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Abstract

Background Although research has indicated correlations between lipids, cerebrospinal fluid (CSF) metabolites, and
Late-Onset Alzheimer's Disease (LOAD), the specific causal relationships among these elements, as well as the roles
and mechanisms of the cerebrospinal fluid metabolites, remain unclear.

Methods Statistical datasets derived from Genome-Wide Association Studies (GWAS) were utilized to assess the
bidirectional causal relationships between lipids and LOAD. Subsequently, genetic variants associated with CSF
metabolites and established lipids underwent a two-step Mendelian randomization (MR) analysis to explore potential
mediators and analyze mediation effects. Sensitivity analyses were employed to assess the robustness of the
detection systems.

Results Genetically predicted cholesterol (IVW OR=0.989; 95% Cl 0.982-0.996) was found to reduce the risk of LOAD,
whereas Phosphatidylcholine (PC) (18:1_0:0) (IVW OR=1.015; 95% Cl 1.005-1.025) posed a risk factor. The potential
mediator, CSF metabolite N-acetylneuraminate (NeuAC), was identified with a mediation proportion of 21.02% (3.25%,
45.50%). No pleiotropy or heterogeneity was detected across MR analyses.

Conclusions The findings underscore the pivotal role of CSF metabolomics in elucidating the lipid-mediated
pathogenesis of LOAD, highlighting potential diagnostic and preventative biomarkers.
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Background

Alzheimer’s Disease (AD) is a neurodegenerative condi-
tion characterized predominantly by progressive memory
loss and constitutes the most prevalent form of dementia,
affecting over 50 million people globally. This increasing
prevalence negatively impacts families, communities, and
healthcare systems worldwide [1-3]. Among individu-
als aged over 65, the incidence of AD ranges from 1-3%
[4], with over 90% of these cases classified as Late-Onset
Alzheimer’s Disease (LOAD) [5]. Previous studies have
demonstrated a close association between lipid profiles
and LOAD. The APOE &4 allele, a major genetic risk fac-
tor for AD, encodes a lipid transport protein involved in
cholesterol metabolism [6]. Genome-Wide Association
Studies (GWAS) have identified Single nucleotide poly-
morphisms (SNPs) related to lipid processes in LOAD,
including genes like CLU, ABCA1, and ABCA7 [7-9].
However, despite extensive studies, confounding factors
have obscured definitive evidence of a causal relationship
between lipids and LOAD, and the underlying mecha-
nisms remain unclear [9].

Intriguingly, accumulating evidence suggests that AD’s
pathophysiology is closely linked to disturbances in brain
energy metabolism and homeostasis [10-13]. In neuro-
psychiatric disorders, CSF metabolites are considered
superior analytes since they are in direct contact with
brain and spinal cord cells, thus reflecting physiological
changes in the central nervous system [14, 15]. Previ-
ous research has indicated that lipids participate in the
metabolism of substances within CSF [16]. Disorders in
lipid metabolism, such as those involving cholesterol and
APOE, may constitute a principal mechanism underlying
AD [17-19].

Mendelian randomization (MR) offers a robust
approach to overcoming the limitations inherent in
traditional epidemiological and observational studies
[20]. By employing genetic variants (SNPs) from non-
experimental data as instrumental variables (IVs), MR
infers the effects of exposures on outcomes [21]. Alleles
are randomly assigned to offspring during meiosis, akin
to a randomized control trial [22]. This process, gener-
ally unaffected by external factors, maximizes the mini-
mization of confounding and reverse causation [23].
Two-sample MR utilizes separate cohorts to measure
exposures and outcomes, enabling more extensive and
substantiated studies.

Given the established correlations between lipids,
CSF metabolites, and AD, this study leverages the latest
aggregated data from GWAS. It aims to infer potential
causal relationships between lipids, CSF metabolites, and
LOAD using a two-sample MR approach. Furthermore, a
two-step MR analysis explores the mediating role of CSF
metabolites in the association between lipids and LOAD,

Page 2 of 12

identifying potential biomarkers for early diagnosis and
clinical intervention.

