
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit  h t    t p : / / c r e  a   t i 
v e  c  o  m  m  o n s . o r g / l i c e n s e s / b y - n c - n d / 4 . 0 /     .   

Jie et al. Journal of Translational Medicine         (2024) 22:1077 
https://doi.org/10.1186/s12967-024-05796-2

Journal of Translational 
Medicine

*Correspondence:
Su Liu
jary618@outlook.com
1Changde Hospital, Xiangya School of Medicine, Central South University 
(The First People’ s Hospital of Changde City), 818 Renmin Road, Changde 
City, Hunan Province 415000, China

Abstract
Background Although research has indicated correlations between lipids, cerebrospinal fluid (CSF) metabolites, and 
Late-Onset Alzheimer’s Disease (LOAD), the specific causal relationships among these elements, as well as the roles 
and mechanisms of the cerebrospinal fluid metabolites, remain unclear.

Methods Statistical datasets derived from Genome-Wide Association Studies (GWAS) were utilized to assess the 
bidirectional causal relationships between lipids and LOAD. Subsequently, genetic variants associated with CSF 
metabolites and established lipids underwent a two-step Mendelian randomization (MR) analysis to explore potential 
mediators and analyze mediation effects. Sensitivity analyses were employed to assess the robustness of the 
detection systems.

Results Genetically predicted cholesterol (IVW OR = 0.989; 95% CI 0.982–0.996) was found to reduce the risk of LOAD, 
whereas Phosphatidylcholine (PC) (18:1_0:0) (IVW OR = 1.015; 95% CI 1.005–1.025) posed a risk factor. The potential 
mediator, CSF metabolite N-acetylneuraminate (NeuAC), was identified with a mediation proportion of 21.02% (3.25%, 
45.50%). No pleiotropy or heterogeneity was detected across MR analyses.

Conclusions The findings underscore the pivotal role of CSF metabolomics in elucidating the lipid-mediated 
pathogenesis of LOAD, highlighting potential diagnostic and preventative biomarkers.
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Background
Alzheimer’s Disease (AD) is a neurodegenerative condi-
tion characterized predominantly by progressive memory 
loss and constitutes the most prevalent form of dementia, 
affecting over 50 million people globally. This increasing 
prevalence negatively impacts families, communities, and 
healthcare systems worldwide [1–3]. Among individu-
als aged over 65, the incidence of AD ranges from 1–3% 
[4], with over 90% of these cases classified as Late-Onset 
Alzheimer’s Disease (LOAD) [5]. Previous studies have 
demonstrated a close association between lipid profiles 
and LOAD. The APOE ε4 allele, a major genetic risk fac-
tor for AD, encodes a lipid transport protein involved in 
cholesterol metabolism [6]. Genome-Wide Association 
Studies (GWAS) have identified Single nucleotide poly-
morphisms (SNPs) related to lipid processes in LOAD, 
including genes like CLU, ABCA1, and ABCA7 [7–9]. 
However, despite extensive studies, confounding factors 
have obscured definitive evidence of a causal relationship 
between lipids and LOAD, and the underlying mecha-
nisms remain unclear [9].

Intriguingly, accumulating evidence suggests that AD’s 
pathophysiology is closely linked to disturbances in brain 
energy metabolism and homeostasis [10–13]. In neuro-
psychiatric disorders, CSF metabolites are considered 
superior analytes since they are in direct contact with 
brain and spinal cord cells, thus reflecting physiological 
changes in the central nervous system [14, 15]. Previ-
ous research has indicated that lipids participate in the 
metabolism of substances within CSF [16]. Disorders in 
lipid metabolism, such as those involving cholesterol and 
APOE, may constitute a principal mechanism underlying 
AD [17–19].

Mendelian randomization (MR) offers a robust 
approach to overcoming the limitations inherent in 
traditional epidemiological and observational studies 
[20]. By employing genetic variants (SNPs) from non-
experimental data as instrumental variables (IVs), MR 
infers the effects of exposures on outcomes [21]. Alleles 
are randomly assigned to offspring during meiosis, akin 
to a randomized control trial [22]. This process, gener-
ally unaffected by external factors, maximizes the mini-
mization of confounding and reverse causation [23]. 
Two-sample MR utilizes separate cohorts to measure 
exposures and outcomes, enabling more extensive and 
substantiated studies.

