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Abstract 

Background  Cardiac arrest presents a variety of causes and complexities, making it challenging to develop targeted 
treatment plans. Often, the original data are either inadequate or lack essential patient information. In this study, 
we introduce an intelligent system for diagnosing and treating in-hospital cardiac arrest (IHCA), aimed at improving 
the success rate of cardiopulmonary resuscitation and restoring spontaneous circulation.

Methods  To compensate for insufficient or incomplete data, a hybrid mega trend diffusion method was used 
to generate virtual samples, enhancing system performance. The core of the system is a modified episodic deep 
reinforcement learning module, which facilitates the diagnosis and treatment process while improving sample 
efficiency. Uncertainty analysis was performed using Monte Carlo simulations, and dependencies between different 
parameters were assessed using regular vine copula. The system’s effectiveness was evaluated using ten years of data 
from Utstein-style IHCA registries across seven hospitals in China’s Hebei Province.

Results  The system demonstrated improved performance compared to other models, particularly in scenarios 
with inadequate data or missing patient information. The average reward scores in two key stages increased by 2.3–9 
and 9.9–23, respectively.

Conclusions  The intelligent diagnosis and treatment effectively addresses IHCA, providing reliable diagnosis 
and treatment plans in IHCA scenarios. Moreover, it can effectively induce cardiopulmonary resuscitation and res-
toration of spontaneous circulation processes even when original data are insufficient or basic patient information 
is missing.

Keywords  In-hospital cardiac arrest, Intelligent diagnosis and treatment system, Hybrid mega trend diffusion, 
Modified episodic deep reinforcement learning, Uncertainty analysis

Background
Cardiac arrest (CA) is a common critical occurrence 
in the emergency room and has become a significant 
public health concern due to its high mortality rate [1]. 
CA management involves cardiopulmonary resuscita-
tion (CPR) and restoration of spontaneous circulation 
(ROSC). CA can be divided into two types based on 
the patient’s hospitalization status at onset: in-hospi-
tal CA (IHCA) and out-of-hospital CA (OHCA). The 
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pathogenesis of the two types of CA is essentially the 
same, and different treatments are sometimes used 
only because of the availability of medical equipment 
in different settings. Rapid diagnosis and treatment are 
required to treat CA; however, basic patient informa-
tion is usually insufficient or missing. Currently, CA 
treatment relies mainly on the subjective experience 
of doctors, which can result in misdiagnosis [2]. To 
improve CA treatment, many researchers have ana-
lyzed and studied it in various ways, providing impor-
tant references for CA treatment development. 

Abrams et al. [3] and Kumar et al. [4] used extracorpor-
eal CPR to replace traditional CPR for IHCA treatment 
and found that it effectively improved survival rates. 
Girotra et  al. [5] proposed post-resuscitation care for 
IHCA and achieved good results. Neurological complica-
tions of IHCA [6], induced consciousness cure methods 
[7], and airway management methods [8] have also been 
reported. These CA diagnosis and treatment methods 
have many advantages; however, they all depend on the 
subjective experience of doctors, which can easily lead to 
misdiagnoses.

Artificial intelligence (AI) development and the com-
bination of AI elements with medical research have 
received increased attention from many researchers [9] 
for applications such as drug design [10], cardiovascular 
medicine [11], and cancer research [12]. Compared to 
traditional methods, AI technology can treat and diag-
nose complex diseases more objectively. Therefore, apply-
ing AI technology for IHCA can produce more rapid and 
accurate diagnosis and treatment results [13]. Previous 
studies have used AI methods to analyze CA from vari-
ous perspectives. However, current research focuses on 
the analysis [14], summary [15], and discussion of rele-
vant data [16, 17], and few researchers have considered 
how to improve and innovate CA treatments. Therefore, 
the development of improved treatment methods for CA 
is a priority.

Relative to other AI methods, deep reinforcement 
learning (DRL) combines the strong sequential decision-
making ability of reinforcement learning (RL) with the 
superior perception ability of deep learning (DL) [18, 
19] and uses a statistical model that can more effec-
tively complete CA’s dynamic diagnosis and treatment 
process. However, there are three major obstacles to 
using DRL for diagnosis and treatment. First, training 
a well-performing DRL model requires large amounts 
of original data. When a trained model is used for diag-
nosis, complete basic patient information is required to 
obtain accurate results. However, it is often impossible to 
obtain sufficient original data to complete model train-
ing. Furthermore, owing to the abrupt nature of IHCA, 

interventions must often be initiated before complete 
data are available.

Virtual sample technology provides an effective 
method of solving these problems. The most popular vir-
tual sample technology is mega trend diffusion (MTD); 
however, it describes all data with only one type of distri-
bution, which is too simple to reflect the characteristics 
of the data accurately [20]. Dong et al. [21] used a double-
distribution MTD to generate virtual samples; that is, a 
uniform distribution was used to describe the original 
sample interval, and a triangular distribution was used 
to describe the virtual sample interval, further improv-
ing performance. However, the virtual sample interval is 
complex; hence, further division is required.

Second, DRL is commonly applied to virtual rather 
than real-world tasks because of its low sample efficiency. 
Therefore, solving the problem of low sample efficiency is 
key to completing diagnosis and treatment system mod-
eling with DRL [22]. The traditional method for improv-
ing sample efficiency is to use episodic memory to build 
an episodic DRL. Min et  al. [23] and Nishio et  al. [24] 
proposed a model-free episodic control and neural epi-
sodic control (two episodic DRL models) to remember 
the best decision information, which can assist the agent 
in choosing the best action faster and reduce the required 
sample numbers. The former has a fast update speed but 
insufficient stability, whereas the latter has good stability 
but a slow speed. Hence, the proposed modified episodic 
DRL model combines the advantages of fast update speed 
and good stability, significantly improving the results.

