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along with the cell nucleus and other organelles, collec-
tively form the mitochondrial information processing 
system [4–7]. The functionality of mitochondria, which 
is responsible for biosynthesis and signal transduction, 
can be compromised by various diseases, resulting in 
mitochondrial dysfunction that often coincides with the 
progression of pathological conditions [8, 9]. Mitochon-
dria are central to cellular iron metabolism, necessitat-
ing an adequate supply of iron to maintain proper iron 
homeostasis [10]. Iron overload can occur at both the 
cellular and mitochondrial levels, leading to mitochon-
drial dysfunction [11]. Disruptions in mitochondrial 
iron metabolism are correlated with the onset of numer-
ous diseases [3, 12, 13]. Mitochondrial damage resulting 
from iron overload is a multifaceted process that encom-
passes various factors and stages, including, but not lim-
ited to, oxidative stress, DNA damage, and disruptions in 

Introduction
Iron is an essential trace element that is vital for the phys-
iological functioning of the human body. It plays a signifi-
cant role in the biosynthesis of iron-sulfur (Fe–S) clusters 
and heme within mitochondria; these iron-containing 
structures serve as cofactors for numerous enzymes 
[1–3]. Mitochondria, which operate as endosymbionts, 
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Abstract
Iron overload is a pathological condition characterized by the abnormal accumulation of iron within the body, 
which may result from excessive iron intake, disorders of iron metabolism, or specific disease states. This condition 
can lead to significant health complications and may pose life-threatening risks. The excessive accumulation of iron 
can induce cellular stress, adversely affecting the structure and function of mitochondria, thereby compromising 
overall organ function. Given the critical role of mitochondria in cellular metabolism and homeostasis, it is 
imperative to investigate how mitochondrial dysfunction induced by iron overload contributes to disease 
progression, as well as to explore mitochondrial-related pathways as potential therapeutic targets for various iron 
overload disorders. This review examines the mechanisms by which mitochondria are implicated in iron overload-
induced damage, including increased oxidative stress, mitochondrial DNA damage, and disruptions in energy 
metabolism. Additionally, it addresses the relationship between these processes and various forms of programmed 
cell death, as well as alterations in mitochondrial dynamics. Furthermore, the review discusses strategies aimed at 
alleviating and mitigating the complications associated with iron overload in patients by targeting mitochondrial 
pathways.
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energy metabolism. As research in this field progresses, 
new mechanisms are being identified, such as the dys-
regulation of autophagy, the interaction between fer-
roptosis and apoptosis, and changes in mitochondrial 
dynamics. Although the importance of mitochondria in 
the context of iron overload is well recognized, a thor-
ough understanding of these emerging mechanisms pro-
vides valuable insights that may guide future therapeutic 
approaches. This review offers an overview of the current 
advancements in research concerning the diverse mech-
anisms of mitochondrial damage associated with iron 
overload, with a particular emphasis on mitochondrial 
reactive oxygen species (mtROS) as a critical component 
linking the various pathways of damage.

Iron overload stimulates the generation of non-transferrin 
bound iron
Transferrin plays a crucial role in binding iron within the 
bloodstream. When transferrin reaches iron saturation, 
a condition known as iron overload occurs, resulting in 
increased levels of non-transferrin bound iron (NTBI) 
and labile plasma iron (LPI) [14]. NTBI consists of poten-
tially deleterious iron complexes in plasma, predomi-
nantly Fe3+-citrate or albumin complexes [14]. LPI is a 
subset of NTBI that exhibits both redox activity and che-
latable, which increase in conjunction with NTBI levels 
and possess the ability to permeate cells and tissues. LPI 
exhibits a loose binding affinity to proteins and, due to 
its enhanced redox activity, is acknowledged as a signifi-
cant factor contributing to iron-induced oxidative dam-
age [15]. The initial stage in NTBI absorption involves 
the reduction of Fe3+ to Fe2+ facilitated by a membrane-
associated ferrireductase [16]. NTBI/LPI can readily pen-
etrate the heart, liver, spleen, pancreas, and other tissues 
through various transporters, including divalent metal 
transporter 1 (DMT1), ZRT/IRT-like protein 14 (ZIP14), 
lipocalin-2 (LCN-2), T-type calcium channels (TTCC), 
and L-type calcium channels (LTCC), resulting in an 
increase in labile cellular iron (LCI) [14, 17–20]. Surplus 
free iron or NTBI absorbed by cells is integrated into the 
labile iron pool (LIP), from where iron can be transferred 
to mitochondria via DMT1, mitoferrin, and sideroflexin 1 
[21, 22]. Excess free iron within the LIP is stored in ferri-
tin, which can subsequently be transported to lysosomes 
for degradation, thereby replenishing the LIP [22]. A rela-
tively stable LIP is typically maintained through careful 
regulation of iron absorption, storage, utilization, and 
export within cells [23, 24].