Given the established correlations between lipids, 
CSF metabolites, and AD, this study leverages the latest 
aggregated data from GWAS. It aims to infer potential 
causal relationships between lipids, CSF metabolites, and 
LOAD using a two-sample MR approach. Furthermore, a 
two-step MR analysis explores the mediating role of CSF 
metabolites in the association between lipids and LOAD, 

identifying potential biomarkers for early diagnosis and 
clinical intervention.

Methods
Study design
Figure 1 illustrates the research design. MR is an analysis 
technique using genetic IVs, specifically SNPs, to assess 
the impact of exposures on various outcomes and to 
analyze causal relationships between them. The genetic 
variants selected as IVs in MR analysis must satisfy three 
key assumptions: relevance, independence, and exclu-
sion restriction. The two-step MR analysis must meet 
the following criteria: (1) a causal relationship between 
the exposure and the outcome; (2) a causal relationship 
between the mediator and the outcome, independent of 
the exposure; (3) a causal relationship between the expo-
sure and the mediator. Reverse MR analysis is conducted 
at each step to confirm the absence of reverse causality 
in the final positive results [24]. Our study adheres to the 
STROBE-MR guidelines [25] as detailed in Supplemen-
tary Table S1.

Data sources
The datasets utilized in this study are derived from pub-
licly available GWAS summary data  (   h t t p s : / / w w w . e b i . a c 
. u k / g w a s /     ) . therefore, no additional ethical approval was 
required. Table 1 summarizes the GWAS data employed 
in this study. Lipids data were obtained from a study 
by Linda Ottensmann et al., which conducted shotgun 
lipidomic analysis via mass spectrometry on 7,174 indi-
viduals from the GeneRISK cohort, identifying 179 sub-
species-level lipid molecules spanning 13 lipid classes 
and four major lipid categories: triglycerides, glycero-
phospholipids, sphingolipids, and sterols [26]. Data on 
338 CSF metabolites were sourced from a metabolome-
wide association study by Daniel J. Panyard et al., involv-
ing 291 individuals of European descent [15]. LOAD data 
were derived from a genome-wide association study by 
Douglas P. Wightman et al., involving 1,126,563 individu-
als (90,338 cases and 1,036,225 controls) of European 
ancestry [27]. Replication data for blood metabolites 
were obtained from a study by Yiheng Chen et al., which 
included 8,299 individuals from a Canadian aging longi-
tudinal cohort [28]. All GWAS data originated from dis-
tinct consortia, minimizing the risk of bias due to sample 
overlap.

Instrumental variable selection
Instrumental variables were selected following rigor-
ous data cleaning principles to ensure the validity of 
our MR analysis. First, SNPs were required to be signifi-
cantly associated with the exposure, so we set the sig-
nificance threshold at P < 5 × 10⁻⁸. However, because the 
GWAS data on lipids and CSF metabolites did not yield 

https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
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enough instrumental variables for subsequent analysis, 
we adjusted the threshold to P < 1 × 10⁻⁵ to obtain suffi-
cient instruments. Second, since linkage disequilibrium 
(LD) is more likely to occur between closely located 
genetic variants, potentially introducing bias [29], we 
performed a clumping process (window size = 10,000 kb, 
r² = 0.001) to remove SNPs in LD. An important step 
in MR is to ensure that the effect of SNPs on the expo-
sure corresponds to the same allele as their effect on the 

outcome. To avoid distortion due to strand orientation 
or allele coding errors, we removed palindromic SNPs 
(e.g., those with A/T or G/C alleles). During harmoniza-
tion, we aligned the alleles with the human genome refer-
ence sequence (GRCh37) and eliminated ambiguous and 
duplicate SNPs [30]. Finally, we calculated the F-statistic 
for each SNP using the formula F = R2