Third, strong uncertainty regarding IHCA treatment 
is likely due to the numerous causes and complexities of 
IHCA. Hence, a reasonable uncertainty analysis of diag-
nosis and treatment processes is essential. The Monte 
Carlo simulation (MCS) is a commonly used method. 
Many basic parameters should be considered, such as the 
initial heart rhythm, systolic pressure, and body tempera-
ture. Parameters do not exist alone; therefore, it is neces-
sary to consider their interdependence. The regular vine 
copula (RVC) is the most effective method for construct-
ing dependencies among complex high-dimensional 
parameters [25]. Hence, MCS and RVC should be com-
bined to generate more accurate analysis results.

In this study, an intelligent DRL-based diagnosis and 
treatment system for IHCA was developed using the 
Utstein style. According to the registration content of 
IHCA under the Utstein mode, a hybrid MTD (HMTD) 
was used to construct a virtual sample to improve the 
system performance when original data were insufficient 
or basic patient information was missing. Subsequently, 
the modified episodic DRL (MEDRL) was used to 
develop an intelligent diagnosis and treatment system for 
CPR and ROSC based on the basic situation of different 
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cases during IHCA to maximize CPR success rates and 
maintain optimal blood pressure during ROSC. The sam-
ple efficiency was effectively promoted by improving 
the episodic memory-updating method and experience 
replay memory. Furthermore, uncertainty analysis was 
conducted using MCS, and the dependency between the 
uncertainty analyses of different parameters was deter-
mined using RVC. To the best of our knowledge, this is 
the first study to build an intelligent diagnosis and treat-
ment system for IHCA and to use AI to complete a spe-
cific treatment.

Methods
Data sources
Data were obtained from the IHCA and CPR registra-
tion networks of the emergency intelligence platform 
of the China Hebei Emergency Technology Innovation 
Center (ETIC). Ten years of data from seven hospitals 
were included in this study. Registry data collection was 
based on the Utstein mode of the IHCA and CPR regis-
tration forms, which mainly included the annual number 
of emergency department visits, general condition, con-
ditions during IHCA and CPR, ROSC, ROSC to hospital-
ization, hospitalization to discharge, and follow-up after 
discharge. The study was approved by the China Hebei 
ETIC, Hebei, China (approval number: 20221015). Writ-
ten informed consent was obtained from all patients.

Hybrid mega trend diffusion (HMTD)
The basic structure of an HMTD is illustrated in Fig. 1, 
where [L, R] denotes the original sample interval. Using 
basic MTD principles and original data, the extended 
sample intervals [A, L] and [R, B] are estimated, ena-
bling virtual sample calculation. The basic MTD prin-
ciples and the virtual sample generation process have 

been described in previous studies [21, 26]. This section 
focuses on using different distributions to complete the 
sample extension based on traditional MTD. Virtual 
samples can be generated in the original sample inter-
val ([L, R], called interval 1) and in two sample expan-
sion intervals ([A, L] and [R, B], called intervals 2 and 
3, respectively). For a traditional MTD, virtual samples 
in all three intervals are assumed to follow a normal 
distribution. In HMTD, a normal distribution is still 
used for interval 1 due to the numerous original sam-
ples in this region. Compared with the newly generated 
virtual samples, the original samples account for the 
majority; thus, it is assumed they conform to a normal 
distribution. In the two extended intervals, where the 
area of interval 1 is larger than that of interval 2, a uni-
form distribution is used for interval 1, while a triangu-
lar distribution is used for interval 2. Thus, HMTD uses 
appropriate distributions to describe different intervals 
based on their respective characteristics, effectively 
avoiding imbalanced distribution and inaccurate fea-
ture characterization of samples.

where Cen is the sample set center point, v2 is the vari-
ance, SA and SB are the number of samples smaller and 
greater than Cen , respectively; SkewA and SkewB are the 
left and right diffusion skewness, respectively.

The MEDRL diagnosis and intelligent treatment system
Agent, environment, state, action, and reward are the 
five key elements of DRL. Each time, the agent receives 
the current state information ( st ) from the environ-
ment and chooses and executes the optimal action 
( at ). There is a reward ( rt ) response from the environ-
ment to the agent, and the environment transitions 
to the next state ( st+1 ). Therefore, a DRL sample is 
Samplet = (st , at , rt , st+1) . [27] To solve the problem of 
low sample efficiency in DRL, an MEDRL model that 
combines the advantages of fast update speed and good 
stability is proposed in this section. This is achieved by 
improving the episodic memory-updating method and 
experience replay memory.

(1)A =

{

Cen+ SkewA ·

√

−2 · v2

SAIn(10−20)
A < L

L A > L

(2)B =

{

Cen+ SkewB ·

√

−2 · v2

SBIn(10−20)
B > R

R B < R

(3)
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SB
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Fig. 1  Structure diagram of hybrid mega trend diffusion. Where 
Cen is the sample set center point, v2 is the variance, SA and SB are 
the number of samples smaller and greater than Cen , respectively; 
SkewA and SkewB are the left and right diffusion skewness, 
respectively
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Experience replay memory
In traditional DRL, only one experience replay memory 
(ERM) is used. To achieve better memory performance, 
a peak-end rule was introduced by applying two ERMs. 
One is the same as the traditional ERM, and another, 
called “Highmemory,” is used only to store episodes in 
which the reward exceeds the previous best. Although 
these two ERMs offer better sample efficiency than tra-
ditional methods, there remains a problem of insufficient 
sample diversity. [28]

In this study, we propose a percentile optimum ERM 
(POERM) to replace Highmemory. During the operation, 
a dynamic episode storage method is used; that is, when 
each episode ends, all the episode data are stored in the 
POERM if the total episode rewards Ret were equal to 
or greater than the threshold value ( Rth ). The threshold 
value can be generated as follows:

The total episode rewards and dynamic threshold val-
ues are calculated at the end of each episode as follows:

where rt is the reward at each time point, Rp is the total 
reward sequence of the last K episodes, and ypercen is 
the percentile that constantly changes with the training 
progress. The larger the ypercen , the greater the Rth , but 
the worse the sample diversity. To ensure both stability 
and diversity, the initial ypercen value was set to 75% and 
gradually increased (Fig. 2). This process increases sam-
ple diversity while ensuring stability.