Methods

Study design

Figure 1 illustrates the research design. MR is an analysis
technique using genetic IVs, specifically SNPs, to assess
the impact of exposures on various outcomes and to
analyze causal relationships between them. The genetic
variants selected as IVs in MR analysis must satisfy three
key assumptions: relevance, independence, and exclu-
sion restriction. The two-step MR analysis must meet
the following criteria: (1) a causal relationship between
the exposure and the outcome; (2) a causal relationship
between the mediator and the outcome, independent of
the exposure; (3) a causal relationship between the expo-
sure and the mediator. Reverse MR analysis is conducted
at each step to confirm the absence of reverse causality
in the final positive results [24]. Our study adheres to the
STROBE-MR guidelines [25] as detailed in Supplemen-
tary Table S1.

Data sources

The datasets utilized in this study are derived from pub-
licly available GWAS summary data (https://www.ebi.ac
.uk/gwas/). therefore, no additional ethical approval was
required. Table 1 summarizes the GWAS data employed
in this study. Lipids data were obtained from a study
by Linda Ottensmann et al., which conducted shotgun
lipidomic analysis via mass spectrometry on 7,174 indi-
viduals from the GeneRISK cohort, identifying 179 sub-
species-level lipid molecules spanning 13 lipid classes
and four major lipid categories: triglycerides, glycero-
phospholipids, sphingolipids, and sterols [26]. Data on
338 CSF metabolites were sourced from a metabolome-
wide association study by Daniel J. Panyard et al., involv-
ing 291 individuals of European descent [15]. LOAD data
were derived from a genome-wide association study by
Douglas P. Wightman et al,, involving 1,126,563 individu-
als (90,338 cases and 1,036,225 controls) of European
ancestry [27]. Replication data for blood metabolites
were obtained from a study by Yiheng Chen et al., which
included 8,299 individuals from a Canadian aging longi-
tudinal cohort [28]. All GWAS data originated from dis-
tinct consortia, minimizing the risk of bias due to sample
overlap.

Instrumental variable selection

Instrumental variables were selected following rigor-
ous data cleaning principles to ensure the validity of
our MR analysis. First, SNPs were required to be signifi-
cantly associated with the exposure, so we set the sig-
nificance threshold at P<5x107®. However, because the
GWAS data on lipids and CSF metabolites did not yield
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Fig. 1 Overview and research content of Mendelian Randomization. MR three assumptions: (1) Instrumental variables(IVs) are strongly associated with
the exposure (Relevance), (2) IVs are not affected by confounding factors (Independence), (3) IVs influence the outcome solely through their effect on the
exposure (Exclusion Restriction) SNP. Single glycerine polymorphism; LOAD, Late onset Alzheimer’s disease; CSF, Cerebrospinal fluid; VW, Inverse variance
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Table 1 Overview of GWAS data included in Mendelian randomization analyses

Phenotype Sample Size Ancestry Author Year of publication PubMed
ID
Lipids 7174 Finland Ottensmann et al. 2023 37,907,536
CSF metabolites 291 European Panyard et al. 2021 33,437,055
LOAD 1,126,563(90338 cases and  Finland, Iceland, Norway, ~ Wightman et al. 2021 34,493,870
1036225 controls) Spain, Sweden, UK, NR,
us
Blood metabolites(Copy) 8299 European Chenetal. 2023 36,635,386

