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Abstract
Background We aimed to determine the potential predictive value of the intra-tumoral microbiome as a marker of 
the response to external beam radiation therapy (EBRT) in cervical cancer (CC).

Methods A prospective longitudinal trial of 36 CC patients receiving pelvic radiotherapy was designed to investigate 
microbial characteristic signatures and diversity (alpha and beta) of multiple sites (tumor, vaginal, gut, urethral, and 
oral) in the superior response (SR) and inferior response (IR) groups of CC patients by 16S rRNA sequencing. Utilized 
the least absolute shrinkage and selection operator (LASSO) logistic regression method to analyze clinicopathological 
factors that potentially influenced the efficacy of EBRT. LEfSe analysis highlighted the microbiome features that 
best distinguished the categorized patient samples. Selected parameters were validated with Spearman correlation 
analysis, receiver operating characteristic (ROC) area under the curve (AUC) analysis and Kaplan-Meier survival 
analysis.

Results Firstly, in our cohort, LASSO logistic regression analysis revealed no association between clinicopathological 
factors and EBRT efficacy. Subsequently, we employed 16S rRNA sequencing to compare microbiome differences 
across multiple sites and their correlations with major clinicopathological factors. We discovered that the intra-tumoral 
microbiome was independent of clinicopathologic features and represented the most direct and reliable reflection 
of the microbial differences between the SR and IR groups. We found lower alpha diversity in the tumor microbiome 
of SR group and identified the most relevant microbiome taxa (Bifidobacteriaceae, Beijerinckiaceae, and Orbaceae) 
associated with the efficacy of the response to EBRT in CC patients. We then conducted ROC analysis, finding that 
specific microbial taxa had an AUC of 0.831 (95% CI, 0.667–0.995), indicating the potential of these taxa as biomarkers 
for predicting EBRT efficacy. Kaplan-Meier survival analysis showed a better prognosis for patients with lower alpha 
diversity and higher relative abundance of Bifidobacteriaceae.
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Introduction
Cervical cancer (CC),  a common female reproduc-
tive system malignancy, is the fourth leading cancer in 
terms of global incidence and mortality rates among 
women [1]. The main treatment for CC involves surgical 
resection and radiotherapy [2]. In accordance with the 
International Federation of Gynecology and Obstetrics 
(FIGO) staging system, radiotherapy is equally effective 
as surgery for early cervical cancer, and radical radiother-
apy and chemotherapy can be considered for advanced 
cases [3]. External beam radiation therapy (EBRT) and 
brachytherapy are the forms of radiotherapy used for CC. 
The tumor volume reduction rate (TVRR) post-EBRT 
of CC represents an essential indicator of sensitivity to 
radiotherapy and a predictor of prognosis. Some patients 
are insensitive or resistant to radiotherapy, resulting 
in poor treatment efficacy, recurrence, or metastasis, 
which remains a significant hurdle to CC therapeutics 
[4, 5]. Therefore, exploring potential targets to overcome 
radiation-resistance is crucial for improving treatment 
outcomes.

The human microbiome refers to the genome of micro-
organisms (bacteria, archaea, fungi, and viruses) that 
live in different body parts and are responsible for more 
than 98% of the genetic activity of the human body [6]. 
The intra-tumoral microbiome represents the genome 
of microorganisms present in the tumor parenchyma 
and the microenvironment surrounding the tumor [6]. It 
has been demonstrated that the intra-tumoral microbi-
ome that exists in the majority of solid tumors are mostly 
intra-cellular and present in both cancer and immune 
cells [7, 8]. The microbiome plays an important role in 
regulating multiple biological processes such as modula-
tion of cancer susceptibility [9], promotion of cancer cell 
metastasis [8], and immune modulation [10]. The micro-
biome has been shown to be remarkably associated with 
radiosensitivity in malignant tumors and is participat-
ing in the regulation of radiosensitivity in hepatocellular 
carcinoma [11], esophageal squamous cell carcinoma 
[12], colorectal cancer [13] and other tumors. How-
ever, the specific mechanism underlying this association 
between the microbiome and radiosensitivity is not yet 
clear. Previous researches on the cervical microbiome 
have focused primarily on the impact of the intra-vaginal 
microbiome on the pathogenesis of CC, rarely explor-
ing the role of the intra-tumoral microbiome in tumor 
development and prognosis [14, 15]. Understanding 
the diverse contributions of the bacterial microbiota to 

cancer treatment is vitally important for determining the 
prognosis of CC.

In this study, we explored intra-tumoral microbiome 
diversity and specific microbiome taxa in relation to 
EBRT. We performed next-generation sequencing of 16S 
rRNA to investigate microbial characteristics at multiple 
sites in CC patients divided into superior response (SR) 
and inferior response (IR) groups and evaluated the effi-
cacy of EBRT using TVRR = 66.7% as the optimal cut-off 
value according to a previous study [16]. Developing spe-
cific intra-tumoral microbiomes as potential biomarkers 
may improve the therapeutic outcomes of radiotherapy 
for CC.

Materials and methods
Study design
In this study, 36 patients with newly diagnosed CC (clini-
cal stage IB1 − IV with visible, exophytic, endophytic, 
ulcerative and cauliflower-shaped tumors observed on 
speculum examination) admitted to the Third Affiliated 
Hospital of Kunming Medical University (Kunming, 
China) between November 2021 and March 2022 were 
recruited. Informed consent was obtained from each 
participant and the study was approved by the Institu-
tional Review Board (NO. KYSC202161) and conducted 
in accordance with the ethical standards laid down in the 
Declaration of Helsinki. CC cases were staged according 
to the 2018 FIGO staging system. The following eligibility 
criteria were applied: (1) patient age ≥ 20 and ≤ 75 years; 
(2) tumors histologically confirmed as cervical squamous 
carcinoma, and adenocarcinoma; (3) without a second 
tumor; (4) had not received anti-tumor treatment before 
admission; (5) without exposure to any antibiotics, pro-
biotics or steroids within four weeks prior to sample 
collection; (6) Karnofsky score ≥ 80. Pathological classi-
fication of cervical tumors was performed according to 
the World Health Organization (WHO) Classification 
of Female Genital Tumors (5th edition, 2020), using a 
combination of hematoxylin and eosin (HE) staining and 
immunohistochemistry.