During training, the following method was used to 
sample episode data from the two ERMs:

(4)Ret =

N
∑

t=1

rt

(5)Rth = f (Rp, ypercen)

(6)

Sample =

{

[SERM
(

(1− α) ∗ y
)

, Spercen(α ∗ y)], if p < pth
SERM

(

y
)

, otherwise

where y is the amount of the sample, α ∈ [0, 1] is 
the proportion sampled from the two ERMs, and 
SERM

(

(1− α) ∗ y
)

 and Spercen
(

α ∗ y
)

 denote that there are 
⌊

(1− α) ∗ y
⌋

 and 
⌊

α ∗ y
⌋

 samples randomly sampled from 
the two ERMs.p is the triggering probability between 
the traditional and two ERMs models. Only when p is 
smaller than the threshold ( pth ) will the two ERM model 
be triggered.

Episodic memory updating
The episodic value Qn

Ep of all state-action pairs can be cal-
culated as follows:

where N is the length of episode, γj−1 is the discount rate, 
which ∈ [0, 1].

If the state-action pair of the new episodic value Qn
Ep 

is not stored in the ERM, it will be added directly. If the 
state-action pair already exists, then the newly calculated 
episodic value ( Qn

Ep(sj, aj) ) and the original episodic value 
( QEp(sj, aj) ) will be compared. If Qn

Ep(sj, aj)>QE(st, at) , the 
episodic memory will be updated, and Qn

Ep(sj, aj) replaces 
the original value to be stored.

The above method can improve episodic memory-
updating speed; however, it may lack stability when the 
updating speed is too high. To solve this, we ameliorated 
the updating mode, which can be expressed as:

Stable updating can be effectively achieved by control-
ling the learning rate, β.

In some complex cases, the agent requires considerable 
time to complete the full-episode interaction; therefore, 
the update frequency is low, and the QEp(sj, aj) has poor 
timeliness. We use the k-step estimation method, which 
uses the K step estimated value to replace the Qn

Ep(sj, aj) 
in (8) when the number of steps that the agent needs to 
perform in each episode is greater than K:

where Qt(st+K ,µ′) is the weighted sum of the output 
value Q(st+K ,µ′|θ

T ) from the DQN target network and 
QEp(st,µ′) from episodic memory:

where ε ∈ [0,1].

(7)Qn
Ep(sj , aj) =

N
∑

j=1

γ j−1rj

(8)
QEp(sj, aj) = QEp(sj, aj)+ β(Qn

Ep(sj, aj)−QEp(sj, aj))

(9)Qnew
EP (st , at) =

K
∑

l=1

γ j−1rl + γ Kmax
µ′

Qt(st+K ,µ′)

(10)

Qt(st+K ,µ′) =

{

Q(st+K ,µ′|θ
T ), if (st+K ,µ′) /∈ QEp

εQ
(

st+K ,µ′|θ
T
)

+ (1− ε)QEp(st ,µ′), otherwise

Fig. 2  Dynamic percentile changing diagram
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Finally, the modified episodic memory updating man-
ner was:

where Qnew
EP (st , at) can be get through (9) and (10).

Diagnosis and intelligent treatment system
The basic structure of the intelligent diagnosis and treat-
ment system is illustrated in Fig. 3.

For Stage 1, the treatment time was set to 60 min, and 
the time step was set to 2 min. During this interval, DRL 
assesses the current state, executes the corresponding 
action, and transfers the action to the next state. The 
state space of Stage 1 was the systolic pressure value at 
time t, and the action space included chest compressions, 
adrenaline (epinephrine) injections, electrical defibrilla-
tion, and initiation or termination of tracheal intubation. 
Under certain basic conditions (age, sex, IHCA causes, 
initial heart rhythm, and presence of an underlying dis-
ease), an intelligent diagnosis and treatment system was 
used to establish a stepwise diagnosis and treatment. If 
the basic patient information is insufficient or missing at 
this stage, with scarce information as input, the training 
process of the system can still be achieved through the 

(11)
QE(st , at) =

{

Qnew
EP (st , at), if (st , at) /∈ QE

QEP(st , at)+ β(Qnew
EP (st , at)− QPE(st , at)), ifQ

new
EP (st , at) > QEP(st , at)

strong perceptual ability and robustness of the deep neu-
ral network. Successful resuscitation cases in the data 

were used as the standard treatment method in the same 
situation, and the similarities between the treatment plan 
proposed by the intelligent diagnosis and treatment sys-
tem and the standard treatment method were compared. 
The following four comparisons were made: (1) whether 
chest compression was performed, (2) whether adrena-
line was injected and the dose was consistent, (3) whether 
electric defibrillation was performed, and (4) whether 
tracheal intubation was performed. The reward was 100 
for consistency and 0 for inconsistency. The reward was 
counted for 60 min throughout the resuscitation process. 
The objective function of Stage 1 is to achieve a systolic 
pressure greater than zero. When the systolic pressure 
was greater than zero, the CPR process was considered 
successful, and Stage 2 was initiated. Resuscitation was 
considered to have failed if the systolic pressure remained 
at zero until the end of the treatment period (60 min).