Diseases associated with iron overload
Iron overload may arise from genetic predispositions, 
such as hereditary hemochromatosis [25] or ferropor-
tin disease [26], as well as from acquired factors, includ-
ing repeated red blood cell (RBC) transfusions due to 

anemia, increased intestinal iron absorption and inef-
fective erythropoiesis [27]. Prolonged alterations in iron 
metabolism can lead to organ dysfunction, particularly 
affecting the liver and potentially resulting in heart failure 
[28]. Each unit of RBC transfusion introduces approxi-
mately 250 milligrams of iron into the body, which is 100 
times greater than the daily iron absorption observed in 
healthy individuals. Initially, iron overload from transfu-
sions accumulates in the spleen; however, the distribu-
tion of iron within cells evolves over time. As iron stored 
in the spleen is gradually released, plasma transferrin 
becomes saturated, leading to the presence of NTBI in 
the plasma. Transfusion-induced iron overload is char-
acterized by elevated levels of NTBI, which has a strong 
affinity for parenchymal cells [29]. NTBI may serve as a 
distinctive biomarker for iron overload in clinical patients 
[30]. Conditions necessitating frequent transfusions, such 
as myelodysplastic syndromes (MDS), β-thalassemia, and 
sickle cell disease (SCD), can result in transfusional iron 
overload [31–37]. This excess free iron can lead to com-
plications such as iron overload cardiomyopathy (IOC), 
endocrine issues, and liver failure [31, 38, 39]. Patients 
receiving repeated blood transfusions for hematopoietic 
stem cell transplantation are at risk of developing iron 
overload, which may remain undetected until years later 
when significant methemoglobinemia is diagnosed [40]. 
IOC is a leading cause of mortality in individuals with 
chronic anemia-related disorders, such as β-thalassemia 
and SCD, who undergo long-term transfusions, affecting 
approximately 2.5% of chronically transfusion-depen-
dent SCD patients [19, 36, 41]. While the toxicity of iron 
overload is less pronounced in SCD patients compared 
to those with β-thalassemia, iron accumulation primar-
ily occurs in the liver rather than in the heart and endo-
crine organs [35, 42]. Iron can also enter the brain from 
the bloodstream through the blood-brain barrier. Trans-
fusion-dependent β-thalassemia patients may experi-
ence brain iron overload, potentially leading to cognitive 
impairment, in contrast to non-transfusion-dependent 
patients [43]. Further research is necessary to elucidate 
the neurotoxic mechanisms associated with brain iron 
overload in patients with β-thalassemia.  Furthermore, 
research has demonstrated that patients experiencing 
transfusion-related acute lung injury display an imbal-
ance in iron homeostasis within the lungs, particularly 
characterized by iron overload [44].

Certain diseases and pharmacological treatments 
may contribute to iron overload in patients. Metabolic 
hyperferritinemia is associated with iron accumulation, 
which heightens the risk of hepatic and cardiometabolic 
diseases [45]. Iron overload is particularly prevalent in 
individuals with metabolic syndrome, especially among 
the aging population [46]. Furthermore, an imbalance in 
iron homeostasis has been linked to respiratory diseases, 
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with iron overload and mitochondrial dysfunction play-
ing significant roles in pulmonary dysfunction and pul-
monary fibrosis [47]. In the context of neurodegenerative 
diseases, such as Friedreich’s ataxia (FA), mitochondrial 
iron overload is implicated in both cardiac and neuro-
logical pathologies; deficiencies in frataxin lead to detri-
mental changes in iron metabolism, resulting in oxidative 
stress and cellular injury [48, 49]. Additionally, the car-
diac toxicity associated with the chemotherapeutic agent 
doxorubicin (DOX) and myocardial infarction may be 
connected to the accumulation of iron within cells and 
mitochondria [50]. The phenomenon of iron overload, 
whether of genetic origin or acquired through external 
factors, provides a basis for a renewed investigation into 
the pathophysiological mechanisms underlying iron-
related disorders.

Iron overload disrupts mitochondrial metabolism and 
increases oxidative stress
In instances of iron overload, surplus intracellular iron 
may be transferred to the mitochondria [11]. Mitoferrin 
(Mfrn), which includes Mfrn1 and Mfrn2, plays a cru-
cial role in facilitating the transport of iron across the 
inner mitochondrial membrane [51, 52]. Mfrn1, a pro-
tein with a molecular weight of 38 kDa, is predominantly 
expressed in erythroid cells, while its expression in other 
tissues is minimal. In contrast, Mfrn2, a 39 kDa protein, 
is primarily located in non-erythroid tissues [53–55]. 
Cytoplasmic iron can enter the mitochondria from the 
cytoplasm through Mfrn2 and the mitochondrial calcium 
uniporter (MCU) [56]. Mitochondria require a continu-
ous supply of iron to support the synthesis of heme and 
Fe-S cluster synthesis, thereby preventing the initiation 
of the Fenton reaction and the subsequent generation of 
ROS. The capacity for iron transport into the mitochon-
dria is augmented in states of iron overload. However, the 
normal utilization and release of iron are constrained, 
resulting in elevated production of ROS and a decrease in 
the biosynthesis of heme and Fe-S clusters during condi-
tions of iron overload [57].