Treatment
Eligible patients received pelvic EBRT and brachyther-
apy. The EBRT dose prescribed according to the clini-
cal target volume was 45.0–50.4  Gy delivered in 25–28 
fractions of 1.8–2.0  Gy as volumetric modulated arc 
therapy (VMAT), or intensity-modulated radiotherapy 
(IMRT). Most patients (27 of 36, 75%) were treated with 

Conclusions Our data suggested that intra-tumoral specific microbiome taxa and lower alpha diversity may play an 
important role in the CC patient sensitivity to EBRT and offer novel potential biomarkers for predicting the response to 
EBRT efficacy.
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concurrent weekly cisplatin/nedaplatin/carboplatin che-
motherapy at a dose of 40 mg/m2 for four to six cycles, 
whereas 25% (9 of 36) received definitive radiation ther-
apy without concurrent chemotherapy (CCT) for reasons 
of personal preference or in accordance with their age 
and physical condition. All patients received high-dose 
rate intracavity brachytherapy consisting of 28.0–30.0 Gy 
in 4–5 fractions beginning at week five of external 
radiotherapy.

Tumor volume measurement and evaluation of EBRT 
efficacy
Two serial magnetic resonance imaging (MRI) examina-
tions were performed at the start of EBRT (pre-EBRT), 
and at the at the time-point before starting intracavi-
tary radiotherapy (post-EBRT). In each of the two MRI 
examinations, two radiation oncologists defined the 
tumor areas in each slice based on the T2-weighted 
images. Tumor volume for each of the MRIs was cal-
culated as the sum of all tumor areas multiplied by the 
slice profile. For quality control, the contouring process 
was independently reviewed by an experienced radi-
ologist who was blinded to the patients’ treatment and 
group status to ensure an unbiased assessment. For each 
patient, pre-EBRT tumor volume (V1), and post-EBRT 
residual tumor volume (V2) were recorded. TVRR was 
defined as the percentage decrease in the tumor volume 
on the post-EBRT MRI scan relative to the pre-EBRT 
MRI scan [TVRR = (V1–V2/V1)]. According to a pre-
vious study [16], we used TVRR = 66.7% as the EBRT 
cut-off value for CC in this study, and classified patients 
with TVRR ≥ 66.7% as the SR group and those with 
TVRR < 66.7% as the IR group.

Follow-up
The follow-up cut-off was June 24, 2023. The endpoint of 
this study was progression-free survival (PFS) and over-
all survival (OS). PFS was defined as the time interval 
between the initial CC diagnosis and the date of the first 
disease recurrence/progression or the last date of follow-
up if censored. OS was defined as time interval between 
the initial CC diagnosis and the date of death due to CC 
or the last follow-up.

Sample collection and DNA extraction
Cervical tumor tissues were obtained at biopsy. Cervico-
vaginal fluid samples were collected from cervical lesions 
using swabs. Participants were instructed in the correct 
technique for self-collection of stool and midstream 
clean-catch urine samples using sterile 50-mL centrifuge 
tubes (Thermo). Oral microbial samples were collected 
using swabs on the buccal mucosa. Participants were 
instructed to avoid eating/drinking for 2  h before oral 
sample collection. All samples were collected between 

diagnosis and prior to radiotherapy, immediately fro-
zen in liquid nitrogen, and stored at -80℃. A total of 
178 specimens were collected from 36 cases (tumor tis-
sue, stool, and oral swab) and 35 cases (vaginal swab and 
urine), with one vaginal swab and one urine specimen 
not collected due to participants being unable to pro-
vide it on schedule. According to the guideline recom-
mended by the manufacturer, bacterial genomic DNA 
was extracted using the HiPure Bacterial DNA Extrac-
tion Kit (Magen, Guangzhou, China) and quantified with 
NanoDrop One (Thermo).

16S rRNA gene sequencing and sequence data processing
The 16S rRNA V3-V4 region was amplificated by PCR 
using the forward 341  F (5′-CCTACGGGNGGCW-
GCAG-3′) and the reverse primer 806R (5′-GGACTA 
CHVGGGTATCTAAT-3′) [17]. Amplification products 
were recovered from 2% agarose gels, purified using the 
AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, 
USA) following the manufacturer’s protocols and quanti-
tated using the ABI StepOnePlus Real-Time PCR system 
(Life Technologies, Foster City, USA). The purified prod-
ucts were pooled in equimolar amounts and subjected to 
paired-end sequenced (PE250) on the Illumina platform 
following standard protocols.

To obtain high-quality clean reads, raw reads were fur-
ther filtered (version 0.18.0) by first removing reads con-
taining more than 10% of unknown nucleotides (N) and 
then removing reads with less than 50% of bases having 
a quality (Q-value) greater than 20 using FASTP [18]. 
Paired-end clean reads were amalgamated into raw tags 
using FLSAH [19] (version 1.2.11) that overlap a mini-
mum of 10 bp and a mismatch error rate of 2%. To obtain 
high-quality clean tags, noisy sequencing reads were fil-
tered according to the following criteria: (a) raw tags were 
truncated at the first position where a stretch of consecu-
tive low-quality bases (quality ≤ 3 by default) reached a 
length of 3 bp; and (b) tags were filtered if they contained 
consecutive high-quality bases with lengths less than or 
equal to 75% of the tag’s total length [20].