(1−R2)
× (n−k−1)

k , 
where the proportion of phenotypic variance explained 
(R2) is calculated as R2 = 2×MAF×(1-MAF)×β². Here, n 

Table 1 Overview of GWAS data included in Mendelian randomization analyses
Phenotype Sample Size Ancestry Author Year of publication PubMed 

ID
Lipids 7174 Finland Ottensmann et al. 2023 37,907,536
CSF metabolites 291 European Panyard et al. 2021 33,437,055
LOAD 1,126,563(90338 cases and 

1036225 controls)
Finland, Iceland, Norway, 
Spain, Sweden, U.K., NR, 
U.S

Wightman et al. 2021 34,493,870

Blood metabolites(Copy) 8299 European Chen et al. 2023 36,635,386
CSF, Cerebrospinal fluid; LOAD, Late-Onset Alzheimer’s Disease

Fig. 1 Overview and research content of Mendelian Randomization. MR three assumptions: (1) Instrumental variables(IVs) are strongly associated with 
the exposure (Relevance), (2) IVs are not affected by confounding factors (Independence), (3) IVs influence the outcome solely through their effect on the 
exposure (Exclusion Restriction) SNP. Single glycerine polymorphism; LOAD, Late onset Alzheimer’s disease; CSF, Cerebrospinal fluid; IVW, Inverse variance 
weighted
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represents the sample size, k is the number of instrumen-
tal variables, β is the effect size, and MAF is the minor 
allele frequency. Weak instrumental variables can pro-
duce misleading results because the estimated effect of 
the exposure-outcome association may be biased [23]; 
therefore, SNPs with an F-statistic less than 10 were 
excluded.

Causal total effect analysis for genetic prediction
We initiated a two-sample Mendelian Randomization 
analysis to explore the causal relationship between lip-
ids profiles and LOAD, with β representing the total 
effect. The primary method employed was the inverse-
variance weighted (IVW) fixed-effect model for estima-
tion, shifting to a random-effects model in the presence 
of heterogeneity among the genetic instruments [31]. 
Notably, the IVW method operates under the assump-
tion that all genetic variants are valid instrumental 
variables, providing estimates through the slope of a 
weighted linear regression, known for its robust causal 
inference capabilities [32]. To enhance the credibility of 
the IVW results, both the weighted median approach and 
MR-Egger regression were utilized to assess the reliabil-
ity and stability of the outcomes. The weighted median 
method provides consistent estimates even when 50% of 
the instruments are deemed invalid [33]. MR-Egger can 
detect violations of the IV assumptions and offers effect 
estimates that are not influenced by these violations [34].

Mediation effect analysis of the association “lipids-CSF 
metabolites-LOAD”
The two-step MR test was employed to delineate the 
direct and indirect impacts of lipids and CSF metabolites 
on LOAD. In the first step, we assessed the effect (β1) of 
lipids on the potential mediators, and in the second step, 
we evaluated the effect (β2) of these mediators on LOAD 
[35, 36]. SNPs used in the second step of the analysis 
were distinct and did not overlap with those used in the 
first step.

Reverse MR analysis
In this study, reverse MR analysis will be conducted 
using candidate lipids that have a causal relationship 
with LOAD and CSF metabolites. The purpose of this 
approach is to eliminate potential confounding from 
reverse causality, thereby ensuring the reliability of the 
research findings.

Replicate analysis
Building on the potential CSF metabolites identified 
earlier, we will conduct a mediation effect analysis of 
“lipid-blood metabolites-LOAD” using the correspond-
ing metabolites. This analysis aims to explore whether 
the potential mediators in the CSF can exert similar 

mediating roles in the blood, thereby elucidating the 
underlying mechanisms of these mediators within the 
pathway.