CSF, Cerebrospinal fluid; LOAD, Late-Onset Alzheimer’s Disease

enough instrumental variables for subsequent analysis,
we adjusted the threshold to P<1x10° to obtain suffi-
cient instruments. Second, since linkage disequilibrium
(LD) is more likely to occur between closely located
genetic variants, potentially introducing bias [29], we
performed a clumping process (window size=10,000 kb,
r* = 0.001) to remove SNPs in LD. An important step
in MR is to ensure that the effect of SNPs on the expo-
sure corresponds to the same allele as their effect on the

outcome. To avoid distortion due to strand orientation
or allele coding errors, we removed palindromic SNPs
(e.g., those with A/T or G/C alleles). During harmoniza-
tion, we aligned the alleles with the human genome refer-
ence sequence (GRCh37) and eliminated ambiguous and
duplicate SNPs [30]. Finally, we calculated %:he F- statlstl)c
for each SNP using the formula £ — R2 5
where the proportion of phenotypic variance explained
(R?) is calculated as R*=2xMAFx(1-MAF)xB> Here, n
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represents the sample size, k is the number of instrumen-
tal variables, P is the effect size, and MAF is the minor
allele frequency. Weak instrumental variables can pro-
duce misleading results because the estimated effect of
the exposure-outcome association may be biased [23];
therefore, SNPs with an F-statistic less than 10 were
excluded.

Causal total effect analysis for genetic prediction

We initiated a two-sample Mendelian Randomization
analysis to explore the causal relationship between lip-
ids profiles and LOAD, with B representing the total
effect. The primary method employed was the inverse-
variance weighted (IVW) fixed-effect model for estima-
tion, shifting to a random-effects model in the presence
of heterogeneity among the genetic instruments [31].
Notably, the IVW method operates under the assump-
tion that all genetic variants are valid instrumental
variables, providing estimates through the slope of a
weighted linear regression, known for its robust causal
inference capabilities [32]. To enhance the credibility of
the IVW results, both the weighted median approach and
MR-Egger regression were utilized to assess the reliabil-
ity and stability of the outcomes. The weighted median
method provides consistent estimates even when 50% of
the instruments are deemed invalid [33]. MR-Egger can
detect violations of the IV assumptions and offers effect
estimates that are not influenced by these violations [34].

Mediation effect analysis of the association “lipids-CSF
metabolites-LOAD”

The two-step MR test was employed to delineate the
direct and indirect impacts of lipids and CSF metabolites
on LOAD. In the first step, we assessed the effect (f1) of
lipids on the potential mediators, and in the second step,
we evaluated the effect ($2) of these mediators on LOAD
[35, 36]. SNPs used in the second step of the analysis
were distinct and did not overlap with those used in the
first step.

Reverse MR analysis

In this study, reverse MR analysis will be conducted
using candidate lipids that have a causal relationship
with LOAD and CSF metabolites. The purpose of this
approach is to eliminate potential confounding from
reverse causality, thereby ensuring the reliability of the
research findings.

Replicate analysis

Building on the potential CSF metabolites identified
earlier, we will conduct a mediation effect analysis of
“lipid-blood metabolites-LOAD” using the correspond-
ing metabolites. This analysis aims to explore whether
the potential mediators in the CSF can exert similar
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mediating roles in the blood, thereby elucidating the
underlying mechanisms of these mediators within the
pathway.

Sensitivity analysis

To ensure the robustness and reliability of our find-
ings, we conducted multiple sensitivity analyses aimed
at detecting and correcting potential pleiotropy, het-
erogeneity, and the influence of individual SNPs. First,
when IVs affect other exposures related to the outcome
of interest, pleiotropy can lead to confounding and
bias. Therefore, we employed the MR-Egger regres-
sion method to detect horizontal pleiotropy. MR-Egger
regression assesses the average pleiotropic effect across
all I'Vs, and the significance of its intercept term (i.e., the
MR-Egger intercept) is used to determine the presence of
horizontal pleiotropy [37]. If the P-value of the MR-Egger
intercept is less than 0.05, it indicates evidence of hori-
zontal pleiotropy. In such cases, we further applied the
MR-PRESSO method to detect and correct bias caused
by pleiotropy [38]. MR-PRESSO can identify and remove
outlier SNPs, after which we re-conducted the MR analy-
sis and sensitivity analyses to obtain more accurate and
reliable estimates. Second, to assess whether there was
heterogeneity among the IVs, we used Cochran’s Q test
[39]. Heterogeneity refers to significant differences in the
effects of different IVs on the outcome, which may affect
the accuracy of MR analysis. Cochran’s Q test detects
inconsistency in the effects of the IVs, and if the P-value
corresponding to the Q statistic is less than 0.05, it indi-
cates significant heterogeneity. Additionally, to ensure
that our results were not driven by extreme effects of
individual SNPs, we performed a leave-one-out analysis
[23]. In this analysis, we sequentially excluded each IV
and recalculated the overall effect estimate. If the results
changed significantly after excluding any SNP, it suggests
that the SNP may have an undue influence on the find-
ings and warrants further careful consideration.

