: superpathway of heme bio-
synthesis from uroporphyrinogen III (β = −  0.016, 
P = 0.012), DAPLYSINESYN-PWY: L-lysine biosynthe-
sis I (β = −  0.021, P = 0.017), and ANAEROFRUCAT-
PWY: homolactic fermentation (β = −  0.037, P = 0.029) 
were negatively correlated with combined parental 
attained age. METHGLYUT-PWY: superpathway of 
methylglyoxal degradation (β = −  0.008, P = 0.034), and 
ORNDEG-PWY: superpathway of ornithine degradation 
(β = −  0.010, P = 0.027) were negatively correlated with 
both parents in top 10%. Notably, COA-PWY (coenzyme 
A biosynthesis I) exhibited a positive association with 
father’s age at death (β = 0.035, P = 0.013) and combined 
parental age at death (β = 0.038, P = 0.023), but exhibited 
a negative association with combined parental attained 

age (β = −  0.030, P = 0.002), as illustrated in Fig.  5A. 
The pathway of P162-PWY: L-glutamate degradation 
V via hydroxyglutarate was negatively correlated with 
mother’s age at death (β = −  0.028, P = 0.012) and both 
parents in top 10% (β = -0.020, P = 0.014), but was posi-
tively correlated with mother’s attained age (β = 0.018, 
P = 0.044) and combined parental attained age (β = 0.019, 
P = 0.034). PWY-7013: L-1,2-propanediol degradation 
exhibited a negative correlation with father’s age at death 
(β = -0.012, P = 0.034) and combined parental age at death 
(β = − 0.016, P = 0.042), but exhibited a positive correla-
tion with father’s attained age (β = 0.008, P = 0.043) and 
combined parental attained age (β = 0.009, P = 0.042).

In terms of frailty-correlated pathways, we found 
PWY-7456: mannan degradation (β = − 0.056, P = 0.008), 
TRNA-CHARGING-PWY: tRNA charging (β = −  0.032, 
P = 0.027), POLYAMSYN-PWY: superpathway of poly-
amine biosynthesis I (β = −  0.062, P = 0.003), and PWY-
5101: L-isoleucine biosynthesis II (β = -0.032, P = 0.019) 
were negatively correlated with frailty index. In compari-
son, PWY-5920: superpathway of heme biosynthesis from 
glycine (β = 0.013, P = 0.044), PWY-6630: superpathway 
of L-tyrosine biosynthesis (β = 0.021, P = 0.049), GLUCO-
NEO-PWY: gluconeogenesis I (β = 0.054, P = 0.009), and 
GLUCOSE1PMETAB-PWY: glucose and glucose 1-phos-
phate degradation (β = 0.036, P = 0.026) were positively 
associated with frailty index.

There are several multiple associations between spe-
cific one pathway and longevity traits among different 
datasets (Table  S5). For example, the PWY-5100 (pyru-
vate fermentation to acetate and lactate II) pathway 
was positively associated with both lifespan (β = 0.028, 
P = 0.039) and parental longevity of combined parental 
age at death (β = 0.032, P = 0.009), but was negatively cor-
related with father’s attained age (β = − 0.022, P = 0.006), 
which was depicted in Fig. 5B. The NONOXIPEN-PWY: 
pentose phosphate pathway (non-oxidative branch) 
exhibited a positive association with lifespan (β = 0.055, 
P = 0.002), parental longevity of both parents in top 10% 
(β = 0.026, P = 0.009), and combined parental age at death 
(β = 0.051, P = 0.006), but exhibited a negative associa-
tion with mother’s attained age (β = −  0.026, P = 0.017), 
father’s attained age (β = −  0.024, P = 0.032), and com-
bined parental attained age (β = -0.036, P = 0.001) 
(Fig.  6A). The PWY-7209: superpathway of pyrimidine 
ribonucleosides degradation exhibited a positive asso-
ciation with lifespan (β = 0.022, P = 0.032), but exhibited 
a opposite association with parental longevity of moth-
er’s attained age (β = −  0.016, P = 0.040) and combined 
parental attained age (β = -0.013, P = 0.046). Moreover, 
the pathway of REDCITCYC: TCA cycle VIII (helicobac-
ter) was consistently negatively associated with lifespan, 
and three traits of parental longevity (both parents in top 
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10%, mother’s age at death, and combined parental age 
at death) (Fig.  6B). The of HOMOSER-METSYN-PWY 
(L-methionine biosynthesis I) was consistently nega-
tively associated with lifespan, and parental longevity of 
mother’s age at death. The PWY-6507 (4-deoxy-L-threo-
hex-4-enopyranuronate degradation) pathway was con-
sistently positively associated with lifespan and parental 
longevity (both parents in top 10%). In addition, the 
PWY-7456 (mannan degradation) pathway was positively 
associated with parental longevity of father’s attained age, 
and negatively associated with FI.

Discussion
In this study, we employed a two-sample MR based 
on GWAS summary data to extensively investigate the 
potential causal effects between gut microbiota and lon-
gevity. To the best of our knowledge, this study used the 
most comprehensive datasets currently available, includ-
ing five publicly available GWAS datasets of longevity-
related traits and four GWAS datasets of gut microbiota.