Sensitivity analysis
To ensure the robustness and reliability of our find-
ings, we conducted multiple sensitivity analyses aimed 
at detecting and correcting potential pleiotropy, het-
erogeneity, and the influence of individual SNPs. First, 
when IVs affect other exposures related to the outcome 
of interest, pleiotropy can lead to confounding and 
bias. Therefore, we employed the MR-Egger regres-
sion method to detect horizontal pleiotropy. MR-Egger 
regression assesses the average pleiotropic effect across 
all IVs, and the significance of its intercept term (i.e., the 
MR-Egger intercept) is used to determine the presence of 
horizontal pleiotropy [37]. If the P-value of the MR-Egger 
intercept is less than 0.05, it indicates evidence of hori-
zontal pleiotropy. In such cases, we further applied the 
MR-PRESSO method to detect and correct bias caused 
by pleiotropy [38]. MR-PRESSO can identify and remove 
outlier SNPs, after which we re-conducted the MR analy-
sis and sensitivity analyses to obtain more accurate and 
reliable estimates. Second, to assess whether there was 
heterogeneity among the IVs, we used Cochran’s Q test 
[39]. Heterogeneity refers to significant differences in the 
effects of different IVs on the outcome, which may affect 
the accuracy of MR analysis. Cochran’s Q test detects 
inconsistency in the effects of the IVs, and if the P-value 
corresponding to the Q statistic is less than 0.05, it indi-
cates significant heterogeneity. Additionally, to ensure 
that our results were not driven by extreme effects of 
individual SNPs, we performed a leave-one-out analysis 
[23]. In this analysis, we sequentially excluded each IV 
and recalculated the overall effect estimate. If the results 
changed significantly after excluding any SNP, it suggests 
that the SNP may have an undue influence on the find-
ings and warrants further careful consideration.

Statistical analysis
MR analysis and causal effect estimation were conducted 
using R (version 4.3.3) and two principal packages: 
“TwoSampleMR” (version 0.5.11) and “MendelianRan-
domization” (version 0.9.0). Continuous outcomes were 
reported with beta (β) values and 95% confidence inter-
vals (CIs), while binary outcomes were estimated using 
odds ratios (ORs) and 95% CIs, reflecting the risk alter-
ation in outcomes with each standard deviation (SD) 
increase in genetically predicted exposure. Stepwise 
regression was employed to select exposures and media-
tors with genuine effects [40]. The product of coefficients 
method (β1 × β2) was utilized for estimating indirect 
effects. The mediation proportion was calculated using 
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the formula (β1 × β2)/β, with standard errors and 95% CIs 
computed using the delta method.

Metabolic pathways involved in CSF metabolites
Extended analysis of CSF metabolites causally linked 
with LOAD (PIVW<0.05) was conducted using the online 
network tool, MetaboAnalyst 6.0  (   h t  t p s  : / / w  w w  . m e t a b o a 
n a l y s t . c a / M e t a b o A n a l y s t /     ) . MetaboAnalyst 6.0 is a pub-
licly available online tool that performs pathway analysis 
of metabolomics data based on the Kyoto Encyclopedia 
of Genes and Genomes (KEGG).

Results
Genetic instruments for exposures
For the 179 lipids, 4,512 instrumental variables were 
selected with a median F-statistic of 22.46 (ranging from 
18.80 to 1969.07). From the GWAS data of 338 CSF 
metabolites, 21,147 SNPs were selected with a median 
F-statistic of 22.27 (ranging from 19.29 to 904.75). For 
LOAD, used as the exposure, 38 SNPs were extracted 
with a median F-statistic of 50.23 (ranging from 30.23 to 
1569.32). For the replicated blood metabolites, 33 instru-
mental variables were selected with a median F-statistic 
of 19.33 (ranging from 17.13 to 69.86). All SNPs had an 
F-statistic greater than 10, which excludes the interfer-
ence from weak instrumental variables (Supplementary 
Tables S2-5).