The electron transport chain (ETC) is integral to aer-
obic respiration in eukaryotic cells, located within the 
inner mitochondrial membrane (IMM). It consists of 
a series of protein complexes (I, II, III, IV) and electron 
carriers that facilitate the oxidation of electrons derived 
from nicotinamide adenine dinucleotide (NADH) and 
flavin adenine dinucleotide (FADH2) through a series 
of biochemical reactions, ultimately reducing molecu-
lar oxygen (O2). The energy released during this pro-
cess is harnessed to transport protons across the IMM, 
generating a proton motive force that drives oxidative 
phosphorylation (OXPHOS), culminating in ATP pro-
duction by ATP synthase [58, 59]. Elevated levels of ROS 
can be induced by excessive free iron or LIP through the 

Haber-Weiss and Fenton reactions, with ROS originat-
ing from various sources, including xanthine oxidase, 
NADPH oxidase, and mitochondria [60–62]. Mitochon-
dria function not only as sites of significant redox activ-
ity but also as key contributors to the generation of ROS 
in response to iron [41]. The incomplete reduction of O2 
during respiration within the ETC can trigger the pro-
duction of ROS, a process that is catalyzed by iron ions. 
Specifically, the combination of hydrogen peroxide and 
superoxide results in the formation of hydroxyl radicals 
[63]. And mtROS are primarily produced at complex I or 
complex III of the ETC [64]. The mitochondrial respira-
tory chain is closely linked to intracellular iron, particu-
larly intramitochondrial iron [65]. An excess of iron can 
disrupt the function of proteins within the mitochondrial 
respiratory chain, thereby impairing electron transport 
and proton pumping. The accumulation of intracellular 
iron may lead to reduced activity of respiratory enzymes, 
resulting in incomplete reduction of O2 and an increase 
in free radical production. The lipid components of mito-
chondrial membranes are abundant in polyunsaturated 
fatty acids, and free radicals may interact with these lip-
ids, causing peroxidative damage. The absence of car-
diolipins and other essential lipid constituents of the 
mitochondrial membrane may hinder the assembly and 
functionality of the respiratory chain. As a result, oxida-
tive inactivation of enzymes involved in the mitochon-
drial respiratory chain can create a detrimental feedback 
loop [41].

Iron overload exacerbates oxidative stress and lipid 
peroxidation by adversely affecting mitochondrial func-
tion and structural integrity, ultimately resulting in tis-
sue damage. The mitochondrial dysfunction induced by 
iron overload in cardiac tissue is a significant contribu-
tor to IOC [17]. Mitochondrial dysfunction is a preva-
lent risk factor for various cardiovascular diseases, with 
the heart being particularly susceptible due to its high 
oxygen consumption and limited antioxidant capac-
ity, necessitating a substantial number of mitochondria. 
Damage to mitochondria resulting from iron overload 
leads to a reduction in ATP synthesis, which may impair 
cardiac contractility [66, 67]. Additionally, iron overload 
has been shown to increase mitochondrial iron accu-
mulation and the production of mtROS, contributing 
to insulin resistance in H9c2 cardiomyoblast cells [68]. 
MitoNEET is a protein that effectively mitigates mito-
chondrial iron accumulation in the presence of excess 
extracellular or intracellular iron [69]. Overexpression of 
MitoNEET in cardiomyoblast cells or the application of 
the mitochondrial antioxidant Skq1 can alleviate insulin 
resistance induced by ferric ammonium sulfate [68]. Fur-
thermore, iron overload exacerbates atherosclerosis and 
vascular aging by increasing NTBI, which leads to exces-
sive mtROS production [34, 61]. The specific knockout 
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of the endothelial cell iron transporter Mfrn2 in ApoE-
/- mice has been shown to reduce the formation of ath-
erosclerotic lesions and levels of intercellular adhesion 
molecule-1 (ICAM-1) in the aorta, indicating that Mfrn2 
deficiency alleviates endothelial dysfunction by lowering 
mitochondrial iron levels and reducing mitochondrial 
dysfunction [55]. NTBI can damage liver and kidney 
function through oxidative stress and mitochondrial 
dysfunction [70, 71]. Iron overload generates excessive 
hydroxyl radicals and induces oxidative stress, leading to 
structural and functional abnormalities in mitochondria, 
which may be a key factor in the dysfunction of various 
lung cells and further contribute to the progression of 
pulmonary fibrosis [47, 72].

Heightened oxidative stress resulting from an excess of 
iron is a significant contributor to cellular damage. The 
primary strategy for managing iron overload involves 
iron chelation therapy, which employs agents such as 
Desferrioxamine, Deferiprone (DFP), and Deferasirox to 
facilitate the removal of excess free iron from the body. 
These chelating agents function by forming complexes 
with iron; however, they exhibit limitations in terms of 
oral bioavailability and plasma half-life, and they are 
unable to completely prevent iron-mediated oxidative 
stress [73]. Current research is investigating the potential 
benefits of combining iron chelators with other pharma-
cological interventions to enhance treatment efficacy. A 
limitation of the DFP is its lack of specificity for mito-
chondria. The application of antioxidants, particularly 
those that target mitochondria, can alleviate the harm-
ful effects of excessive iron accumulation across various 
cell types and tissues. For example, MitoTEMPO, a mito-
chondria-specific antioxidant, exhibits greater efficacy in 
mitigating iron-induced mitochondrial dysfunction com-
pared to the general antioxidant N-acetyl cysteine (NAC) 
[74]. The use of mitochondria-targeted tri-catechol-
based iron chelators, in combination with mitochondria-
homing Szeto-Schiller (SS) peptides, enables the precise 
delivery of iron-selective chelating agents to mitochon-
dria. This strategy provides a means to protect cells by 
chelating excess mitochondrial iron in conditions of iron 
overload [75].