For Stage 2, the treatment time was set to 24 h, and 
the time step was set to 30  min. During this inter-
val, DRL assesses the current state, executes the 

Fig. 3  Basic structure of the intelligent diagnosis and treatment system
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corresponding action, and transfers the action to the 
next state. The state space of Stage 2 was also the sys-
tolic pressure value at time t, and the action space 
included normal saline infusion, noradrenaline infu-
sion, levosimendan infusion, and blood gas analysis. 
Using 90  mmHg as the standard systolic blood pres-
sure, the objective function of Stage 2 was to achieve a 
systolic pressure of 90 mmHg, and the allowable error 
was ± 10  mmHg. From the onset of ROSC and under 
certain basic conditions (such as age, sex, partial pres-
sure of carbon dioxide, initial systolic pressure, initial 
body temperature, and presence of an underlying dis-
ease), an intelligent diagnosis and treatment system 
was used to establish stepwise diagnosis and treatment, 
and the reward (R) for each step was obtained accord-
ing to the reference data as follows:

where T is a constant, and X is the systolic pressure at 
the current moment. When X ≤ 90, the closer the sys-
tolic pressure to the standard value, the larger the reward. 
When X > 90, the rewardwas maintained at T.

If the patient’s basic information was insufficient or 
missing at this stage, the solution would be the same as 
in Stage 1.

The constraints of both stages include:

where fc is the frequency of chest compressions, He is 
a single dose of adrenaline injection,Ie is the interval 
between adrenaline injections, ID is the interval between 
electrical defibrillations, Hs is the total dose of normal 
saline infusion, HN is a single dose of noradrenaline infu-
sion, HL is a single dose of levosimendan infusion, and Ib 
is the interval for blood gas analysis.

(12)R =

{

T − |X−90| X ≤ 90
T X > 90

(13)100/min ≤ fc ≤ 120/min,

(14)0.5mg ≤ He ≤ 1mg,

(15)2min ≤ Ie ≤ 10min,

(16)ID ≥ 2 min,

(17)Hs ≤ 800mL,

(18)0.1µg/kg/min ≤ HN ≤ 2mg/kg/min,

(19)0.05µg/kg/min ≤ HL ≤ 2mg/kg/min,

(20)0.5hour ≤ Ib ≤ 5hour,

Uncertainty analysis
The strong uncertainty associated with IHCA treatment 
likely results from its numerous causes and complexi-
ties. To address this, stochastic scenarios were gener-
ated using MCS to analyze the uncertainties, and RVC 
was used to construct dependencies among all basic 
parameters.

The stochastic scenario generation method has been 
described in previous studies [29, 30]. To minimize the 
uncertainty of the diagnosis and treatment processes, 
two action spaces were used to derive a finite set of sce-
narios (M) for each time period through MCS. Each 
scenario denoted as ωi ∈ M, comprises variables with 
uncertainties.

where Aω
1 (t) and Aω

2 (t) are action spaces of Stages 1 and 
2, respectively (the detailed description is included in 
the DRL intelligent diagnosis and treatment system sec-
tion). The marginal probability density function (MPDF) 
of each scenario was calculated using a Gaussian mixture 
model. [31]

where H ( · ) is the Gaussian mixture function, and θI is 
the parameter set of each scenario.

After the MPDF was generated, the dependence struc-
tures of all basic parameters were constructed using 
RVC. The joint PDF of all the basic parameters was cal-
culated as follows:

The RVC modeling process mainly contains two parts: 
[32]

1.	 Selecting the suitable regular vine structure and 
determining the set of all edges.

2.	 Choosing a criterion to select the best goodness-of-
fit binary copula module for each edge and optimiz-
ing its parameters.

The Akaike information criterion was chosen for the 
goodness-of-fit in this study. After generating the MPDF 
through MCS and constructing the dependency struc-
tures using RVC, the joint PDF was obtained by combin-
ing both, yielding the uncertainty analysis results.

Statistical analysis
All statistical analyses were performed using SPSS ver-
sion 25.0 (IBM Corp., Armonk, NY, USA). The data used 

(21)ωi =
{

A
ωi
1 (t), A

ωi
2 (t)

}

(22)
P(ωi) = {P(ω1), P(ω2), · · · , P(ωn)}

T = H(ωi|θi)

(23)P = C(P(ω1), P(ω2), · · · , P(ωn))
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for each experiment were randomly selected, and the 
results were obtained by repeatedly calculating the aver-
age values under the same circumstances. The Mann–
Whitney U test was used to compare differences between 
groups. Data are presented as skewed distributions or 
numbers (%) depending on the data distribution. Statisti-
cal significance was set at a p-value of less than 0.05.

Results
Patients’ basic characteristics
Data from the IHCA and CPR registration networks of 
the ETIC were used as treatment references, and basic 

information regarding the CPR and ROSC treatments are 
presented in Tables 1 and 2, respectively.