Genetic causal relationship between lipids and LOAD
An initial two-sample MR analysis using the IVW method 
identified ten lipid species associated with LOAD, involv-
ing six categories: cholesterol, triglycerides (TG), phos-
phatidylcholine (PC), phosphatidylcholine ether (PCO), 
phosphatidylethanolamine (PE), and phosphatidylino-
sitol (PI) (Supplementary Table S6). After Bonferroni 

correction for multiple testing (P < 0.05/10 = 5.00 × 10− 3), 
as shown in Fig.  2, only Cholesterol (IVW OR = 0.989; 
95% CI 0.982–0.996; P = 3.14 × 10− 3) and PC (18:1_0:0) 
(IVW OR = 1.015; 95% CI 1.005–1.025; P = 2.82 × 10− 3) 
remained significant (Supplementary Table S6). Elevated 
levels of Cholesterol are associated with reduced risk of 
LOAD, whereas PC (18:1_0:0) demonstrates the oppo-
site effect. Additionally, sensitivity analyses indicated no 
evidence of pleiotropy or heterogeneity in these posi-
tive findings (Supplementary Table S7). In assessing the 
causal impact of LOAD on these lipids, we observed 
inverse causality for PC(O-16:0_22:5) (IVW OR = 0.602; 
95% CI 0.439–0.824; P = 1.55 × 10− 3) and PC(O-16:1_20:3) 
(IVW OR = 0.544; 95% CI 0.406–0.731; P = 5.18 × 10− 3) 
(Supplementary Table S8).

Mediated analysis of potential CSF metabolites
Following the analysis, we identified two positive find-
ings regarding the causal relationship between lipids 
and LOAD, which led us to further explore potential 
mediating effects using two-step MR analysis. Initially, 
MR analysis was performed between positive lipids and 
CSF metabolites  (Fig.  3). For Cholesterol as the expo-
sure, 27 causally linked CSF metabolites were identi-
fied, and for PC (18:1_0:0) as the exposure, 30 causally 
linked CSF metabolites were found (Supplementary 
Table S9). Subsequently, these findings were subjected to 
two-sample MR analysis with LOAD to confirm poten-
tial mediators  (Fig.  4). Ultimately, three CSF metabo-
lites were found to causally relate to LOAD. Elevated 
N-acetylthreonine (IVW OR = 1.024; 95% CI 1.007–1.041; 
P = 5.71 × 10− 3) was associated with increased LOAD risk, 
while increases in Citrulline (IVW OR = 0.978; 95% CI 
0.964–0.991; P = 1.48 × 10− 3) and N-acetylneuraminate 
(NeuAC, IVW OR = 0.974; 95% CI 0.954–0.995; P = 0.014) 
were associated with reduced risk (Supplementary Table 
S10). Subsequently, the indirect effects and mediation 
proportions mediated by CSF metabolites were calcu-
lated. It was found that for N-acetylthreonine and Citrul-
line, the directions of direct and indirect effects in the 
mediation pathway were inconsistent, making it impos-
sible to calculate mediation proportions. Overall, after a 
series of analyses, the mediation proportion of NeuAC 
was found to be 21.02% (3.25%, 45.50%) as shown in 
Table  2. All tests passed checks for pleiotropy and het-
erogeneity, as detailed in Supplementary Tables S11-12. 
Furthermore, the positive results showed no evidence of 
reverse causation (Supplementary Tables S13-14).

Replication-mediated effects in blood metabolites
Following the aforementioned methodology, we con-
ducted a mediation test for NeuAC in blood using a 
two-step MR analysis. We found no causal relationship 
between NeuAC in blood, lipid bodies, and LOAD with 

Fig. 2 Mendelian randomization analyses show causal effects between 
lipids on LOAD. PC, Phosphatidylcholine; PE, Phosphatidylethanolamine; 
PI, Phosphatidylinositol; TG, Triacylglycerol. The lipid species are named 
in the following notation: class name < sum of carbon atoms>:< sum of 
double bonds>;< sum of hydroxyl groups>. Acyl chains, “_”
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Fig. 3 Mendelian randomization analyses show causal effects between lipids on CSF metabolites. (a). Heatmap of cholesterol as exposure. (b). Heatmap 
of Phosphatidylcholine (18:1_0:0) as exposure
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Fig. 4 Mendelian randomization analyses show causal effects between CSF metabolites on LOAD. (a). The exposure comprises positive CSF metabolites 
identified using cholesterol as the exposure variable. (b). The exposure comprises positive CSF metabolites identified using PC (18:1_0:0) as the exposure 
variable
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the IVW method yielding P-values of 0.195 and 0.577, 
respectively (Table 3).