Previous research has established a significant correla-
tion between Collinsella and parental longevity [23]. We 
found Collinsella was positively associated with parental 

longevity of mother’s age at death, but Collinsella aerofa-
ciens was negatively associated with lifespan. Moreover, 
Liu et  al. [24] assessed the causal relationships between 
human microbiome and longevity by MR analyses in Chi-
nese populations based on GWAS summary statistics of 
the gut and oral microbiome from the 4D-SZ cohort [39] 
and longevity from the CLHLS cohort [40], and found 
genus Oxalobacter and species Lactobacillus amylo-
vorus were positively associated with longevity. Our 
results indicate that Oxalobacter exhibits a positive cor-
relation with one aspect of parental longevity, specifically 
the attained age of the father, whereas it demonstrates a 
negative association with three other characteristics of 
parental longevity, namely the mother’s age at death, the 
father’s age at death, and the combined age at death of 
both parents. Oxalobacter formigenes, one typical species 
of Oxalobacter genus, is a key oxalate-degrading bacte-
rium in the mammalian intestinal tract and can reduce 
the risk of calcium oxalate kidney stone disease [41, 42]. 
Therefore, Oxalobacter spp may protect humans from 
kidney stone disease and promote their overall health.

We also observed a negative association between Bac-
teroides massiliensis and longevity (age > 90th percentile, 

Fig. 5  The forest plots reveal the impact of two microbial pathways, COA-PWY and PWY-5100, on traits associated with longevity. A The notable 
associations between COA-PWY (coenzyme A biosynthesis I) pathway and parental longevity. B The notable associations between PWY-5100 
(pyruvate fermentation to acetate and lactate II) and traits associated with lifespan and parental longevity. Four MR methods including IVW, 
weighted median, simple median, and MR Egger were used. The causal relationships were presented using OR (odds ratio) and 95% CI (confidence 
interval)
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and > 99th percentile), indicating Bacteroides massil-
iensis may decrease the likelihood of achieving longev-
ity. A higher relative abundance of B. massiliensis was 
observed  in prostate cancer cases compared to benign 
controls [43]. A potential mechanism underlying this 
association may be the possession of glucuronidase genes 
by B. massiliensis, which, through its glucuronidase 
deconjugation activity, leads to elevated levels of free 
estrogens in the bloodstream. These increased estrogens 
subsequently create apurinic sites within DNA, causing 

mutations that may stimulate the onset of oncogenesis 
[44]. Moreover, the Oscillibacter abundance was posi-
tively correlated with lifespan and two traits of parental 
longevity, but was negatively associated with another 
two traits of parental longevity (mother’s attained age, 
and combined parental attained age). The Alistipes abun-
dance was positively correlated with combined parental 
age at death. More specific, Alistipes senegalensis was 
positively associated with lifespan, while Alistipes sha-
hii abundance in stool was linked to increased longevity 

Fig. 6  The forest plots reveal the impact of two significant microbial pathways, NONOXIPEN-PWY and REDCITCYC, on multiple traits associated 
with longevity. A The notable associations between NONOXIPEN-PWY (pentose phosphate pathway, non-oxidative branch) pathway and traits 
associated with longevity. B The notable associations between REDCITCYC: TCA cycle VIII (helicobacter) pathway and traits associated 
with longevity. Four MR methods including IVW, weighted median, simple median, and MR Egger were used. The causal relationships were 
presented using OR (odds ratio) and 95% CI (confidence interval)
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(age > 90th percentile). Interestingly, an increased rela-
tive abundance of fecal Oscillibacter and Alistipes has 
been causally linked to a decreased triglyceride concen-
tration [39]. Species from the Oscillibacter genus involve 
cholesterol metabolism and show potential benefits for 
lipid homeostasis and cardiovascular health [45]. Fur-
thermore, Alistipes may exhibit protective effects against 
liver cirrhosis and cardiovascular diseases [46]. There-
fore, the positive effects of Oscillibacter and Alistipes spp 
on longevity probably be mediated by lipid homeostasis 
and cardiovascular health in human subjects. Addition-
ally, the Subdoligranulum prevalence was positively cor-
related with parental longevity (combined parental age at 
death), and the Subdoligranulum abundance was nega-
tively associated with frailty. It is noteworthy that the 
genera Subdoligranulum correlated with slower biologi-
cal aging [47], potentially attributed to the production of 
anti-inflammatory short-chain fatty acids. Subdoligranu-
lum was strongly associated with A. muciniphila in an 
overweight/obese population; however, the supplemen-
tation with a Subdoligranulum variabile strain in obese 
and diabetic mice did not yield beneficial effects [48]. 
There is a critical need for more extensive animal studies 
for Subdoligranulum spp, such as in aging-related animal 
models.