As shown in Table 1, younger patients had a lower inci-
dence of underlying diseases and a higher incidence of 
successful resuscitation. The probability of IHCA occur-
rence was much greater in men than in women, and the 
probability of cardiogenic IHCA was higher than that of 
non-cardiac IHCA. The earlier the four main treatment 
modalities began (chest compressions, adrenaline injec-
tion, electric defibrillation, and tracheal intubation), the 
greater the chance of resuscitation. Among the airway 
management strategies, there was no notable difference 

Table 1  Basic parameters of the resuscitation process

a Parameters such as age, a single dose of adrenaline, and cardiopulmonary resuscitation start time are presented as skewed distributions M ( P25 , P75 ), where M is the 
median and P25 and P75 are both quartiles
b Other parameters such as sex, causes of cardiac arrest, and defibrillation are presented as numbers (n) and percentages (%)
c The level of statistical significance was set at p < 0.05

Parameter Total (n = 7,790) Resuscitation success 
(n = 1,350)

Resuscitation failure 
(n = 6,440)

p-valuec

Agea, years 66 (55, 77) 65 (55, 76) 67 (56, 77) 0.03

Sexb (n, %)

 Male 5350 (68.68) 990 (73.33) 4360 (67.70) 0.025

 Female 2440 (31.32) 360 (26.67) 2080 (32.30) 0.025

Causes of IHCAb (n, %)

Cardiogenic 3550 (45.57) 390 (28.89) 3160 (49.07) < 0.01

Non-cardiac 2720 (34.92) 550 (40.74) 2170 (33.70) < 0.01

Unknown 1520 (19.51) 410 (30.37) 1110 (17.23) < 0.01

Initial rhythm of the heart (n, %)

Asystole 2850 (36.59) 430 (31.58) 2420 (37.58) 0.025

Pulseless electrical activity 920 (11.81) 120 (8.89) 800 (12.42) 0.32

Ventricular fibrillation 430 (5.52) 80 (5.93) 350 (5.43) 0.02

Pulseless ventricular tachycardia 100 (1.28) 20 (1.48) 80 (1.24) 0.04

Bradycardia 650 (8.34) 190 (14.07) 460 (7.14) 0.01

Unknown 2840 (36.46) 510 (37.78) 2330 (36.18) 0.03

Chest compression start time (min) 0.5 (0, 1.5) 0.5 (0, 1) 1 (0, 2) 0.01

Chest compression total duration (min) 30 (8, 70) 12 (5, 25) 50 (27, 79) 0.01

Airway management start time (min) 15 (10, 25) 8 (5, 17) 20 (12, 30) 0.01

Airway management strategies (n, %)

Endotracheal intubation 5200 (66.75) 895 (66.30) 4305 (66.85) < 0.01

Cuffed oropharyngeal airway 90 (1.16) 20 (1.48) 70 (1.09) < 0.01

Supraglottic airway 10 (0.13) 0 (0.00) 10 (0.16) < 0.01

Tracheotomy 110 (1.41) 30 (2.22) 80 (1.24) 0.63

Mask 230 (2.95) 35 (2.59) 195 (3.02) 0.01

No advanced airway 2150 (27.60) 370 (27.41) 1780 (27.64) 0.04

CPR total durationa (min) 47.00 (23.00, 80.00) 15.00 (8.00, 30.00) 55.00 (30.00, 86.25) < 0.01

Time to first administration of adrenaline (s) 87.00 (20.00, 759.50) 54.00 (16.00, 296.50) 100 (21.00, 864.00) 0.01

Single dose of adrenaline injectiona (mg) 9.00 (2.00, 20.00) 3.00 (1.00, 6.00) 10.00 (4.00, 20.00) < 0.01

Number of adrenaline injections (n) 15 (7, 25) 5 (3, 10) 17 (10, 28) 0.01

Number of electric defibrillationb (n) 6 (2, 10) 3 (1, 5) 5 (3, 10) < 0.01

Electric defibrillations start time (min) 0.5 (0, 2) 0.5 (0, 1.5) 1 (0, 2) 0.01
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in successful resuscitation rates between patients with 
tracheal intubation and those with masks. The total dura-
tion of CPR was shorter, and the total dose of adrenaline 
was lower in the successful resuscitation group than in 
the death group, which is generally consistent with the 
actual clinical results.

Table  2 shows that age, sex, and IHCA cause had no 
significant effects on the success of ROSC; however, body 
temperature, systolic pressure, and respiratory conditions 
did. An increase in the body temperature of the patient 
after resuscitation indicated that the degree of brain 
injury was serious. Even if resuscitation was success-
ful, maintaining circulatory stability remained difficult, 
which occasionally led to ROSC failure.

Based on the analysis of Tables 1 and 2, three different 
models (DRL-MCS, RL-MCS, and DRL without MCS) 
were used for the intelligent diagnosis and treatment of 
IHCA.

Performance evaluation of the MEDRL model
The MEDRL is used to improve sample efficiency by ame-
liorating episodic memory-updating and ERM. To dem-
onstrate this superiority, two benchmark models—EDRL 
and traditional DRL (without episodic memory)—and a 
novel model—multiple episodic memory DRL (Multi-
EMDRL)—were used. [33] A comparison of the results is 
shown in Figs. 4 and 5 and Table 3. A model with higher 
sample efficiency means that, under the same training 
conditions, it can obtain the same reward using fewer 
samples or obtain a higher score using the same sample.

We randomly chose three games from the OpenAI 
Gym to test the performance of the three different mod-
els. To increase the accuracy of the comparison, each 
game was run 10 times, and the average reward was cal-
culated (Fig. 4, Table 3). We found that, compared with 
two benchmark models, the proposed MEDRL could 
obtain the highest reward using the same number of sam-
ples. As a novel six-layer hybrid model, the MEMDRL 
model obtains results almost equivalent to those of the 
proposed model. However, the Multi-MEDRL has a more 
complex structure (with three episodic memory mod-
ules), and thus, the sample efficiency of Multi-MEDRL is 
poor.

Furthermore, the comparison result of the game “Pong” 
is shown in Fig.  5. This shows that to achieve the same 
reward, MEDRL needed only 4.5 million frames, whereas 
EDRL and DRL needed 8.75 and 9.5 million frames, 
respectively. The novel Multi-MEDRL model, owing to 
its complex structure, needs 9.75 million frames.