Oxidative stress worsens mitochondrial damage
The elevated production of ROS has been shown to 
induce depolarization of the mitochondrial membrane 
potential (∆Ψm) and the subsequent opening of the 
mitochondrial permeability transition pore (mPTP) [76, 
77]. This process may facilitate the release of various 
mitochondrial components and their metabolic byprod-
ucts, which possess immunogenic characteristics, such 
as mitochondrial DNA (mtDNA) and cytochrome C, 
into the cytoplasm. Consequently, this release can initi-
ate an immune response characterized by the presence of 

damage-associated molecular patterns (DAMPs) [78–81]. 
Notably, mtDNA is situated near the inner mitochondrial 
membrane, a critical site for ROS generation; thus, iron 
overload may result in damage to mtDNA and its release 
[71, 82–84]. Damage and mutations in mtDNA have been 
associated with diseases related to iron overload, such as 
FA [85]. In addition to the direct damage caused by oxi-
dative stress, elevated iron levels have been shown to dis-
rupt the synthesis and function of respiratory subunits 
by affecting mtDNA [86]. Furthermore, excessive iron 
can induce apoptosis in liver and kidney cells by causing 
mtDNA damage [71].

The phenomenon known as ROS-induced ROS release 
(RIRR) describes a mechanism whereby iron overload 
triggers a surge of ROS in the liver [87]. The mPTP is a 
multi-protein complex that, when persistently open, 
causes mitochondrial swelling, potentially leading to 
rupture of the mitochondrial outer membrane. When 
iron overload results in an increase in ROS that reaches 
a threshold sufficient to trigger mPTP opening, this, in 
turn, causes a simultaneous collapse of the ∆Ψm and a 
transient increase in ROS production within the ETC. 
The release of ROS into the cytosol may serve as a sec-
ond messenger, activating RIRR in adjacent mitochon-
dria. Consequently, mitochondrial-to-mitochondrial 
RIRR constitutes a positive feedback mechanism that 
enhances ROS production, potentially resulting in severe 
mitochondrial and cellular damage (Fig.  1) [87, 88]. A 
recent finding indicated that acute iron overload induces 
mtROS and depolarization of ∆Ψm, leading to mPTP 
opening and promoting calcium waves and arrhythmias, 
thereby positioning mPTP as a target for mitigating the 
arrhythmic effects of iron overload [89]. Iron homeosta-
sis is crucial for maintaining normal lung function [47].

Iron overload-induced programmed cell death
The academic community has consistently recognized 
the mechanisms related to increased mitochondrial oxi-
dative stress and impaired energy metabolism in the 
context of iron overload. As research has progressed, the 
association between mitochondrial dysfunction and pro-
grammed cell death (PCD) in conditions of iron excess 
has become more clearly defined. Importantly, processes 
such as autophagy and ferroptosis have emerged as criti-
cal areas of focus in current research (Fig. 1).

Apoptosis
Apoptosis involves intricate intrinsic and extrinsic signal-
ing pathways [90]. The intrinsic pathway, which is reliant 
on mitochondrial function, is initiated by various intra-
cellular stimuli, including DNA damage, deprivation of 
growth factors, and oxidative stress. The primary regu-
latory components of intrinsic apoptosis are the B-cell 
lymphoma-2 (BCL-2) protein family, which encompasses 
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both pro-apoptotic and anti-apoptotic proteins. The acti-
vation of intrinsic apoptosis leads to the release of cyto-
chrome c, which subsequently activates caspase-9 and 
caspase-3 [91–93]. Conversely, the extrinsic pathway of 
apoptosis is initiated by the binding of death ligands to 
death receptors, which activates downstream effector 
caspase-8, ultimately resulting in the activation of cas-
pase-3, -6, and − 7, thereby inducing direct cell death [94]. 
Cytochrome c plays a central role in the process of mito-
chondria-dependent apoptosis [90, 91]. Furthermore, 
mitochondria are essential for maintaining intracellular 
calcium ion  (Ca2+) homeostasis by regulating calcium 
channels and sodium-calcium exchangers located on 
the membrane, as well as by interacting with organelles 
such as the endoplasmic reticulum [95]. Variations in 

Ca2+ concentration can significantly affect mitochondrial 
function, and an imbalance in Ca2+ may initiate apoptosis 
[96]. Additionally, iron overload can impair mitochon-
drial dynamics, leading to abnormal morphology and 
functionality, thereby increasing cellular susceptibility to 
apoptosis and ferroptosis signals.

In instances of iron overload, a significant correlation 
exists between apoptosis and mitochondrial function. 
Research utilizing a mouse model of chronic iron over-
load has demonstrated that excess iron acts as a ROS 
stimulant, thereby exacerbating mitochondrial damage 
[97]. Elevated levels of iron within mitochondria can lead 
to membrane depolarization, which facilitates the release 
of cytochrome c. This release subsequently activates the 
caspase cascade pathway, culminating in apoptosis [97]. 