The casual association of some taxa on longevity are 
inconsistent. For instance, Akkermansia muciniphila 
was negatively correlated with longevity (age > 99th per-
centile), but was positively associated with three traits 
of parental longevity (mother’s age at death, combined 
parental age at death, and both parents in top 10%). In 
addition, Desulfovibrio in the MiBioGen dataset was 
positively associated with parental longevity of com-
bined parental age at death. Desulfovibrio in the Ger-
man dataset was negatively correlated with lifespans and 
two parental longevity traits (both parents in top 10%, 
and combined parental age at death), while was posi-
tively associated with father’s attained age and combined 
parental attained age.  D. piger, a representative species 
of the Desulfovibrio genus, is identified as one of the gut 
microbes associated with human aging [49]. Flavonifrac-
tor was positively correlated with longevity (age > 99th 
percentile) and frailty, and was negatively correlated 
with parental longevity. One species of Flavonifractor 
genus, Flavonifractor plautii, has been found to protect 
against elevated arterial stiffness [50], but correlated 
with colorectal cancer [51, 52]. Consistently, Parasutte-
rella exhibited a negative correlation with both lifespan 
and longevity (age > 90th percentile). Parasutterella was 
positively associated with BMI and type 2 diabetes [53], 
suggesting it may potentially affect metabolic diseases. 
Moreover, Blautia A sp900066355 was negatively corre-
lated with longevity (age > 90th percentile) and parental 

longevity of mother’s attained age. The mechanisms by 
which Desulfovibrio spp, Flavonifractor spp, Parasut-
terella spp, and Blautia A sp900066355 may contrib-
ute to disease pathology or healthy aging remains to be 
investigated.

As for microbial pathways, the abundance of PWY-
6731(starch degradation III) was positively associated 
with longevity of age > 90th percentile. A previous GWAS 
study indicated that the starch, sucrose and xenobiotic 
metabolism pathway was highly associated with human 
longevity in Han Chinese [40]. Species such as Faecali-
bacterium prausnitzii, Eubacterium rectale, and Rose-
buria inulinivorans involve in the starch degradation and 
exert health-regulating effects by producing short-chain 
fatty acids (SCFAs) [54]. Thus, the starch degradation 
pathway may have a profound impact on longevity. COA-
PWY (coenzyme A biosynthesis I), PWY-5100 (pyruvate 
fermentation to acetate and lactate II), and NONOX-
IPEN-PWY (pentose phosphate pathway, non-oxida-
tive branch) exhibited a positive correlation with two 
or more longevity traits. Previous studies have revealed 
that acetyl-coenzyme A as a phylogenetically conserved 
inhibitor of age-associated autophagy and prolongs lifes-
pan [55, 56]. In addition, the Sis2 gene regulated yeast 
lifespan through the coenzyme A biosynthesis pathway 
[57], implying a role for this pathway in longevity regula-
tion. Lactate promotes oxidative stress resistance through 
hormetic ROS signaling [58], while acetate metabolism 
play a role in the regulation of aging and longevity [59]. 
The pentose phosphate pathway is crucial for cellular 
redox balance, and helps to maintain mitochondrial reac-
tive oxygen species homeostasis and to extend lifespan 
in C. elegans [60]. Researchers also discovered that long‐
lived flies exhibit a delayed age-related decline in protein 
turnover rates and elevated carbon flux into the pentose 
phosphate pathway [61]. These findings support a causal 
link between pentose phosphate pathway and lifespan 
extension. Furthermore, the TCA cycle VIII (helicobac-
ter) pathway was consistently negatively associated with 
lifespan and three traits of parental longevity. The Helico-
bacter-specific tricarboxylic acid cycle (TCA cycle VIII) 
was associated with gastric carcinogenesis [62], indicat-
ing a potential harmful mechanism that contributes to 
the suppression of longevity. These pathways could serve 
as targets for future therapeutic approaches for aging-
related disorders.

These findings have profound implications for our 
understanding of the causal relationships between the 
gut microbiome and human longevity. By identifying 
specific gut microbial taxa and their functional pathways 
associated with longevity, we gain a more precise pic-
ture of which microbial features may influence human 
lifespan. They not only enhance our understanding of 
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longevity mechanisms but also pave the way for micro-
biome-targeted interventions to promote healthy aging. 
For instance, if we increase our intake of dietary fiber to 
enhance the abundance of starch degradation III pathway 
or appropriately use medications to eliminate Helicobac-
ter pylori when H. pylori infection has been diagnosed, it 
is likely to improve our health.

Conclusions
This study reveals numerous causal associations between 
gut microbiota and longevity. Bacteroides massiliensis 
and Parasutterella were negatively associated with lon-
gevity, while Alistipes and Subdoligranulum exhibited a 
positive correlation with longevity. Microbial pathways 
of coenzyme A biosynthesis I, pyruvate fermentation to 
acetate and lactate II, pentose phosphate pathway, and 
TCA cycle VIII (helicobacter) were notably associated 
with longevity in a potentially protective or detrimental 
manner. More extensive population-based observational 
studies and longitudinal studies, as well as animal experi-
ments, are needed to elucidate these causal associations 
and their underlying mechanisms.
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