Diagnosis and treatment performance of different models
To verify the effectiveness of the MEDRL-MCS-RVC 
model, three other models were used for comparison 
and verification: MEDRL-MCS (without dependency), 
MEDRL (without uncertainty analysis), and mixed-inte-
ger nonlinear programming (MINLP).

The two-stage treatment total reward for a randomly 
selected case from each of the seven hospitals under the 
different models is shown in Figs. 6 and 7. The figures 
show that the first stage of the treatment process (CPR 

Table 2  Basic information of the ROSC treatment process

ROSC restoration of spontaneous circulation

Parameter Total (n = 1350) ROSC success (n = 230) ROSC failure (n = 1120) p-value

Age, years 65 (55, 76) 63 (54, 75) 67 (57, 77) 0.01

Sex (n, %)

 Male 990 (73.33) 157 (68.26) 833 (74.38) < 0.01

 Female 360 (26.67) 73 (31.74) 287 (25.62) < 0.01

Initial systolic pressure (mmHg) 75 (50, 90) 75 (60, 95) 70 (50, 80) 0.01

Initial body temperature 37.3 (36.0, 39.0) 37.0 (36.2, 39.0) 37.5 (36.0, 39.1) 0.04

Partial pressure of carbon dioxide (mmHg) 50 (38, 75) 45 (35, 60) 55 (50, 80) 0.03

Finger pulse oxygen (%) 98 (93, 100) 99 (95, 100) 95 (90, 96) 0.01

Underlying disease (n, %)

No underlying disease 128 (9.48) 61 (26.52) 67 (5.98) < 0.01

Single underlying disease 506 (37.48) 57 (24.78) 449 (40.09) 0.03

More than one underlying disease 395 (29.26) 49 (21.31) 346 (30.89) < 0.01

Unknown 321 (23.78) 63 (27.39) 258 (23.04) 0.025

Volume of normal saline infusion (mL) 2000 (1000, 3000) 2500 (1000, 3500) 1500 (1000, 2000) < 0.01

Noradrenaline infusion pump speed (μg/kg/min) 0.5 (0.1, 1.5) 0.3 (0, 1.2) 0.8 (0.5, 1.7) 0.32

Levosimendan infusion pump speed (μg/kg/min) 0.1 (0, 0.16) 0.09 (0, 0.15) 0.12 (0, 0.18) 0.02

Interval for blood gas analysis (hour) 1 (0.5, 2) 1.5 (1, 2.5) 1 (0.5, 1.5) 0.01
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stage) involved relatively simple treatment modalities 
and a short duration, and the total reward gap between 
the different models was small. In the second stage 
of the treatment process (the ROSC stage), the total 
reward gap between the different models was large.

Fig. 4  Performance of different models on three randomly selected games. DRL deep reinforcement learning, EDRL episodic deep reinforcement 
learning, MEDRL modified episodic deep reinforcement learning

Fig. 5  Comparison of different models’ sample efficiency 
on the game “Pong”. DRL deep reinforcement learning, EDRL episodic 
deep reinforcement learning, MEDRL modified episodic deep 
reinforcement learning

Table 3  Reward comparison of the different models on different 
games

DRL deep reinforcement learning, EDRL episodic deep reinforcement learning, 
MEDRL modified episodic deep reinforcement learning, Multi-MEDRL multiple 
episodic memory deep reinforcement learning

Game MEDRL EDRL Traditional DRL Multi-MEDRL

Hero 13,533 8955.5 4868.7 13,627

Qbert 9538.2 5867.6 3885.3 9539.6

Pong 21 20.8 20.6 21
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In both the first and second stages, the proposed 
MEDRL-MCS-RVC model obtained a higher total 
reward, thereby achieving the best treatment effect. 
Although the MINLP is the one of the best physical mod-
els, it inevitably produces large scheduling errors and 
its permanence is the worst in both the first and second 
stages. Compared with the MINLP model, the MEDRL-
MCS-RVC, MEDRL-MCS, and MEDRL-MCS models are 
all statistical models, which can get better results. Com-
pared with using only MEDRL, uncertainty analysis can 
reduce errors during diagnosis and treatment. Moreo-
ver, RVC effectively implements uncertainty analysis 

by establishing dependencies between different basic 
parameters. Both factors effectively enhanced the accu-
racy of the treatment process. For further comparison 
of the performances of the three models, the mean and 
median values of the rewards of the seven hospitals are 
listed in Table 4, which shows that the DRL-MCS model 
proposed in this study achieved the best results.

Performance evaluation of HMTD
The HMTD is used to construct virtual samples to 
improve system performance when the original data are 
insufficient or basic patient information is missing. To 

Fig. 6  Comparative results of the different models of stage 1. DRL deep reinforcement learning, MCS Monte Carlo simulation, RL reinforcement 
learning

Fig. 7  Comparative results of the different models of stage 2. DRL deep reinforcement learning, MCS Monte Carlo simulation, RL reinforcement 
learning
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verify the effectiveness of the proposed model (MEDRL-
MCS-RVC-HMTD), we used three comparative models: 
MEDRL-MCS-RVC-multi distribution mega trend dif-
fusion (MEDRL-MCS-RVC-MDMTD, MDMTD uses 
two types of distributions to describe the sample space), 
MEDRL-MCS-RVC-MTD (using traditional MTD as the 
virtual sample construction tool), and MEDRL-MCS-
RVC (without the virtual sample construction tool).