Aggregating all effective tags into operational taxo-
nomic units (OTUs) with a similarity of ≥ 97% by using 
the UPARSE [21] (version 9.2.64) pipeline. Using the 
UCHIME [22] algorithm to remove all chimeric tags, 
resulting in the final effective tags to be analyzed further. 
In each cluster, those tags sequencing with the high-
est abundance were chosen as representations of the 
sequences. With the confidence threshold value of 0.8, 
the representative OTU sequencings were taxonomized 
into organisms using a naïve Bayesian model via the RDP 
classifier [23] (version 2.2) based on the SILVA database 
[24] (version 138.1). Taxonomic classification were con-
ducted through BLAST [25] (version 2.6.0) searches of 
the representative OTU sequences against the NCBI 16S 
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ribosomal RNA Database (version 202101) to determine 
the specific composition of each sample at the kingdom, 
phylum, order, family, genus, and species levels with the 
best hit and strict criteria. If no BLAST hit was retained, 
the sequence was labeled as unclassified.

All procedures were accomplished by Gene Denovo 
Biotechnology (Guangzhou, China). Bioinformatic analy-
sis was performed using Omicsmart, a platform for ana-
lyzing data online in a dynamic, real-time, and interactive 
way (http://www.omicsmart.com). The raw data of this 
study has been archived in the NCBI Sequence Read 
Archive (SRA) database and is currently available (acces-
sion number: PRJNA1086133).

Microbial diversity metrics and indicator species analysis
We characterized differences in species diversity within 
the specific communities of the SR and IR groups using 
three different alpha diversity metrics. The ACE richness 
index indicates the number of predicted OTUs [26]. The 
Pielou evenness index reflects the ratio of individual spe-
cies represented in the sample population [27]. The Shan-
non diversity index is a comprehensive indicator to reflect 
the level of richness and evenness within the sample taxa 
[26, 27]. The ACE, Pielou, and Shannon indexes were 
performed using QIIME [28] (version 1.9.1). Compari-
sons of Alpha indexes between groups were performed 
using the Wilcoxon rank test in the R project Vegan pack-
age. Unweighted (phylogenetic relatedness distance) and 
weighted uniFrac distances (the abundance of taxa and 
phylogenetic relatedness distance) were applied to cre-
ate the coordinates of each sample. Principle coordinate 
analysis (PCoA) was used to compare beta (between 
sample) diversity by permutational multivariate analysis 
of variance (PERMANOVA) using the R project Vegan 
package. PCoA of Unweighted and Weighted uniFrac dis-
tances were created using the R project Vegan package 
and plotted with the ggplot2 package. Linear discrimi-
nant analysis (LDA) effect size (LEfSe) was determined to 
distinguish the specific bacterial taxa that were differently 
enriched in the SR and IR groups. Biomarker characteris-
tics of each group were screened by LEfSe software [29] 
(version 1.0). An LDA score threshold was set at 3.0, and 
p < 0.05 was deemed to be statistically significant.

Immunohistochemistry and HE staining
Cervical tumor tissues were fixed by 4% paraformal-
dehyde, sectioned into 4-µm-thick paraffin-embedded 
sections, then mounted on Adhesive Slides (MXB Bio-
technologies). Sections were deparaffinized in xylene 
and rehydrated through graded ethanol. Addition of 
antigen retrieval was performed in citrate buffer (citrate 
pH 6.0) with microwave heating. Endogenous peroxi-
dase was inactivated, and sections were blocked with 5% 
goat serum, then incubated with primary antibodies for 

detection of CD8 (CD8 T cells) (ZSGB–BIO ZA–0508, 
China) (ready-to-use reagents) and Granzyme B (GzmB) 
(ZSGB–BIO ZA–0599, China) (ready-to-use reagents) 
overnight at 4  °C. And next day the sections were incu-
bated with the secondary antibody (ZSGB–BIO Horse-
radish-peroxidase‐conjugated Goat anti-rabbit/mouse 
IgG Antibody PV–8000, China) (ready-to-use reagents) 
at room temperature, followed by detection using DAB 
substrate and hematoxylin counterstaining. Slides were 
mounted on the microscope (DM400B, LEICA) and 
visualized by INFINITY CAPTURE application (version 
5.0.4). Positively stained cells were quantified in five sto-
chastic areas (1 mm2 each) of the tumor, and the density 
of cells expressing CD8 and GzmB was measured [10]. 
The mean total number of cells positive for each marker 
in each of the five regions was expressed as a density per 
mm2. To confirm the specificity of the immunostain-
ing, sections without the primary antibody were used 
as a negative control. Normal spleen tissue was used 
as a positive control for the marker. The sections were 
additionally stained using haematoxylin and eosin (HE). 
For HE staining, sections were deparaffinized in xylene, 
rehydrated through a series of anhydrous ethanol and 
graded ethanol solutions (95%, 85%, and 75%), stained 
with hematoxylin, differentiated in 1% hydrochloric acid, 
counterstained with eosin, dehydrated, cleared in xylene, 
and then mounted. Positive controls, negative controls, 
and HE sections are shown in Supplement Fig. 1.

Statistical analysis
Statistical analysis was performed using the program 
SPSS 26.0 software (IBM, Chicago, IL, USA), GraphPad 
Prism 9 software (San Diego, CA), and R software (ver-
sion 4.2.1). Partial results were derived from Omicsmart. 
We employed descriptive statistics to recapitulate the 
clinical characteristics and demographic of the patients. 
Categorical data were expressed as numbers (percent-
ages). Continuous variables were expressed as the 
median and interquartile range (IQR). Comparisons of 
categorical variables were performed using Fisher’s exact 
test. Comparisons of continuous variables were done 
using Wilcoxon rank-sum test. In this study, we employ 
the least absolute shrinkage and selection operator 
(LASSO) logistic regression method to assess the impact 
of potential confounding factors on the efficacy of EBRT. 
All clinicopathological factors were analysed by LASSO 
regression method. The LASSO regression analysis was 
performed using the R package “glmnet”. The standard 
lambda (λ) value was established by identifying the value 
that yielded the minimum error through 10-fold cross-
validation. The logistic regression algorithm was used 
to test the significant of the most relevant confounding 
factor. Two-tailed Wilcoxon rank-sum tests were used 
to analyze the ACE, Shannon, and Pielou indexes, and 

http://www.omicsmart.com
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to compare differences in the expression of CD8 and 
GzmB between the SR and IR groups. PERMANOVA 
was used to compare beta diversity between samples. 
The Spearman test was used for correlation analysis. The 
correlation heatmaps were plotted using the “corrplot” 
R package. Receiver operator characteristic (ROC) and 
area under curve (AUC) analyses were used to evaluate 
the prediction effectiveness of specific microbial taxa as 
biomarkers. X-tile software (Yale University School of 
Medicine, USA) (version 3.6.1) was used to identify the 
optimal cut-off values based on the highest χ2 value [30]. 
Survival curves were plotted using the Kaplan-Meier 
method and compared using the log-rank test. P < 0.05 
was considered to indicate statistical significance.