Metabolic pathway analysis
Further analysis using the IVW method on CSF metabo-
lites with a positive causal relationship with LOAD (Sup-
plementary Table S15) revealed 15 metabolic pathways 
potentially involved in the development and progression 
of LOAD. However, only the pathways “Valine, leucine, 
and isoleucine biosynthesis” (P = 1.86 × 10− 5), “Lysine 
degradation” (P = 1.22 × 10− 3), and “Valine, leucine and 
isoleucine degradation” (P = 2.85 × 10− 3) were considered 
significant (Fig. 5).

Discussion
We conducted a systematic two-sample and two-step 
MR study to explore the causal relationship between lip-
ids and LOAD, and to analyze the potential mediating 
role of CSF metabolites. Results indicated that increased 
levels of Cholesterol are associated with a reduced risk 
of LOAD, while PC (18:1_0:0) acts as a risk factor. The 
two-step MR analysis identified 27 and 30 CSF metabo-
lites causally linked with Cholesterol and PC (18:1_0:0) 
respectively. Subsequent validation suggested poten-
tial mediation by N-acetylthreonine, Citrulline, and 
N-acetylneuraminate. Only N-acetylthreonine was 

identified as a risk factor, while the other two metabolites 
were protective. However, only PC (18:1_0:0) was shown 
to increase LOAD risk, potentially through a reduction in 
CSF NeuAC levels, as indicated by directionality discrep-
ancies in IVW estimates. All mediation analyses excluded 
the possibility of reverse causation and showed no signs 
of horizontal pleiotropy or heterogeneity. Replication 
experiments in blood metabolites did not yield corre-
sponding positive results.

Cholesterol metabolism plays a significant role in the 
pathogenesis of LOAD, but the relationship between 
cholesterol levels and LOAD risk is complex and varies 
by cholesterol subtype. A study suggest that higher total 
cholesterol levels in midlife increase Alzheimer’s risk by 
contributing to amyloid-beta deposition and neurofibril-
lary tangle formation—the hallmark features of Alzheim-
er’s pathology [41]. Conversely, other studies indicate 
that higher cholesterol levels in later life might protect 
against cognitive decline [42, 43]. This inconsistency 
highlights the importance of considering cholesterol sub-
types separately. High-density lipoprotein cholesterol 
(HDL-C), known as “good cholesterol“ [44], facilitates 
reverse cholesterol transport and possesses anti-inflam-
matory and antioxidant properties that may confer neu-
roprotective effects. Higher HDL-C levels are associated 
with a reduced risk of cognitive decline and AD [45]. In 
contrast, low-density lipoprotein cholesterol (LDL-C), or 
“bad cholesterol,” when elevated, can lead to atheroscle-
rotic plaque formation, reducing cerebral blood flow and 
contributing to cognitive impairment. Elevated LDL-C 
levels are linked to an increased risk of AD; oxidized LDL 
induces inflammatory responses and oxidative stress, 
leading to neuronal damage and promoting amyloid-beta 
production [46]. Therefore, differentiating between cho-
lesterol subtypes is crucial for understanding their dis-
tinct roles in LOAD pathogenesis, and future research 
should focus on HDL-C and LDL-C separately to refine 
our understanding of lipid metabolism in LOAD.

Presently, research on PC in LOAD is sparse. Earlier 
studies reported reductions in three specific PCs in AD 
patients: 16:0/20:5, 16:0/22:6, and 18:0/22:6 [47]. PC, 
a type of 1,2-diacylglycerol phospholipid, is an essen-
tial component of cellular membranes and constitutes 

Table 2 The mediation effect of lipids on LOAD via CSF 
metabolites
Mediator Total 

effect
Step 1 
effect

Step 2 
effect

Mediated 
propor-
tion (%)

β (95% CI) β1 (95% 
CI)

β2 (95% 
CI)

(95% CI)

N-acetylthreonine -0.011(-
0.015, 
-0.007)

0.055(0.031, 
0.079)