Owing to the abrupt nature of IHCA occurrence, inter-
ventions must often be initiated before complete data 
are available, especially basic demographics (age, sex, 
and presence of an underlying disease) that are difficult 
to access over time. Therefore, the intelligent diagnosis 
and treatment system should be able to act based only 
on scant information. In this study, the basic information 
for Stage 1 included age, sex, IHCA causes, initial heart 
rhythm, and presence of an underlying disease; for Stage 
2, these included age, sex, partial pressure of carbon 
dioxide, initial systolic pressure, initial body temperature, 
and presence of an underlying disease. Figures  6 and 7 
and Table 4 show that all three models achieved the best 
results in Hospital 6. We considered Hospital 6 repre-
sentative, comparing the rewards when there were only 
two, three, and four types of basic information in both 
stages. The comparative results are shown in Table 5.

Training a well-performing DRL model requires a large 
amount of original data. However, obtaining sufficient 
data to construct an accurate model is often challenging. 
Therefore, virtual samples need to be created. Moreover, 
using Hospital 6 as a representative case, we compared 
the rewards using 50% and 30% of the original data 
(Table 6).

Tables 5 and 6 show that, for both stages, the rewards 
of all models decreased with the number of missing 
information items and the percentage of total original 
data decreasing. Compared with the other three models, 

Table 4  Comparison of the three models at seven different 
hospitals

Hospital # Model Stage Mean reward Median reward

Hospital 1 MEDRL-MCS-
RVC

Stage 1 2480 2500

Stage 2 4080 4085

MEDRL-MCS Stage 1 2200 2100

Stage 2 3880 3876

MEDRL Stage 1 1980 1900

Stage 2 3730 3725

Multi-MEDRL Stage 1 2490 2507

Stage 2 4123 4087

Hospital 2 MEDRL-MCS-
RVC

Stage 1 2400 2300

Stage 2 3980 3975

MEDRL-MCS Stage 1 2150 2100

Stage 2 3782 3776

MEDRL Stage 1 2100 2000

Stage 2 3536 3530

Multi-MEDRL Stage 1 2453 2379

Stage 2 4087 4033

Hospital 3 MEDRL-MCS-
RVC

Stage 1 2800 2800

Stage 2 4055 4050

MEDRL-MCS Stage 1 2450 2500

Stage 2 3860 3853

MEDRL Stage 1 2300 2200

Stage 2 3687 3655

Multi-MEDRL Stage 1 2803 2809

Stage 2 4107 4057

Hospital 4 MEDRL-MCS-
RVC

Stage 1 2100 2200

Stage 2 3896 3885

MEDRL-MCS Stage 1 1920 1900

Stage 2 3655 3639

MEDRL Stage 1 1700 1600

Stage 2 3420 3415

Multi-MEDRL Stage 1 1930 1952

Stage 2 3698 3685

Hospital 5 MEDRL-MCS-
RVC

Stage 1 2750 2700

Stage 2 4025 4028

MEDRL-MCS Stage 1 2500 2500

Stage 2 3810 3823

MEDRL Stage 1 2200 2100

Stage 2 3657 3680

Multi-MEDRL Stage 1 2770 2695

Stage 2 4050 4037

Hospital 6 MEDRL-MCS-
RVC

Stage 1 2980 2900

Stage 2 4096 4098

MEDRL-MCS Stage 1 2600 2500

Stage 2 3886 3893

MEDRL Stage 1 2300 2300

Stage 2 3753 3759

Multi-MEDRL Stage 1 3010 2980

Stage 2 4107 4089

Table 4  (continued)

Hospital # Model Stage Mean reward Median reward

Hospital 7 MEDRL-MCS-
RVC

Stage 1 2500 2500

Stage 2 3990 3983

MEDRL-MCS Stage 1 2300 2200

Stage 2 3770 3760

MEDRL Stage 1 2120 2200

Stage 2 3523 3516

Multi-MEDRL Stage 1 2550 2530

Stage 2 4010 3995

MCS, Monte Carlo simulation; MEDRL, modified episodic deep reinforcement 
learning; RVC, regular vine copula
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the MEDRL-MCS-RVC model obtained the worst results 
because it does not have the virtual sample construction 
tool. The results of MEDRL-MCS-RVC-MDMTD were 
better than those of MCS-RVC-MTD because MDMTD 
uses two types of distributions to describe the sample 
space, which can achieve better performance than tra-
ditional MTD. The rewards of the MEDRL-MCS-RVC 

model proposed in this study were still acceptable, even 
in the absence of three different kinds of basic informa-
tion or using only 30% of the original data.

Discussion
We developed an intelligent diagnosis and treatment 
system for IHCA to propose a reasonable diagnosis and 
treatment plan. Accurately analyzing and formulating 
a targeted treatment plan remains difficult owing to the 
numerous causes and complexity of IHCA [34]. Cur-
rently, the treatment process for IHCA mainly relies on 
the subjective experience of doctors, which can easily 
lead to misdiagnosis. Therefore, research on building an 
intelligent diagnosis and treatment system to assist doc-
tors in effectively treating IHCA under various condi-
tions remains important, especially when the original 
data were insufficient or basic patient information is 
missing. Although this intelligent diagnosis and treat-
ment system was designed for IHCA, it can also be used 
for OHCA due to the similarity between the pathogen-
esis of these two types of CA.