Fig. 1  The pathways of damage that occur following mitochondrial damage and the introduction of mitochondrial reactive oxygen species into the cy-
toplasm. Abbreviations: PTPC, permeability transition pore complex; PINK1, PTEN-induced putative kinase 1; mPTP, mitochondrial permeability transition 
pore; GSDMD, gasdermin D; GSDMD-N, GSDMD N-terminal; mtROS, mitochondrial reactive oxygen species; mtDNA, mitochondrial DNA; ∆Ψm, mitochon-
drial membrane potential; Cytc, Cytochrome c; BAX, B-cell leukemia/lymphoma 2 (BCL2)-associated X; BAK, BCL2 antagonist/killer
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An increasing body of clinical evidence indicates that 
iron overload is a significant factor contributing to the 
death of bone marrow cells in patients with hematologic 
diseases [98, 99]. Bone marrow mesenchymal stromal 
cells (BMMSCs) are essential for maintaining bone mar-
row homeostasis and providing hematopoietic support 
[100]. Studies employing mouse models indicate that iron 
overload induces ROS production in both mitochondria 
and the cytoplasm, resulting in apoptosis of BMMSCs 
and osteoblasts [101, 102]. In the investigation of iron 
overload-induced bone marrow cell death, the levels of 
ROS and the initiation of apoptosis are primarily linked 
to the mitogen-activated protein kinase (MAPK) pathway 
[98]. Additionally, iron overload induces endoplasmic 
reticulum stress in MC3T3-E1 osteoblasts by elevating 
ROS levels and disrupting calcium homeostasis, which 
leads to mitochondrial fission and subsequent apoptosis 
due to excessive calcium accumulation in mitochondria 
[103]. In conclusion, mitochondria are pivotal in mediat-
ing apoptosis induced by iron overload through various 
mechanisms.

Ferroptosis
Ferroptosis is a type of PCD by the production of ROS 
and lipid peroxidation [104] Mitochondria function as 
both initiators and amplifiers of ferroptosis. The process 
of iron-dependent phospholipid peroxidation is modu-
lated by various cellular metabolic pathways, with iron 
and mitochondrial metabolism playing pivotal roles 
in the regulatory network associated with ferropto-
sis. When mitochondrial structure is compromised and 
function is impaired, these organelles can disrupt energy 
metabolism and the balance between excitatory and 
inhibitory signals.

The susceptibility to ferroptosis is influenced by cell 
type and is contingent upon the antioxidant capacity 
present within cells [98, 105]. Prior research has indi-
cated that ferroptosis inhibitors can confer protection 
against myocardial disease in SCD mouse models [106]. 
The pathophysiology of doxorubicin and ischemia/
reperfusion-induced myocardial injury in mice may be 
primarily associated with increased mitochondrial iron 
levels and lipid peroxidation, suggesting that mitochon-
drial oxidative damage is a principal mechanism under-
lying ferroptosis in this context [107]. The uptake of 
mitochondrial iron can be mediated by the MCU, which 
plays a critical role in mitochondrial calcium absorption 
[108]. Studies investigating the regulation of ion chan-
nels relevant to mitochondrial iron transport and cardiac 
dysfunction due to iron overload have demonstrated that 
the MCU facilitates the transport of Fe2 + into the mito-
chondria, while Mfrn2 may serve a regulatory function in 
this process [11]. In models of acute iron overload, fer-
roptosis induced by lipocalin-2 exhibits characteristics 

that diverge from classical ferroptosis. Specifically, this 
includes the generation of mtROS, alterations in mito-
chondrial morphology and function, increased calcium 
ion uptake, and the regulation of specific genes, all of 
which collectively contribute to ferroptosis. Notably, 
lipocalin-2-induced ferroptosis in the liver initiates the 
production of mtROS and enhances mitochondrial cal-
cium absorption, culminating in ferroptosis [109].

Current research regarding the impact of ferroptosis 
on diseases associated with iron overload is still relatively 
limited. The insights derived from these investigations 
could enhance the development of novel therapeu-
tic strategies for conditions related to iron overload by 
improving our understanding of the mechanisms under-
lying both classical and non-classical ferroptosis induced 
by excess iron. Ferroptosis can be inhibited by various 
agents, including iron chelators, antioxidants, Trolox, 
MitoTEMPO (which specifically targets mitochondria), 
and Ferrostatin-1 (a lipophilic scavenger of free radicals) 
[11, 110, 111]. Additionally, natural antioxidants such 
as chebulagic and chebulinic acids have been shown to 
prevent ferroptosis without causing harm [112]. It is cru-
cial to acknowledge that the use of antioxidants, such as 
vitamins C and E, for disease prevention may, in some 
instances, increase the risk of mortality [113, 114].