0.023(0.015, 
0.032)

-

Citrulline 0.015(0.010, 
0.020)

0.060(0.032, 
0.088)

-0.023(-
0.030, 
-0.015)

-

N-acetylneuram-
inate

0.015(0.010, 
0.020)

-0.118(-
0.153, 
-0.082)

-0.026(-
0.037, 
-0.016)

21.02(3.25, 
45.50)

Total effect: The effect of lipids on LOAD, Step 1 effect: The effect of lipids on CSF 
metabolites, Step 1 effect: The effect of CSF metabolites on LOAD

Table 3 Detailed results of MR analysis for causal effects of lipids, blood metabolite and LOAD
Exposure Outcome Method Beta SE OR 95%CI P-value
PC(18:1_0:0) NeuAC

(copy)
IVW -0.050 0.038 0.951 0.882–1.026 0.195
Weighted median -0.044 0.055 0.957 0.859–1.066 0.427
MR Egger 0.038 0.104 1.038 0.847–1.273 0.721

NeuAC
(copy)

LOAD IVW -0.002 0.004 0.998 0.989–1.006 0.577
Weighted median -0.002 0.006 0.998 0.985–1.011 0.737
MR Egger -0.004 0.013 0.996 0.971–1.021 0.738

SE, standard error; OR, odds ratio; CI, confidence interval; IVW, Inverse variance weighted. The lipid species are named in the following notation: class name < sum of 
carbon atoms>:< sum of double bonds>;< sum of hydroxyl groups>. Acyl chains, “_”
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approximately 95% of the total choline compounds in 
most tissues [48, 49]. The findings of Luke Whiley and 
others show some deviations from our conclusions. 
This variance may be attributed to the diverse molecular 
forms of PC, which have different functions across path-
ways. Moreover, the small sample size of Whiley’s cohort 
may have amplified certain confounding factors, poten-
tially obscuring the true effects. Despite these challenges, 
we maintain that the outcomes predicted by genetic stud-
ies are reliable. However, further research is required to 
fully understand these mechanisms.

N-acetylneuraminate (also known as sialic acid), an 
acidic monosaccharide with a nine-carbon backbone, 
is a structural and functional component of brain gan-
gliosides [50]. It correlates with the content of DHA 
and total long-chain polyunsaturated fatty acids in the 
brain’s sphingolipid sites [51]. Genetic studies in mice 
and human diseases have demonstrated that ganglioside 
metabolism plays a crucial role in regulating neuronal 
excitability, axon-myelin interactions, axonal stability, 

and regeneration [51, 52]. Notably, the concentration 
of NeuAC in gangliosides varies significantly with age. 
While sialic acid levels rise rapidly early after birth, they 
plateau before the age of 50 and subsequently decline 
[53], a pattern that corresponds with the onset age and 
causes of LOAD. Additionally, NeuAC monomers can 
polymerize into polysialic acid, a major component of 
the neural cell adhesion molecule (NCAM) expressed on 
the surfaces of central nervous system (CNS) cells [54]. 
NCAM is critical in synaptogenesis, neuronal plasticity, 
and memory formation [55, 56]. This is consistent with 
our identification of NeuAC as a mediator in the protec-
tive effects within regulatory pathways. Despite its signif-
icance, NeuAC has been scarcely studied in the context 
of LOAD. Future research in this field may lead to the 
clinical application of NeuAC as a novel biomarker.

The presence of the blood-brain barrier and blood-
spinal cord barrier results in significant differences 
between the metabolite profiles of blood and cerebrospi-
nal fluid [57, 58], explaining the inability to replicate the 