Many studies have shown that the entire treatment 
process for IHCA should be divided into two steps (CPR 
and ROSC), and the specific treatment steps vary greatly 
according to the basic conditions of the patient (including 
age, sex, causes of IHCA, initial heart rhythm, body tem-
perature, systolic pressure, and presence of an underlying 
disease) [2, 35]. We found that age, CPR start time, total 
CPR duration, chest compression start time, total chest 
compression time, airway management start time, airway 
management mode, time of first adrenaline dose admin-
istration, a single dose of adrenaline injection, number of 
adrenaline injections, electrical defibrillation start time, 
and frequency of electric defibrillation were the main 
factors influencing the success of CPR. In contrast, body 
temperature, systolic pressure, and respiratory conditions 
affected ROSC results. These results were consistent with 
those reported in the literature [36]. Based on the above 
analysis, an intelligent diagnosis and treatment system 
for IHCA was developed with the objective of maximiz-
ing the success rates of CPR and maintaining the blood 
pressure at an optimal value during ROSC to complete 
the corresponding two-step treatment process. Spe-
cifically, a novel HMTD was used to construct a virtual 
sample to improve the system performance with MEDRL 
as the core system module to finish the diagnosis and 
treatment process; the stochastic scenario was generated 
simultaneously using MCS-RVC.

Although AI elements have been widely used in the 
medical field, AI is only used to analyze, summarize, and 
discuss relevant data in studies pertaining to IHCA. This 
is, to our knowledge, the first study to build an intelli-
gent diagnosis and treatment system for the therapeutic 

Table 5  Comparison of the three models at Hospital 6 when 
basic information was incomplete

HTMD hybrid megatrend diffusion, MCS Monte Carlo simulation, MEDRL 
modified episodic deep reinforcement learning, RVC regular vine copula, 
MDMTD multi distribution mega trend diffusion

Number of missing 
information items

Model Mean 
reward in 
Stage 1

Mean 
reward in 
Stage 2

1 MEDRL-MCS-RVC-
HMTD
MEDRL-MCS-RVC-
MDMT
MEDRL-MCS-RVC-
MTD
MEDRL-MCS-RVC

2930
2765
2485
2123

4012
3869
3755
3581

2 MEDRL-MCS-RVC-
HMTD
MEDRL-MCS-RVC-
MDMTD
MEDRL-MCS-RVC-
MTD
MEDRL-MCS-RVC

2841
2632
2321
1933

3907
3756
3583
3586

3 MEDRL-MCS-RVC-
HMTD
MEDRL-MCS-RVC-
MDMT
MEDRL-MCS-RVC-
MTD
MEDRL-MCS-RVC

2727
2569
2116
1722

3785
3652
3576
3359

Table 6  Comparison of the three models at Hospital 6 when 
original data were insufficient

HTMD hybrid megatrend diffusion, MCS Monte Carlo simulation, MEDRL 
modified episodic deep reinforcement learning, RVC regular vine copula, 
MDMTD multi distribution mega trend diffusion

Percentage of 
total original 
data

Model Mean 
reward in 
Stage 1

Mean 
reward in 
Stage 2

100% MEDRL-MCS-RVC-HMTD
MEDRL-MCS-RVC-MDMT
MEDRL-MCS-RVC-MTD
MEDRL-MCS-RVC

3120
3097
3072
2980

4205
4176
4120
4096

50% MEDRL-MCS-RVC-HMTD
MEDRL-MCS-RVC-MDMT
MEDRL-MCS-RVC-MTD
MEDRL-MCS-RVC

2335
2152
1932
1528

3306
3127
2787
2303

30% MEDRL-MCS-RVC-HMTD
MEDRL-MCS-RVC-MDMT
MEDRL-MCS-RVC-MTD
MEDRL-MCS-RVC

2019
1785
1659
1231

2637
2366
1922
1502
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process of IHCA and to use DRL to complete the specific 
treatment process. Through comparative verification, our 
study showed that the system produced a positive thera-
peutic effect.

Nevertheless, the intelligent diagnosis and treatment 
system developed in this study is only a prototype with 
many imperfections. For example, as there are not suf-
ficient IHCA statistics, the system is limited to CA in 
adults, whereas respiratory arrest and hemorrhagic, trau-
matic, and other presumed non-cardiac causes are not 
included. Comorbidities are also a significant aspect that 
should be considered. We plan to collect more compre-
hensive IHCA data to further improve the deficiencies of 
the intelligent diagnosis and treatment system in future 
research.

Conclusion
In this study, we aimed to combine AI technology and 
medical diagnosis to develop an intelligent diagnosis and 
treatment system to assist doctors in effectively com-
pleting IHCA treatment even when the original data 
were insufficient or basic patient information was miss-
ing. To the best of our knowledge, this is the first study 
to develop an intelligent diagnostic and treatment system 
for CA. Through simple modifications (e.g., parameter 
adjustment and collection of sufficient corresponding 
input data), the intelligent diagnosis and treatment sys-
tem proposed here can also be used for potential risk 
prediction and early management of patients before the 
occurrence of IHCA. The main conclusions are summa-
rized as follows:

1)	 The novel HMTD used to construct a virtual sample 
to improve the system performance when the origi-
nal data were insufficient or basic patient information 
was missing showed that the performance of the sys-
tem was acceptable even in the absence of three dif-
ferent types of basic information or when using only 
30% of the original data.

2)	 The proposed MEDRL, as the core system module to 
finish the diagnosis and treatment process, improved 
the episodic memory updating manner and ERM, 
and may effectively promote sample efficiency and 
make DRL a practical reality.

3)	 A stochastic scenario was generated using MCS to 
analyze uncertainties, and RVC was used to con-
struct the dependencies among all basic parameters. 
To the best of our knowledge, this is the first study 
that considers dependency in the uncertainty analysis 
of medical diagnoses.

4)	 Nevertheless, the intelligent diagnosis and treatment 
system developed in this study is only a prototype 
with many imperfections. For example, as there were 

insufficient IHCA statistics, the system was lim-
ited to CA in adults, whereas respiratory arrest and 
hemorrhagic, traumatic, and other presumed non-
cardiac causes were not included. In future research, 
we plan to collect more comprehensive IHCA data to 
improve the deficiencies of intelligent diagnosis and 
treatment systems.
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