Statistical analysis

MR analysis and causal effect estimation were conducted
using R (version 4.3.3) and two principal packages:
“TwoSampleMR” (version 0.5.11) and “MendelianRan-
domization” (version 0.9.0). Continuous outcomes were
reported with beta () values and 95% confidence inter-
vals (CIs), while binary outcomes were estimated using
odds ratios (ORs) and 95% ClIs, reflecting the risk alter-
ation in outcomes with each standard deviation (SD)
increase in genetically predicted exposure. Stepwise
regression was employed to select exposures and media-
tors with genuine effects [40]. The product of coefficients
method (B1xp2) was utilized for estimating indirect
effects. The mediation proportion was calculated using
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the formula (B1x[2)/p, with standard errors and 95% Cls
computed using the delta method.

Metabolic pathways involved in CSF metabolites

Extended analysis of CSF metabolites causally linked
with LOAD (Pyy<0.05) was conducted using the online
network tool, MetaboAnalyst 6.0 (https://www.metaboa
nalyst.ca/MetaboAnalyst/). MetaboAnalyst 6.0 is a pub-
licly available online tool that performs pathway analysis
of metabolomics data based on the Kyoto Encyclopedia
of Genes and Genomes (KEGQ).

Results

Genetic instruments for exposures

For the 179 lipids, 4,512 instrumental variables were
selected with a median F-statistic of 22.46 (ranging from
18.80 to 1969.07). From the GWAS data of 338 CSF
metabolites, 21,147 SNPs were selected with a median
F-statistic of 22.27 (ranging from 19.29 to 904.75). For
LOAD, used as the exposure, 38 SNPs were extracted
with a median F-statistic of 50.23 (ranging from 30.23 to
1569.32). For the replicated blood metabolites, 33 instru-
mental variables were selected with a median F-statistic
of 19.33 (ranging from 17.13 to 69.86). All SNPs had an
F-statistic greater than 10, which excludes the interfer-
ence from weak instrumental variables (Supplementary
Tables S2-5).

Genetic causal relationship between lipids and LOAD

An initial two-sample MR analysis using the IVW method
identified ten lipid species associated with LOAD, involv-
ing six categories: cholesterol, triglycerides (TG), phos-
phatidylcholine (PC), phosphatidylcholine ether (PCO),
phosphatidylethanolamine (PE), and phosphatidylino-
sitol (PI) (Supplementary Table S6). After Bonferroni
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Fig. 2 Mendelian randomization analyses show causal effects between
lipids on LOAD. PC, Phosphatidylcholine; PE, Phosphatidylethanolamine;
PI, Phosphatidylinositol; TG, Triacylglycerol. The lipid species are named
in the following notation: class name <sum of carbon atoms>:< sum of
double bonds>;< sum of hydroxyl groups>. Acyl chains,”_"
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correction for multiple testing (P<0.05/10=5.00x10"3),
as shown in Fig. 2, only Cholesterol (IVW OR=0.989;
95% CI 0.982-0.996; P=3.14x10"%) and PC (18:1_0:0)
(IVW OR=1.015; 95% CI 1.005-1.025; P=2.82x10%)
remained significant (Supplementary Table S6). Elevated
levels of Cholesterol are associated with reduced risk of
LOAD, whereas PC (18:1_0:0) demonstrates the oppo-
site effect. Additionally, sensitivity analyses indicated no
evidence of pleiotropy or heterogeneity in these posi-
tive findings (Supplementary Table S7). In assessing the
causal impact of LOAD on these lipids, we observed
inverse causality for PC(O-16:0_22:5) (IVW OR=0.602;
95% CI 0.439-0.824; P=1.55x10"3) and PC(O-16:1_20:3)
(IVW OR=0.544; 95% CI 0.406—0.731; P=5.18x103)
(Supplementary Table S8).