Results
Demographics
The clinicopathologic characteristics of 36 CC patients in 
this study are shown in Table 1. There were 26 patients in 
the SR group and 10 patients in the IR group, with no sig-
nificant differences in the distributions of age (p = 1.000), 
2018 FIGO staging system (p = 1.000), histological 
type (p = 0.370), histological differentiation (p = 0.608), 
maximal tumor size (p = 0.155), lymph nodes metasta-
ses (p = 0.463), HPV status (p = 0.597), body mass index 
(p = 0.549), menstrual status (p = 0.438), hypertension 
history (p = 1.000), diabetes history (p = 0.181), marital 
status (p = 0.545), socioeconomic status (p = 0.708), and 
EBRT treatment modality (p = 0.686) between the two 
groups. All patients had no history of smoking or alcohol 
consumption.

To assess the potential impact of clinicopathologic 
characteristics on EBRT, we used the LASSO regression 
method to select the most relevant factors from the 14 
variables mentioned above and identified 1 variable that 
was most relevant with EBRT efficacy, which was diabe-
tes history (Supplement Fig.  2A-B). Univariate logistic 
analysis was then performed to evaluate the significance 
of this variable and found that diabetes history (p = 0.156) 
was not associated with EBRT efficacy (Supplement 
Table 1). The result indicated that the classification into 
SR and IR groups based on EBRT efficacy was not influ-
enced by clinicopathologic characteristics.

Identification of specific microbiome taxa associated with 
EBRT efficacy
To identify specific microbiome taxa associated with 
EBRT efficacy, we first compared the alpha diversity of 
the multi-site microbiota of the SR group with that of the 
IR group. Compared to the IR group, the alpha diversity 
of the tumor microbiome was significantly lower in the 
SR group, as indicated by Shannon and Pielou indexes 
(p = 0.011 and p = 0.019, respectively, Fig.  1A, Supple-
ment Table 2). The ACE index revealed the same pattern, 

with the ACE index being lower in the SR group of tumor 
microbiomes as compared to the IR group, although 
there was no statistical difference (p = 0.286, Fig. 1A, Sup-
plement Table  2). And there were no significant differ-
ences in alpha diversity of the vaginal, gut, urethral, and 
oral microbiomes between the SR and IR groups (Supple-
ment Fig. 3A-D, Supplement Table 2).

Analysis of the beta diversity, which accounts for differ-
ences in taxon abundance and phylogenetic relatedness, 
revealed significant differences in the gut microbiome 
abundance in the SR and IR groups at the baseline level 
(p = 0.039, Supplement Fig. 3F, Supplement Table 3). Phy-
logenetic closeness was detected among the microbial 
communities of the tumor, vaginal, gut, urethral, and oral 
samples of the SR and IR groups (Fig.  1B, Supplement 
Fig. 3E-H, Supplement Table 3).

Aiming to accurately identify microorganisms that 
could predict EBRT efficacy, we assessed the potential 
influences of major clinicopathological factors on micro-
bial diversity, pathological type, maximum tumor size, 
the status of lymph node metastasis, and EBRT treatment 
modality with or without CCT. We found that, in addi-
tion to the intra-tumoral microbiome, the microbiome 
diversity of the vaginal, gut, urethral, and oral samples 
was affected by clinico-pathological features (Supplement 
Figs. 4 and 5). These results indicated that the composi-
tion of intra-tumoral microorganisms was relatively sta-
ble and poorly related to clinico-pathological features, so 
that screening of specific intra-tumoral microbiome taxa 
associated with EBRT efficacy would be more reliable. 
We then conducted high dimensional class comparisons 
using LEfSe to detect marked differences in the pre-
dominance of bacterial communities between these two 
intra-tumoral groups (Fig. 1C-D). The SR group tumors 
were characterized by predominance of Bifidobacteria-
ceae, Beijerinckiaceae, and Orbaceae at the family level. 
In contrast, the tumors of the IR group were dominated 
at the family level by other 13 bacteria, including Sphin-
gomonadaceae, Caulobacteraceae, Pseudonocardiaceae, 
and Rhizobiaceae.

Specific bacterial taxa and EBRT efficacy
The intra-tumoral microbiota plays a lynchpin role in 
shaping the host’s immune system. A recent investigation 
showed that the specific intra-tumoral microbiota com-
position can improve the anti-tumor immune response 
via facilitating CD8+ T cells recruitment and activa-
tion [10]. Therefore, we hypothesized that intra-tumoral 
microbiome may be associated with the tumor immune 
microenvironment, which may influence the efficacy 
of EBRT in patients with CC. To confirm our specula-
tion, we used immunohistochemistry to determine the 
intra-tumoral immune infiltrates in this cohort. We 
found higher densities of CD8+ T and GzmB+ cells in 
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Characteristics Whole sample (n = 36) IR group
(n = 10)

SR group
(n = 26)

p

Age at diagnosis (years, IQR) a 55.50 (49.00-66.75) 51.50 (50.00-68.25) 56.50 (45.00-66.75) 0.764c