Autophagy
Autophagy exhibits dual roles in conditions charac-
terized by iron overload. Within cellular contexts, 
autophagy can function as a protective compensatory 
mechanism in response to elevated iron levels, thereby 
mitigating cell death associated with oxidative stress 
and other detrimental factors [115]. Recent studies have 
demonstrated that mtROS can induce autophagy [116, 
117]. Specifically, ROS generated due to iron overload 
are pivotal in triggering mitochondria-dependent apop-
tosis. In an iron overload model in L6 skeletal muscle 
cells, these cells respond to the perturbation by attempt-
ing to activate autophagy to maintain optimal homeo-
stasis and functionality. Defects in autophagy, such as 
those observed in Atg5K130R/Atg7 knockout cells, iron 
overload-induced ROS and apoptosis. Although elevated 
iron levels may initially enhance autophagic activity, they 
ultimately disrupt the autophagy, thereby compromising 
the self-protective capabilities of autophagy [118]. For 
another, Zhou et al. et al. found that under iron overload 
conditions, increases expression and GFP-LC3-positive 
autophagosomes in bone marrow cells, leading signifi-
cantly reducing viability. They discovered that that iron 
overload-induced damage to bone marrow is exacerbated 
by the inhibition of Sirtuin 3 (SIRT3) activity and expres-
sion. This inhibition leads to an increase in the acetyla-
tion of superoxide dismutase 2, which subsequently 
regulates the accumulation of mtROS and promotes 



Page 7 of 14Zhao et al. Journal of Translational Medicine         (2024) 22:1057 

autophagy [99]. Curcumin, a natural yellow pigment 
derived from the rhizomes of Curcuma longa, exhibits 
anti-inflammatory, antioxidant, and iron-chelating prop-
erties [119]. It has been shown to protect bone marrow 
by reversing the mtROS-dependent autophagy pathway 
[99]. In conclusion, under conditions of iron overload, 
the interplay between autophagy and mitochondria cre-
ates a complex regulatory network. Further investigation 
is necessary to enhance our understanding of the role of 
autophagy in the progression of iron overload-related 
damage and to develop innovative therapeutic strategies 
that target autophagic pathways.

It is noteworthy that sublethal permeabilization of 
the mitochondrial outer membrane induces mitophagy, 
which serves to limit the release of mtDNA and ROS by 
facilitating the degradation of dysfunctional mitochon-
dria via lysosomal pathways. This process subsequently 
inhibits pattern recognition receptor (PRR) signaling and 
mitigates inflammatory responses [120, 121]. Further-
more, Parkin-dependent mitophagy can produce mito-
chondrial-derived vesicles from mitochondrial DAMPs 
(mtDAMPs), thereby suppressing inflammation in neigh-
boring cells [122]. Nevertheless, insufficient autophagy or 
systemic abnormalities may result in pathological inflam-
mation as a consequence of mitochondrial dysfunction 
[123].

In summary, mtROS serve as primary DAMPs that 
activate inflammasomes in the context of iron overload 
conditions. They play a pivotal role in a complex pathway 
that intersects with the molecular mechanisms govern-
ing PCD at various junctures. The excessive generation of 
mtROS resulting from iron overload can initiate diverse 
forms of cellular demise, each characterized by intricate 
and distinct PCD processes. Although multiple cell death 
pathways, including apoptosis, autophagy, and ferropto-
sis, have been investigated, the majority of studies have 
focused on individual mechanisms. Given that mtROS 
can induce varying degrees and types of PCD under dif-
ferent stress scenarios, future research should prioritize 
the exploration of the interplay and modulation of these 
cell death pathways in the context of mitochondrial oxi-
dative stress.

The impact of iron overload on mitochondrial dynamics
Mitochondria are dynamic organelles within cells, char-
acterized by processes of fusion and fission. The equilib-
rium between these processes is crucial for shaping the 
mitochondrial network and influencing its functional-
ity [124]. These dynamics are meticulously regulated by 
specific proteins. Mitochondrial fusion is mediated by 
Mfn1, Mfn2, and optic atrophy 1 (OPA1), whereas mito-
chondrial fission is governed by dynamin-related pro-
tein 1 (Drp1) and fission 1 (Fis1) [125]. An imbalance in 
mitochondrial dynamics has been observed in conditions 

of iron overload [126]. Mitochondrial fragmentation is 
essential for generation of ROS and inducing cell death 
[127, 128]. Khamseekaew et al. demonstrated that dur-
ing ischemia-reperfusion injury, the ratio of Drp-1/
Mfn-2 in the hearts of both wild-type and β-thalassemia 
mice was significantly elevated [126]. The precise regula-
tion of Drp1 is vital for cellular health, as excessive acti-
vation of Drp1 under pathological conditions triggers 
mitochondrial fission and the release of cytochrome c, 
ultimately leading to apoptosis [129]. Numerous studies 
have indicated that in scenarios of iron overload, there 
is an increase in mitochondrial stress, which results in 
mitochondrial fragmentation and a disruption of the fis-
sion and fusion [68, 130]. This cascade of events subse-
quently elevates ROS levels within the mitochondria and 
the intracellular environment, contributing to the onset 
of ferroptosis [131, 132]. Therefore, strategies aimed at 
inhibiting or promoting mitochondrial fission may rep-
resent potential therapeutic approaches to mitigate IOC. 
Certain NTBI species are taken up by tissues through 
TTCC and LTCC, which may lead to increased intracel-
lular calcium levels in instances of iron overload [133]. 
Iron-induced Ca2+ signals control mitochondrial dynam-
ics via the Ca2+/calmodulin and Ca2+/calpain pathways, 
resulting in the dephosphorylation of Drp1(Ser637), 
which leads to mitochondrial fragmentation and neu-
ronal death in iron-related neurodegenerative diseases. 
This underscores the potential significance of Ca2+-medi-
ated calcineurin signaling in the regulation of mitochon-
drial dynamics during neuronal damage induced by iron 
overload [134].