Mediated analysis of potential CSF metabolites

Following the analysis, we identified two positive find-
ings regarding the causal relationship between lipids
and LOAD, which led us to further explore potential
mediating effects using two-step MR analysis. Initially,
MR analysis was performed between positive lipids and
CSF metabolites (Fig. 3). For Cholesterol as the expo-
sure, 27 causally linked CSF metabolites were identi-
fied, and for PC (18:1_0:0) as the exposure, 30 causally
linked CSF metabolites were found (Supplementary
Table S9). Subsequently, these findings were subjected to
two-sample MR analysis with LOAD to confirm poten-
tial mediators (Fig. 4). Ultimately, three CSF metabo-
lites were found to causally relate to LOAD. Elevated
N-acetylthreonine (IVW OR=1.024; 95% CI 1.007-1.041;
P=5.71x10"3) was associated with increased LOAD risk,
while increases in Citrulline IVW OR=0.978; 95% CI
0.964—0.991; P=1.48x107%) and N-acetylneuraminate
(NeuAC, IVW OR=0.974; 95% CI 0.954-0.995; P=0.014)
were associated with reduced risk (Supplementary Table
S10). Subsequently, the indirect effects and mediation
proportions mediated by CSF metabolites were calcu-
lated. It was found that for N-acetylthreonine and Citrul-
line, the directions of direct and indirect effects in the
mediation pathway were inconsistent, making it impos-
sible to calculate mediation proportions. Overall, after a
series of analyses, the mediation proportion of NeuAC
was found to be 21.02% (3.25%, 45.50%) as shown in
Table 2. All tests passed checks for pleiotropy and het-
erogeneity, as detailed in Supplementary Tables S11-12.
Furthermore, the positive results showed no evidence of
reverse causation (Supplementary Tables S13-14).

Replication-mediated effects in blood metabolites

Following the aforementioned methodology, we con-
ducted a mediation test for NeuAC in blood using a
two-step MR analysis. We found no causal relationship
between NeuAC in blood, lipid bodies, and LOAD with
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2-o-methylascorbic acid 21 o 0.996(0.975 - 1.017) 0.693
X-24228 28 d 0.999(0.986 - 1.013) 0.941
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0.96 1 1.04

protective factor
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Fig. 4 Mendelian randomization analyses show causal effects between CSF metabolites on LOAD. (a). The exposure comprises positive CSF metabolites
identified using cholesterol as the exposure variable. (b). The exposure comprises positive CSF metabolites identified using PC (18:1_0:0) as the exposure

variable
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Table 2 The mediation effect of lipids on LOAD via CSF
metabolites

Mediator Total Step 1 Step 2 Mediated
effect effect effect propor-
tion (%)
B(95%Cl) B1(95% B2(95% (95% Cl)
()] ql)
N-acetylthreonine -0.011(- 0.055(0.031, 0.023(0.015, -
0.015, 0.079) 0.032)
-0.007)
Citrulline 0.015(0.010, 0.060(0.032, -0.023(- -
0.020) 0.088) 0.030,
-0.015)
N-acetylneuram-  0.015(0.010, -0.118(- -0.026(- 21.02(3.25,
inate 0.020) 0.153, 0.037, 45.50)
-0.082) -0.016)

Total effect: The effect of lipids on LOAD, Step 1 effect: The effect of lipids on CSF
metabolites, Step 1 effect: The effect of CSF metabolites on LOAD

the IVW method yielding P-values of 0.195 and 0.577,
respectively (Table 3).