Fig. 5 (a). Mendelian randomization analyses show causal effects between all positive CSF metabolites on LOAD. (b). Potential metabolic pathways as-
sociated with LOAD. Pathway analysis utilizing the “Kyoto Encyclopedia of Genes and Genomes” (KEGG) was conducted. The circles in the visualization 
are colored and sized based on their respective P-values (yellow indicating higher P-value and red indicating lower P-value) and pathway impact values 
(larger circles correspond to higher impact scores) derived from topological analysis
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NeuAC-mediated effects in blood metabolites. Further-
more, pathway analysis of cerebrospinal fluid metabo-
lites via KEGG identified three critical pathways related 
to LOAD, involving the metabolism of valine, leucine, 
isoleucine, and lysine. Leucine, isoleucine, and valine, 
as essential branched-chain amino acids (BCAAs), can-
not be synthesized in the body. However, nitrogen is 
transferred to α-ketoglutarate (αKG) via branched-chain 
amino acid transaminases 1 and 2 (BCAT 1/2), resulting 
in the production of glutamine and specific branched-
chain keto acids (BCKA). These keto acids are then 
metabolized by the branched-chain α-keto acid dehydro-
genase complex to produce branched-chain acyl-CoA 
(R-CoA), which are ultimately metabolized into the tri-
carboxylic acid cycle intermediates acetyl-CoA and suc-
cinyl-CoA [59]. Many enzymes acting on these amino 
acids utilize all BCAAs as substrates, thereby similarly 
influencing the levels of all BCAAs. This reflects the simi-
lar chemical properties and metabolism of BCAAs [60]. 
Glutamate, an important excitatory neurotransmitter in 
the brain, is synthesized in astrocytes surrounding neu-
rons, with BCAAs, particularly leucine, playing a crucial 
role. Leucine enters the brain from the bloodstream more 
rapidly than other amino acids and contributes approxi-
mately 25% of all α-amino groups to glutamate synthe-
sis [60]. Overall, the cerebrospinal fluid metabolites 
obtained via the two-step MR approach play a crucial 
role in the pathophysiological pathways of LOAD.

The strength of this study lies in the utilization of the 
most recent and comprehensive GWAS data for expo-
sure and outcome variables, with no overlapping sam-
ples. Rigorous selection criteria were applied to exclude 
confounding and weak genetic instruments, enhancing 
the robustness and reliability of our results through sys-
tematic MR analysis and sensitivity testing. The diversity 
of the study cohort, encompassing multiple ethnicities, 
lends generalizability to our findings. Additionally, the 
direct contact between cerebrospinal fluid and the brain’s 
extracellular space allows its metabolites to reflect the 
brain’s pathophysiological conditions [61], which is cru-
cial for early diagnosis and treatment of diseases. None-
theless, this study has limitations. The primary limitation 
of our study is the relatively small sample size of the 
CSF metabolite GWAS cohort (n = 291). A smaller sam-
ple size may reduce the statistical power to detect true 
causal associations and increases the risk of both type I 
and type II errors, potentially affecting the reliability and 
generalizability of our results. Despite this, we believe 
that our findings provide valuable preliminary insights 
into the potential mediating role of CSF metabolites in 
the relationship between lipids and LOAD. To mitigate 
the impact of the small sample size, we employed rigor-
ous two-sample MR methods and conducted extensive 
sensitivity analyses to enhance the robustness of our 

results. We also ensured that the instrumental variables 
used were strong and valid by applying stringent selec-
tion criteria and quality control measures. However, we 
acknowledge that future studies with larger and more 
diverse cohorts are necessary to validate our findings, 
improve their generalizability, and fully elucidate the 
underlying biological mechanisms. Replication of our 
results in larger samples will strengthen the evidence for 
the causal relationships identified and may facilitate the 
development of potential biomarkers for early diagnosis 
and intervention in LOAD, thereby enhancing the valid-
ity and applicability of the results to broader populations.

Finally, MR analysis has only revealed genetic causality. 
The role of PC (18:1_0:0) as a lipid mediator in the associ-
ation with LOAD still requires further validation through 
experimental and clinical data.

Conclusions
Our study is the first to reveal causal relationships 
between certain lipids and CSF metabolites and LOAD. 
Building on this, we also established that CSF metabo-
lites mediate the relationship between lipids and LOAD. 
These findings suggest potential biomarkers for diagnos-
ing and preventing the disease. Going forward, we advo-
cate for further in vivo and in vitro experimental studies 
in this field to explore the causality, mechanisms, and 
therapeutic potential of these findings.
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