In recent decades, calcium channel blockers and mod-
ulators of mitochondrial dynamics, such as mitochon-
drial division inhibitor 1 (Mdivi-1) and the mitochondrial 
fusion promoter M1, have demonstrated cardioprotec-
tive and neuroprotective properties in various experi-
mental models [129, 135, 136]. Recently, Mdivi-1 has 
shown potential roles that extend beyond its function 
in mediating mitochondrial fission; it has been found to 
reversibly inhibit complex I and mitigate ROS production 
associated with reverse electron transport (RET). Fur-
thermore, Mdivi-1 has been observed to reduce neuronal 
damage by decreasing oxidative stress and depolarizing 
mitochondrial membranes through a mechanism that is 
independent of Drp1 [129]. However, further investiga-
tion is required to validate the efficacy and safety of these 
approaches for future clinical applications.

Therapeutic
Mitochondrial transplantation
Mitochondrial transplantation represents a novel thera-
peutic strategy that involves the transfer of healthy mito-
chondria into damaged recipient cells with the aim of 
restoring tissue function [137]. Preclinical studies have 
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indicated the potential efficacy of this approach across 
a range of diseases, including ischemia-reperfusion 
injury, neurodegenerative disorders, kidney diseases, 
acute respiratory distress syndrome, and cancer [124, 
138–143]. This technique has the capacity to restore dys-
functional mitochondria by introducing healthy counter-
parts, thereby improving cellular energy metabolism and 
overall cellular function. Consequently, it is posited that 
mitochondrial transplantation may provide therapeutic 
advantages in mitigating tissue mitochondrial damage 
resulting from iron overload.

Pharmacology
Iron overload induces mitochondrial dysfunction in 
recipient cells, leading to tissue injury. This process can 
be addressed through the development of targeted phar-
macological interventions that modulate mitochondrial 
function. Currently, the primary strategies for mitochon-
drial intervention include inhibiting the entry of iron 
into mitochondria, regulating mitochondrial redox sta-
tus, enhancing mitochondrial biogenesis, and managing 
mitochondrial dynamics.

As of the present time, specialized therapies aimed at 
mitochondrial targets have yet to receive approval for 
clinical use. Consequently, treatment strategies remain 
primarily within the preclinical and clinical trial phases 
[137]. The therapeutic category most frequently refer-
enced in the domain of mitochondrial medicine is mito-
chondrial-targeted complexes, particularly antioxidants, 
which are designed to mitigate the pathological accumu-
lation of mtROS and to preserve mitochondrial function 
[144, 145]. Antioxidants based on quinone, including 
coenzyme Q10 (CoQ) analogs such as idebenone and 
EPI-743, act as mitochondria-targeted antioxidants and 
show promising prospects in preclinical studies; as well 
as vitamin E derivatives, such as the water-soluble son-
licromanol, are employed to address mitochondrial 
oxidative damage [146–148]. Efforts to inhibit the per-
meabilization of the mitochondrial inner or outer mem-
brane may reduce the release of ROS and occurrences of 
PCD [92, 123, 149]. For instance, compounds like cyclo-
sporin A (CsA) act as inhibitors of the mPTP by obstruct-
ing the peptidyl-prolyl cis/trans isomerase active site of 
Cyclophilin D [150]. Additionally, Furthermore, a specific 
inhibitor of BCL-2 has been approved for clinical use, 
functioning by directly modulating the mitochondrial 
outer membrane permeabilization (MOMP) molecular 
pathway [151, 152]. Lipophilic cations present a viable 
solution to the challenge of mitochondrial targeting in 
drug delivery. These molecules exhibit low transmem-
brane activation energy, allowing them to penetrate the 
phospholipid bilayer and accumulate within mitochon-
dria without necessitating an uptake mechanism [153, 
154]. Examples of lipophilic cations include MitoQ and 

SKQ1, which effectively target mitochondria by autono-
mously entering the phospholipid bilayer [155, 156]. 
The SS peptide family comprises oligopeptides that spe-
cifically target mitochondria, thereby safeguarding their 
function by stabilizing the inner mitochondrial mem-
brane and inhibiting the formation of mtROS [157]. Tri-
phenylphosphonium (TPP+) is another lipophilic cation 
utilized in the development of numerous mitochondria-
targeted drugs, such as mitoQuinone and mitoTEMPO 
[158, 159]. Several compounds have been identified for 
their ability to selectively target the complex I site in 
mitochondria, thereby inhibiting the generation of ROS 
and retarding the production of RET without disrupting 
normal OXPHOS processes [160–162]. The field of mito-
chondrial-targeted therapy is continuously advancing, 
with ongoing research dedicated to the exploration of 
new compounds, peptides, and nanoparticles that exhibit 
improved specificity for mitochondria [153, 163–165]. 
This pursuit aims to develop more efficient and precise 
intervention approaches.