Age at diagnosis, n (%) b 1.000d

 ≤ 50years 14 (38.9) 4 (28.6) 10 (71.4)
 > 50years 22 (61.1) 6 (27.3) 16 (72.7)
FIGO stage (2018), n (%) b 1.000d

 IA-IIA 2 (5.6) 0 (0.0) 2 (100.0)
 IIB-IVB 34 (94.4) 10 (29.4) 24 (70.6)
Histological type, n (%) b 0.370d

 Squamous cell carcinoma 29 (80.6) 7 (24.1) 22 (75.9)
 Adenocarcinoma 7 (19.4) 3 (42.9) 4 (57.1)
Histological differentiation, n (%) b 0.608d

 G1 well-differentiated 3 (8.3) 1 (33.3) 2 (66.7)
 G2 moderately-differentiated 15 (41.7) 6 (40.0) 9 (60.0)
 G3 poorly- differentiated 3 (8.3) 0 (0.0) 3 (100.0)
 Unknown 15 (41.7) 3 (20.0) 12 (80.0)
Maximal tumor size (cm, IQR) a 5.35 (4.03–6.98) 5.55 (4.63–7.48) 5.30 (3.98–6.90) 0.243c

Maximal tumor size (cm), n (%) b 0.155d

 ≤ 4 7 (19.4) 0 (0.0) 7 (100.0)
 > 4 29 (80.6) 10 (34.5) 19 (65.5)
Lymph nodes metastases, n (%) b 0.463d

 Yes 17 (47.2) 6 (35.3) 11 (64.7)
 No 19 (52.8) 4 (21.1) 15 (78.9)
HPV status, n (%) b 0.597d

 Positive 18 (50.0) 4 (22.2) 14 (77.8)
 Negative 2 (5.6) 1 (50.0) 1 (50.0)
 Unknown 16 (44.4) 5 (31.3) 11 (68.7)
BMI b 0.549d

 ≤ 18.5 2 (5.6) 0 (0.0) 2 (100.0)
 18.5 < BMI ≤ 25 20 (55.6) 5 (25.0) 15 (75.0)
 25 < BMI ≤ 30 12 (33.3) 5 (41.7) 7 (58.3)
 > 30 2 (5.6) 0 (0.0) 2 (100.0)
Menstrual status b 0.438d

 Pre- menopausal status 12 (33.3) 2 (16.7) 10 (83.3)
 Post-menopausal status 24 (66.7) 8 (33.3) 16 (66.7)
Hypertension history b 1.000d

 No 25 (69.4) 7 (28.0) 18 (72.0)
 Yes 11 (30.6) 3 (27.3) 8 (72.7)
Diabetes history b 0.181d

 No 33 (91.7) 8 (24.2) 25 (75.8)
 Yes 3 (8.3) 2 (66.7) 1 (33.3)
Marital status b 0.545d

 Married 33 (91.7) 10 (30.3) 23 (69.7)
 Divorced 3 (8.3) 0 (0.0) 3 (100.0)
Socioeconomic status b 0.708d

 Lower 9 (25.0) 2 (22.2) 7 (77.8)
 Middle 17 (47.2) 6 (35.3) 11 (64.7)
 Upper 10 (27.8) 2 (20.0) 8 (80.0)
EBRT treatment modality b 0.686d

Table 1 Clinical and pathological characteristics of the study population
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Fig. 1 Intra-tumoral microbiome diversity and communities differ significantly between the SR and IR groups of cervical cancer patients. (A-B) Alpha 
diversity boxplot (ACE, Pielou and Shannon) (A) and principal coordinate analysis (PCoA) of beta diversity using Unweighted and Weighted uniFrac (B) 
for cervical cancer intra-tumoral microbiome. (C-D) LEfSe analysis identification of intra-tumoral microbiome biomarkers between the IR and SR groups. 
(C) Linear discriminant analysis (LDA) scores computed for differentially abundant taxa in the intra-tumoral microbiomes of the IR (red) and SR (green) 
groups. Feature selection criteria: log LDA score > 3.0. (D) Taxonomic cladogram showing taxonomic association of microbiomes between the IR and SR 
groups. Each node represents a specific taxonomic type. Green nodes denote the taxonomic types that are more abundant in the SR group, while the red 
nodes represent the taxonomic types that are more abundant in the IR group. Yellow nodes denote the taxonomic features with no significant differences 
between the IR and SR groups. SR, superior response; IR, inferior response

 

Characteristics Whole sample (n = 36) IR group
(n = 10)

SR group
(n = 26)

p

 With CCT 27(75.0) 7(25.9) 20(74.1)
 Without CCT 9(25.0) 3(33.3) 6(66.7)
Abbreviations: IQR, interquartile range; FIGO, International Federation of Gynecology and Obstetrics; SR, superior response; IR, inferior response; HPV, human 
papilloma virus infection; BMI, body mass index; EBRT, external beam radiation therapy; CCT, concurrent chemotherapy.

Data are presented as numbers median (interquartile range) a or (percentages) b.
cp-value was calculated using Wilcoxon rank-sum test.
dp-value was calculated using Fisher’s exact test.

Table 1 (continued) 
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the SR group comparison to the IR group (p = 0.0002 and 
p = 0.0036, respectively) (Fig. 2A).