Metabolic pathway analysis

Further analysis using the IVW method on CSF metabo-
lites with a positive causal relationship with LOAD (Sup-
plementary Table S15) revealed 15 metabolic pathways
potentially involved in the development and progression
of LOAD. However, only the pathways “Valine, leucine,
and isoleucine biosynthesis” (P=1.86x107°), “Lysine
degradation” (P=1.22x1073), and “Valine, leucine and
isoleucine degradation” (P=2.85x10"%) were considered
significant (Fig. 5).

Discussion

We conducted a systematic two-sample and two-step
MR study to explore the causal relationship between lip-
ids and LOAD, and to analyze the potential mediating
role of CSF metabolites. Results indicated that increased
levels of Cholesterol are associated with a reduced risk
of LOAD, while PC (18:1_0:0) acts as a risk factor. The
two-step MR analysis identified 27 and 30 CSF metabo-
lites causally linked with Cholesterol and PC (18:1_0:0)
respectively. Subsequent validation suggested poten-
tial mediation by N-acetylthreonine, Citrulline, and
N-acetylneuraminate. Only N-acetylthreonine was
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identified as a risk factor, while the other two metabolites
were protective. However, only PC (18:1_0:0) was shown
to increase LOAD risk, potentially through a reduction in
CSF NeuAC levels, as indicated by directionality discrep-
ancies in IVW estimates. All mediation analyses excluded
the possibility of reverse causation and showed no signs
of horizontal pleiotropy or heterogeneity. Replication
experiments in blood metabolites did not yield corre-
sponding positive results.

Cholesterol metabolism plays a significant role in the
pathogenesis of LOAD, but the relationship between
cholesterol levels and LOAD risk is complex and varies
by cholesterol subtype. A study suggest that higher total
cholesterol levels in midlife increase Alzheimer’s risk by
contributing to amyloid-beta deposition and neurofibril-
lary tangle formation—the hallmark features of Alzheim-
er’s pathology [41]. Conversely, other studies indicate
that higher cholesterol levels in later life might protect
against cognitive decline [42, 43]. This inconsistency
highlights the importance of considering cholesterol sub-
types separately. High-density lipoprotein cholesterol
(HDL-C), known as “good cholesterol” [44], facilitates
reverse cholesterol transport and possesses anti-inflam-
matory and antioxidant properties that may confer neu-
roprotective effects. Higher HDL-C levels are associated
with a reduced risk of cognitive decline and AD [45]. In
contrast, low-density lipoprotein cholesterol (LDL-C), or
“bad cholesterol,” when elevated, can lead to atheroscle-
rotic plaque formation, reducing cerebral blood flow and
contributing to cognitive impairment. Elevated LDL-C
levels are linked to an increased risk of AD; oxidized LDL
induces inflammatory responses and oxidative stress,
leading to neuronal damage and promoting amyloid-beta
production [46]. Therefore, differentiating between cho-
lesterol subtypes is crucial for understanding their dis-
tinct roles in LOAD pathogenesis, and future research
should focus on HDL-C and LDL-C separately to refine
our understanding of lipid metabolism in LOAD.