Mitochondrial biogenesis is a critical cellular pro-
cess that facilitates the generation of new mitochondria, 
which is essential for preserving tissue homeostasis. 
The peroxisome proliferator-activated receptor-gamma 
coactivator 1-alpha (PGC-1α) is a key regulatory factor 
in this biological mechanism [166]. Various pharmaceuti-
cal agents that promote mitochondrial biogenesis target 
specific regulatory pathways to enhance mitochondrial 
production, presenting potential therapeutic avenues 
for conditions associated with mitochondrial dysfunc-
tion [167, 168]. AMP-activated protein kinase (AMPK) 
activators have been shown to increase the transcrip-
tional activity of PGC-1α, thereby facilitating mitochon-
drial biogenesis. For instance, PXL770 has been shown 
to restore mtDNA copy number and PGC-1α mRNA 
expression in a mouse model of autosomal dominant 
polycystic kidney disease (ADPKD) [169]. Resveratrol, a 
sirtuin-activating compound, enhances the activity of the 
SIRT1-PGC-1α axis and promotes muscle remodeling in 
mice with Duchenne muscular dystrophy [170]. Peroxi-
some proliferator-activated receptor (PPAR) agonists 
are critical for mitochondrial biogenesis. For example, 
Bezafibrate activates PPARs and enhances the transcrip-
tion of genes associated with mitochondrial biogenesis 
[171]. Pioglitazone, a PPAR-γ agonist, has been shown 
to positively influence mitochondrial biogenesis in indi-
viduals with diabetes and exhibits neuroprotective effects 
in mouse models of Alzheimer’s disease [172]. Addition-
ally, metformin enhances mitochondrial biogenesis by 
activating AMPK, which increases PGC-1α expression 
and activation. Nicotinamide mononucleotide (NMN), 
an NAD + supplement, also activates PGC-1α [173, 174]. 
Mdivi-1 and other pharmacological agents target the bal-
ance of mitochondrial dynamics. A synergistic effect has 
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been reported in Alzheimer’s disease cell models with 
the combined treatment of SS-31 and Mdivi-1 [175]. The 
Drp1 antagonist peptide has demonstrated therapeutic 
effects in an in vitro model of Parkinson’s disease [176].

Diet and exercise
In addition to pharmacological interventions, individu-
als requiring prolonged RBC transfusions may improve 
mitochondrial dysfunction through lifestyle modifica-
tions. Research has demonstrated that physical activity 
and athletic training can enhance mitochondrial func-
tion [177, 178]. It is essential to select appropriate exer-
cises tailored to individual tolerance levels under medical 
supervision, as this can contribute to the overall well-
being of patients. Furthermore, dietary adjustments, such 
as the adoption of a Mediterranean diet rich in antioxi-
dants, omega-3 fatty acids, and polyphenols, may have 
a positive impact on mitochondrial health [179, 180]. 
Nutritional supplements, including carnitine, CoQ, cre-
atine, and vitamin B2, also provide potential benefits 
[181–186]. Modifying dietary composition, as exempli-
fied by the ketogenic diet (KD), which emphasizes high 
fat and low carbohydrate intake, may simulate a fast-
ing state by stimulating ketone production. The KD has 
been shown to elicit antioxidant and anti-inflammatory 
responses in cells, thereby alleviating mitochondrial 
stress [187–189].

The lifestyle modifications discussed herein include 
a variety of intervention strategies designed to improve 
health and reduce tissue damage linked to mitochondrial 
dysfunction by enhancing mitochondrial function. How-
ever, additional randomized controlled trials are required 
to confirm their efficacy and safety. Furthermore, it is 
essential to consider the potential side effects associated 
with long-term dietary and pharmacological interven-
tions, while also accounting for individual differences 
when implementing these changes under the guidance of 
healthcare professionals.

Conclusions and future directions
Mitochondria not only represent a therapeutic target for 
tissue damage induced by iron overload but also play a 
pivotal role in modulating the physiological response to 
such overload. The established mechanisms provide sub-
stantial insights into the pathogenesis of diseases related 
to iron overload, while the recent mechanisms introduce 
innovative avenues for exploring potential therapeutic 
targets. Through complex mechanisms involving oxida-
tive stress, mitochondrial dynamics, and their effects 
on PCD, mitochondria have emerged as key regulators 
in the context of iron overload-related damage. Despite 
the limited research available on the interplay between 
mitochondria and iron overload, their critical function in 
maintaining iron homeostasis and managing associated 

damage underscores their importance in the pathologi-
cal processes of both congenital and acquired iron over-
load. Further research is essential to clarify the specific 
roles of mitochondria in the adverse reactions elicited by 
iron overload and to uncover the underlying mechanisms 
involved. Moreover, mitochondrial transplantation repre-
sents a novel strategy for addressing tissue damage result-
ing from iron overload. Therapeutic approaches such as 
antioxidant therapy, mitochondrial-targeted compounds, 
and lifestyle modifications present promising opportuni-
ties to mitigate mitochondrial dysfunction and alleviate 
the side effects associated with iron overload. The com-
plex nature of clinical monitoring for adverse reactions, 
combined with the multifaceted characteristics and elu-
sive phenotypic thresholds of mitochondrial dysfunction, 
complicates our understanding of its role in various dis-
eases. As the field of mitochondrial medicine progresses, 
the translation of research findings into clinical practice 
will require interdisciplinary collaboration to bridge the 
gap between molecular insights and therapeutic inno-
vations. This collaboration is crucial for improving the 
prognosis and survival rates of patients facing compli-
cations related to iron overload from diverse etiological 
sources.
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