Spearman rank-order correlation analysis revealed 
a significantly positive correlation between the tumor 
densities of CD8+ T and GzmB+ cells and the TVRR of 
patients (p = 0.0004 and p = 0.0206, respectively) (Fig. 2B). 
We then analyzed the correlation of the CD8+ T and 
GzmB+ cells tumor tissue densities with the specific 
enriched family in the SR group patients (Bifidobacte-
riaceae, Beijerinckiaceae, and Orbaceae). We found a 
positive Spearman correlation between the CD8+ T and 
GzmB+ cell tumor tissue densities and Bifidobacteriaceae 
(p = 0.0097 and p = 0.0119, respectively), while no signifi-
cant correlation were detected for the other two fami-
lies (p = 0.7873 and p = 0.2719; p = 0.0579 and p = 0.2143, 
respectively) (Fig.  2C-E). Meanwhile, we found a strong 
negative correlation between the Pielou and Shannon 
indexes and TVRR (p = 0.0017 and p = 0.0006, respec-
tively), and a negative correlation between the ACE index 
and TVRR (p = 0.1220, Fig. 2F), although the correlation 
did not reach the level of statistical significance. Finally, 
we analyzed the correlations of the CD8+ T and GzmB+ 
cell tumor tissue densities with the three alpha diver-
sity indexes. We found a significant negative correlation 
with ACE index (p = 0.0090 and p = 0.0380, respectively), 
and the same negative correlation with Pielou and Shan-
non indexes, although the correlations were not statis-
tically significant (p = 0.1050 and p = 0.1415; p = 0.0791 
and p = 0.1367, respectively) (Fig.  2G). The heatmap of 
the correlation of these intra-tumoral microbial param-
eters with TVRR, CD8+ T, and GzmB+ cell were shown 
in Fig. 2H-I.

The intra-tumoral microbiome might participate vari-
ous cellular processes like gene expression regulation, 
metabolic manipulation, protein secretion or human 
leukocyte antigen (HLA) mediated antigen presenta-
tion [31]. During these processes, tumor cells might 
remodel the microenvironment and release signals to 
attract peripheral immune cells. Our findings indicate 
that a higher abundance of Bifidobacteriaceae and lower 
alpha diversity within tumors may facilitate the recruit-
ment and activation of CD8+ T cells in the tumor micro-
environment (TME), leading to enhanced anti-tumor 
immune responses. This favorable immunological land-
scape, in conjunction with EBRT, may synergistically 
contribute to tumor cell destruction, ultimately yielding 
better treatment outcomes for patients with CC.

Specific bacterial taxa predict EBRT efficacy
We used these three families with higher abundances 
in the SR group to perform ROC analysis of the perfor-
mance of these families in predicting EBRT efficacy. 
(Fig.  3A). We found that the AUCs were 0.719 (95% 
confidence interval [CI], 0.537–0.901), 0.750 (95% CI, 

0.581–0.919) and 0.696 (95% CI, 0.572–0.821) for Bifi-
dobacteriaceae, Beijerinckiaceae, and Orbaceae, respec-
tively. However, combining these three taxa resulted in 
an AUC of 0.831 (95%CI, 0.667–0.995), suggesting that 
the relative abundance of Bifidobacteriaceae, Beijerincki-
aceae, and Orbaceae as specific taxa within the tumor 
may have potential as a biomarker for predicting the effi-
cacy of EBRT in CC.

To explore how the intra-tumoral microbiome affects 
patient treatment, we then used X-tile software to deter-
mine the optimal cut-off values of the Shannon index 
and relative abundance of Bifidobacteriaceae, stratify-
ing patients into high versus low categories based on 
these optimal cut-off values. Kaplan-Meier survival 
curves plotted according to the Shannon index and rela-
tive abundance of Bifidobacteriaceae (Fig. 3B-C) showed 
that better PFS and OS outcomes were predicted for 
CC patients with a lower Shannon index (hazard ratio 
[HR] = 4.684, 95% CI, 0.903–24.302; HR = 14.067, 95%CI, 
0.315–627.299) and higher abundance of Bifidobacteria-
ceae (HR = 3.001, 95% CI, 0.803–11.217; HR = 6.115, 95% 
CI, 0.626–59.690). These results indicate that the intra-
tumoral microbiome alpha diversity and the abundance 
of Bifidobacteriaceae may serve as promising predictors 
of treatment outcome in CC patients. However, further 
research is required to elucidate the molecular mecha-
nisms by which the intra-tumoral microbiome influences 
treatment efficacy, thereby informing the development of 
novel personalized treatment strategies.

Discussion
In this prospective analysis, we used 16S rRNA sequenc-
ing to analyze the microbiome within cervical tumor tis-
sues and found that intra-tumoral specific microbiome 
taxa (Bifidobacteriaceae, Beijerinckiaceae, and Orba-
ceae) and lower alpha diversity were associated with bet-
ter EBRT outcomes. As far as we know, this is the first 
molecular ecological research exploring the relationship 
between the intra-tumoral microbiome and EBRT out-
comes using a deep sequencing approach.

Radiotherapy resistance is the main cause of poor prog-
nosis in CC patients. The therapeutic effect of radiother-
apy is often limited by inherent physiological barriers of 
TME, including hypoxia [32] and an immunosuppressive 
TME [33]. Thus, new strategies to synergize radiotherapy 
that can reshape the TME to overcome radiation-resis-
tance are urgently required.

In 2022, the human polymorphic microbiome, which 
includes the intra-tumoral microbiome and the commen-
sal microbiome of other anatomical sites, was identified 
as one of the latest “hallmarks of cancer” [34], highlight-
ing the crucial role of the intra-tumoral microbiome in 
modulating cancer susceptibility and tumor progression. 
Sun et al. reported that the intra-tumoral microbiome 
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Fig. 2 Higher intra-tumoral relative abundance of Bifidobacteriaceae and lower microbiome alpha diversity in patients with cervical cancer are signifi-
cantly associate with strong immune infiltration. (A) Immunohistochemical (IHC) staining of CD8 and GzmB from tumors of IR and SR group patients (rep-
resentative image, 200× magnification) (left) and quantification of IHC signal of CD8+, and GzmB+ from tumors of IR and SR group patients (right). Scale 
bar, 50 μm. (B) Spearman correlation between CD8+ and GzmB+ tissue densities and TVRR. (C-E) Spearman correlation between CD8+ and GzmB+ tissue 
densities and (C) Bifidobacteriaceae, (D) Beijerinckiaceae, (E) and Orbaceae in cervical cancer patients. (F) Spearman correlation between ACE, Pielou and 
Shannon indexes and TVRR in cervical cancer patients. (G) Spearman correlation between CD8+ and GzmB+ tissue densities and ACE, Pielou and Shannon 
indexes in cervical cancer patients. (H) The correlations of TVRR, CD8+, GzmB+, Bifidobacteriaceae, Beijerinckiaceae, and Orbaceae. (I) The correlations of 
TVRR, CD8+, GzmB+, ACE, Pielou and Shannon indexes. SR, superior response; IR, inferior response; GzmB, granzyme B; TVRR, tumor volume reduction rate
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can predict the postoperative prognosis of patients with 
hepatocellular carcinoma [35]. Zhang et al. demonstrated 
that the intra-tumoral microbiome impacts the efficacy 
of first-line treatments and survival in patients with non-
small cell lung cancer that are free of lung infections [36]. 
Furthermore, Nejman et al. showed that diversity and 
composition of the intra-tumoral microbiome in pan-
creatic ductal adenocarcinoma can influence immune 
infiltration and ultimately, affect the long-term prognosis 
of patients [7, 8]. These data suggest that microbiologi-
cal factors, irrelevant to the tumoral genomic composi-
tion, may determine patient prognosis. Similarly, in this 
study, we identified the presence of specific intra-tumoral 
microbiome taxa and lower alpha diversity in CC patients 
achieving better EBRT treatment and superior PFS and 
OS outcomes.