Presently, research on PC in LOAD is sparse. Earlier
studies reported reductions in three specific PCs in AD
patients: 16:0/20:5, 16:0/22:6, and 18:0/22:6 [47]. PC,
a type of 1,2-diacylglycerol phospholipid, is an essen-
tial component of cellular membranes and constitutes

Table 3 Detailed results of MR analysis for causal effects of lipids, blood metabolite and LOAD

Exposure Outcome Method Beta SE OR 95%Cl P-value
PC(18:1_0:0) NeuAC VW -0.050 0.038 0.951 0.882-1.026 0.195
(copy) Weighted median -0.044 0.055 0.957 0.859-1.066 0427
MR Egger 0.038 0.104 1.038 0.847-1.273 0.721
NeuAC LOAD VW -0.002 0.004 0.998 0.989-1.006 0.577
(copy) Weighted median -0.002 0.006 0.998 0.985-1.011 0.737
MR Egger -0.004 0.013 0.996 0.971-1.021 0.738

SE, standard error; OR, odds ratio; Cl, confidence interval; IVW, Inverse variance weighted. The lipid species are named in the following notation: class name <sum of

carbon atoms>:< sum of double bonds>;< sum of hydroxyl groups>. Acyl chains, “_"
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Cholesterol [
Glycine [ ]
Citrulline
Sphingomyelin (d18:1/24:1, d18:2/24:0)
Glucuronate |
Hypoxanthine
Xanthine
1,2—dipalmitoyl-gpc (16:0/16:0) [ |
1-methylnicotinamide
1-myristoyl-2-palmitoyl-gpc (14:0/16:0) [ ]
1-palmitoyl-2—-oleoyl-gpc (16:0/18: 1)\ |
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@ Valine, leucine and isoleucine biosynthesis

. Lysine degradation

@ Valine, leucine and isoleucine degradation
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Fig. 5 (a). Mendelian randomization analyses show causal effects between all positive CSF metabolites on LOAD. (b). Potential metabolic pathways as-
sociated with LOAD. Pathway analysis utilizing the “Kyoto Encyclopedia of Genes and Genomes” (KEGG) was conducted. The circles in the visualization
are colored and sized based on their respective P-values (yellow indicating higher P-value and red indicating lower P-value) and pathway impact values
(larger circles correspond to higher impact scores) derived from topological analysis

approximately 95% of the total choline compounds in
most tissues [48, 49]. The findings of Luke Whiley and
others show some deviations from our conclusions.
This variance may be attributed to the diverse molecular
forms of PC, which have different functions across path-
ways. Moreover, the small sample size of Whiley’s cohort
may have amplified certain confounding factors, poten-
tially obscuring the true effects. Despite these challenges,
we maintain that the outcomes predicted by genetic stud-
ies are reliable. However, further research is required to
fully understand these mechanisms.
N-acetylneuraminate (also known as sialic acid), an
acidic monosaccharide with a nine-carbon backbone,
is a structural and functional component of brain gan-
gliosides [50]. It correlates with the content of DHA
and total long-chain polyunsaturated fatty acids in the
brain’s sphingolipid sites [51]. Genetic studies in mice
and human diseases have demonstrated that ganglioside
metabolism plays a crucial role in regulating neuronal
excitability, axon-myelin interactions, axonal stability,

and regeneration [51, 52]. Notably, the concentration
of NeuAC in gangliosides varies significantly with age.
While sialic acid levels rise rapidly early after birth, they
plateau before the age of 50 and subsequently decline
[53], a pattern that corresponds with the onset age and
causes of LOAD. Additionally, NeuAC monomers can
polymerize into polysialic acid, a major component of
the neural cell adhesion molecule (NCAM) expressed on
the surfaces of central nervous system (CNS) cells [54].
NCAM is critical in synaptogenesis, neuronal plasticity,
and memory formation [55, 56]. This is consistent with
our identification of NeuAC as a mediator in the protec-
tive effects within regulatory pathways. Despite its signif-
icance, NeuAC has been scarcely studied in the context
of LOAD. Future research in this field may lead to the
clinical application of NeuAC as a novel biomarker.