Bifidobacteriaceae is a Gram-positive (G+) obligate 
anaerobic probiotic that colonizes the intestinal tract, 
oral cavity, and vagina in humans. Bifidobacteriaceae has 
been shown to induce therapeutic and anti-cancer effects 
against tumor lesions in tumor-bearing animal models. 
Abdolalipour et al. [37] found that by intravenously or 
orally administering Bifidobacterium bifidum was effec-
tive in inducing anti-tumor immune responses and inhib-
iting tumor growth in C57BL/6 mice transplanted with 
human papillomavirus-associated tumor TC-1 cells. In 
addition, intravenous administration of the probiotic Bifi-
dobacterium bifidum resulted in the activation of tumor-
specific IFN-γ and IL-12, lymphocyte proliferation, and 

CD8+ cytolytic responses that control and eradicate 
tumor growth in tumor-bearing mice. Sivan et al. [38] 
demonstrated significantly improved tumor control in 
mice treated with Bifidobacterium in comparison with 
their untreated counterparts. In addition, the tumor con-
trol in this model was accompanied by increasing cumu-
lation of antigen-specific CD8+ T cells present in the 
tumor and peripheral tumor-specific T cells that were 
robustly induced. Their findings suggested that Bifido-
bacterium-derived signals modulate the activation of 
dendritic cells in the steady state, which in turn leads to 
enhanced CD8+ T cell priming and cumulation in TME 
to mediate tumor control. However, researches on the 
characteristics of Bifidobacteriaceae in the cervical can-
cer microbiome were in its infancy. Cha et al. [39] investi-
gated the antiviral effects of Bifidobacterium adolescentis 
SPM1005-A in the SiHa cervical cancer cell line express-
ing HPV type 16, and identified that the Bifidobacterium 
strain had antiviral activity via suppression of E6 and 
E7 oncogene expression. Chao et al. [40] explored the 
potential vaginal microbiome biomarkers that may lead 
to high-grade squamous intraepithelial lesion (HSIL), 
and identified that a paucity of Bifidobacterium, Faeca-
libacterium, unidentified Prevotellaceae, Bacteroides, 
and Dialister were related with HSIL. The relative abun-
dance of Bifidobacterium being under 0.0116183% maybe 
a potentially good predictor of HSIL in HPV16 and/
or 18 infected individuals. In another research, cervical 
lesions were reported to be associated with four bacterial 

Fig. 3 The intra-tumoral microbiome has the potential to predict the response to external beam radiation therapy in cervical cancer. (A) Receiver opera-
tor characteristic analysis of intra-tumoral specific microbiome taxa relative abundance as a predictor of superior response status. (B-C) Kaplan-Meier (KM) 
curves of progression-free survival (PFS) and overall survival (OS) determined by log-rank tests of patients with low (blue) or high (red) Shannon indexes 
(left curve) or with high relative abundance (blue) or low relative abundance (red) of Bifidobacteriaceae (right curve). (B) KM curves of PFS. (C) KM curves 
of OS
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genera characterized by being in low abundance (Bifido-
bacterium, Aerococcus, Moryella, and Schlegella) and one 
that maintained high abundance (Gardnerella) [41]. Our 
results showed a significant positive correlation between 
the intra-tumoral enrichment of Bifidobacteriaceae and 
infiltrate densities of CD8+T and GzmB+, which sug-
gested that the higher abundance of Bifidobacteriaceae 
within CC tumor tissues may enhance anti-tumor immu-
nity by recruiting and activating CD8+T cells, facilitating 
improved treatment outcomes in patients who receive 
radiotherapy. However, investigations on the role of Bifi-
dobacteriaceae in the intra-tumoral microbiota were 
still very insufficient. Notably, we found that specific 
intra-tumoral microbiome taxa consisting of Bifidobac-
teriaceae, Beijerinckiaceae, and Orbaceae were highly 
predictive of the therapeutic efficacy of EBRT. Very little 
is currently known about potential fluctuations in Bei-
jerinckiaceae and Orbaceae, which may yield superior 
therapeutic outcomes through generating prebiotics or 
otherwise, and requires more insightful investigation in 
the future to elucidate the mechanisms involved. Addi-
tionally, there remains a large number of microbes in 
TME that do not exhibit significant differences in abun-
dance. Determining whether these microbes act as 
promoters, inhibitors, or neutral entities within TME 
requires further investigation. In-depth exploration of 
the interactions between these microbes and host tumor 
cells will enable more accurate characterization of poten-
tial microbial markers composed of specific microbial 
taxa, providing new opportunities for individualized pre-
cision therapy.

Alpha diversity is an essential metric for evaluating 
diversity differences within samples and has been widely 
used in microbial research [42]. Wang et al. [43] exam-
ined the diversity of vaginal microbiota in women with 
locally advanced cervical cancer and evaluated the dif-
ferences between responders and nonresponders. They 
found that there was significantly higher alpha diver-
sity in vaginal samples of nonresponders as compared 
with responders (p < 0.01) and alpha diversity may have 
the potential ability to identify early platinum-resistant 
patients. Our finding suggests that the alpha diversity 
of the intra-tumoral microbiome of CC was negatively 
correlated with infiltrate densities of CD8+ T cells and 
GzmB+, and patients with lower alpha diversity achieved 
a better prognosis. This may be explained by the close-
ness of the cervical tumor to the vaginal environment, 
in which the development of pre-cancerous lesions and 
progression to CC is accompanied by a dramatic reduc-
tion in Lactobacillus among the vaginal microorgan-
isms and markedly increased levels of microbial diversity 
[44–46]. Although the lower microbial diversity may have 
immunomodulatory effects, its role in anti-neoplastic 
responses is not completely clear. We speculate that the 

lower alpha diversity implies a relatively more simplified 
composition of the intra-tumor microbiome, with com-
paratively fewer harmful microorganism components, 
which may be more conducive to CD8+ T cell recruit-
ment and activation.

Through rigorous inclusion and exclusion criteria, 
our study found no association between intra-tumoral 
microbiome characteristics and clinicopathological fac-
tors in patients with cervical cancer who had not received 
antibiotic treatment within four weeks. Nonetheless, in 
clinical practice, antibiotics can significantly impact the 
human microbiome. A study has shown that antibiotic 
therapy, by reducing the load of intra-tumoral bacteria in 
pancreatic cancer, can decrease the recruitment of sup-
pressive cells while increasing the recruitment of innate 
effector cells and enhancing cytolytic T cell activity [47]. 
It is indisputably uplifting to attain such results. However, 
systemic antibiotic administration in practical applica-
tions may raise concerns about antibiotic overuse. There-
fore, developing novel antibiotic treatment strategies 
targeting intra-tumoral bacteria could have a significantly 
positive impact on cancer therapy. By characterizing the 
composition of the tumor microbiome prior to treatment 
and selectively administering antibiotics intra-tumorally 
to eliminate bacteria that inhibit antitumor effects, while 
introducing bacteria that enhance antitumor efficacy into 
the TME, the host’s response to treatment can be opti-
mized. In addition to antibiotic approaches, the develop-
ment of methods such as probiotics, bacteriophages, and 
microbiome editing to remodel the intra-tumoral micro-
biota has emerged as promising potential therapeutic 
tactics. Probiotics have been suggested as a means to pos-
itively influence the diversity of a specific microbiome. 
Administrating Bifidobacterium species orally to mela-
noma-bearing mice demonstrated equivalent efficacy to 
PD-L1 inhibitor treatment, and enhanced the inhibitor’s 
effectiveness when used adjunctively by augmenting the 
quantity and accumulation of primed T cells in tumor 
[38]. Bacteriophages, as the viruses that infect bacteria, 
have the ability to selectively destroy them. In preclinical 
studies, bacteriophages have been shown to exhibit simi-
lar efficacy against specific bacterial taxa as antibiotics, 
with less damage to non-target commensal bacteria [48]. 
Some scientists have identified several Fusobacterium-
targeted bacteriophages capable of penetrating tumors 
and targeting the resident bacteria following intravenous 
administration in mice [49]. Another innovative strategy 
for targeting tumor microbiota is microbiome editing. 
This strategy utilizes bioengineering techniques to cre-
ate microorganisms or its specific antibodies that can be 
directly targeting and destroying tumor cells. The treat-
ment of non-muscle-invasive bladder cancer with Bac-
ille Calmette-Guérin (BCG) and the use of the oncolytic 
virus talimogene laherparepvec (T-VEC) for advanced 
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melanoma illustrate successful regulation of the tumor 
microbe microenvironment through microbiome editing 
techniques [50–53]. Wang et al. found that Bifidobacte-
rium and its specific monoclonal antibody can warm cold 
tumors and improve the abscopal effect of radiotherapy 
[54]. However, the development and application of these 
novel therapeutic strategies are still immature and rely-
ing on further research. Our study provides a foundation 
for investigating the integration of microbial modulation 
strategies with radiotherapy by characterizing the spe-
cific intra-tumoral microbial features associated with the 
efficacy of EBRT in cervical cancer. This work also offers 
new avenues for research aimed at improving the efficacy 
of EBRT in cervical cancer.

A few limitations are noted in this study. First, our 
research is a single-center and small sample study with a 
relatively short follow-up, which limits the ability to form 
robust conclusions with regard to the potential associa-
tion of the intra-tumoral microbiome with survival. Sec-
ond, owing to the inherent limitations of next-generation 
sequencing technology, some low-abundance microor-
ganisms are categorized as “unclassified”, and the impact 
of these unidentified microorganisms, considered to be 
“the human microbiome’s dark matter”, on cancer pro-
gression and treatment prognosis is still unknown [55]. 
However, their presence may have a “butterfly effect” on 
the occurrence and development of tumors. There is a 
need for further research and more advanced methods to 
explore the potential role of these low-abundance micro-
biomes in the future. Finally, the findings of this study 
remain to be validated by in vitro cellular experiments 
and in vivo animal experiments. Multicenter, random-
ized, and placebo-controlled trials are also warranted 
to determine the exact mechanisms by which specific 
microbiota activate antitumor immunity.

Conclusions
Conclusively, we found that the intra-tumoral microbi-
ome unique to the SR group and lower alpha diversity 
were associated with a favorable tumor microenviron-
ment, with characteristics of increased CD8+ T cell infil-
tration in the tumoral milieu, which may be a potential 
predictor for EBRT efficacy in CC patients. Results of this 
study broaden our understanding of the possible function 
of the intra-tumoral microbiome in radiation efficacy, as 
well as provide valuable insights into the pathophysiology 
and potential therapeutics for CC patients.
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