The presence of the blood-brain barrier and blood-
spinal cord barrier results in significant differences
between the metabolite profiles of blood and cerebrospi-
nal fluid [57, 58], explaining the inability to replicate the
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NeuAC-mediated effects in blood metabolites. Further-
more, pathway analysis of cerebrospinal fluid metabo-
lites via KEGG identified three critical pathways related
to LOAD, involving the metabolism of valine, leucine,
isoleucine, and lysine. Leucine, isoleucine, and valine,
as essential branched-chain amino acids (BCAAs), can-
not be synthesized in the body. However, nitrogen is
transferred to a-ketoglutarate («KG) via branched-chain
amino acid transaminases 1 and 2 (BCAT 1/2), resulting
in the production of glutamine and specific branched-
chain keto acids (BCKA). These keto acids are then
metabolized by the branched-chain a-keto acid dehydro-
genase complex to produce branched-chain acyl-CoA
(R-CoA), which are ultimately metabolized into the tri-
carboxylic acid cycle intermediates acetyl-CoA and suc-
cinyl-CoA [59]. Many enzymes acting on these amino
acids utilize all BCAAs as substrates, thereby similarly
influencing the levels of all BCA As. This reflects the simi-
lar chemical properties and metabolism of BCAAs [60].
Glutamate, an important excitatory neurotransmitter in
the brain, is synthesized in astrocytes surrounding neu-
rons, with BCAAs, particularly leucine, playing a crucial
role. Leucine enters the brain from the bloodstream more
rapidly than other amino acids and contributes approxi-
mately 25% of all a-amino groups to glutamate synthe-
sis [60]. Overall, the cerebrospinal fluid metabolites
obtained via the two-step MR approach play a crucial
role in the pathophysiological pathways of LOAD.

The strength of this study lies in the utilization of the
most recent and comprehensive GWAS data for expo-
sure and outcome variables, with no overlapping sam-
ples. Rigorous selection criteria were applied to exclude
confounding and weak genetic instruments, enhancing
the robustness and reliability of our results through sys-
tematic MR analysis and sensitivity testing. The diversity
of the study cohort, encompassing multiple ethnicities,
lends generalizability to our findings. Additionally, the
direct contact between cerebrospinal fluid and the brain’s
extracellular space allows its metabolites to reflect the
brain’s pathophysiological conditions [61], which is cru-
cial for early diagnosis and treatment of diseases. None-
theless, this study has limitations. The primary limitation
of our study is the relatively small sample size of the
CSF metabolite GWAS cohort (7=291). A smaller sam-
ple size may reduce the statistical power to detect true
causal associations and increases the risk of both type I
and type II errors, potentially affecting the reliability and
generalizability of our results. Despite this, we believe
that our findings provide valuable preliminary insights
into the potential mediating role of CSF metabolites in
the relationship between lipids and LOAD. To mitigate
the impact of the small sample size, we employed rigor-
ous two-sample MR methods and conducted extensive
sensitivity analyses to enhance the robustness of our
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results. We also ensured that the instrumental variables
used were strong and valid by applying stringent selec-
tion criteria and quality control measures. However, we
acknowledge that future studies with larger and more
diverse cohorts are necessary to validate our findings,
improve their generalizability, and fully elucidate the
underlying biological mechanisms. Replication of our
results in larger samples will strengthen the evidence for
the causal relationships identified and may facilitate the
development of potential biomarkers for early diagnosis
and intervention in LOAD, thereby enhancing the valid-
ity and applicability of the results to broader populations.

Finally, MR analysis has only revealed genetic causality.
The role of PC (18:1_0:0) as a lipid mediator in the associ-
ation with LOAD still requires further validation through
experimental and clinical data.

Conclusions

Our study is the first to reveal causal relationships
between certain lipids and CSF metabolites and LOAD.
Building on this, we also established that CSF metabo-
lites mediate the relationship between lipids and LOAD.
These findings suggest potential biomarkers for diagnos-
ing and preventing the disease. Going forward, we advo-
cate for further in vivo and in vitro experimental studies
in this field to explore the causality, mechanisms, and
therapeutic potential of these findings.
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