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Abstract
Background Sjögren’s Syndrome (SS) is a rare chronic autoimmune disorder primarily affecting adult females, 
characterized by chronic inflammation and salivary and lacrimal gland dysfunction. It is often associated with 
systemic lupus erythematosus, rheumatoid arthritis and kidney disease, which can lead to increased mortality. Early 
diagnosis is critical, but traditional methods for diagnosing SS, mainly through histopathological evaluation of salivary 
gland tissue, have limitations.

Methods The study used 100 labial gland biopsy, creating whole-slide images (WSIs) for analysis. The proposed 
model, named Cell-tissue-graph-based pathological image analysis model (CTG-PAM) and based on graph theory, 
characterizes single-cell feature, cell-cell feature, and cell-tissue feature. Building upon these features, CTG-PAM 
achieves cellular-level classification, enabling lymphocyte recognition. Furthermore, it leverages connected 
component analysis techniques in the cell graph structure to perform SS diagnosis based on lymphocyte counts.

Findings CTG-PAM outperforms traditional deep learning methods in diagnosing SS. Its area under the receiver 
operating characteristic curve (AUC) is 1.0 for the internal validation dataset and 0.8035 for the external test dataset. 
This indicates high accuracy. The sensitivity of CTG-PAM for the external dataset is 98.21%, while the accuracy is 
93.75%. In comparison, the sensitivity and accuracy for traditional deep learning methods (ResNet-50) are lower. The 
study also shows that CTG-PAM’s diagnostic accuracy is closer to skilled pathologists compared to beginners.
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Introduction
Sjögren’s Syndrome (SS) is a rare chronic multisystem 
autoimmune disorder, affecting only 8% of the global 
population [1–3]. It primarily affects adult females and 
is characterized by persistent inflammatory features [4]. 
The hallmark feature of SS is impaired functionality of 
salivary and lacrimal glands, resulting in significant dry-
ness of the oral mucosa [5]. The clinical manifestations 
of SS encompass oral and ocular dryness, resemble those 
observed in other conditions characterized by dry oral 
symptoms, including Sjögren’s syndrome-like disease. 
These manifestations pose a diagnostic challenge due to 
their similarity and necessitate lip gland biopsy for accu-
rate identification. A strong correlation exists between 
the onset of SS and systemic lupus erythematosus (15-
36%) and rheumatoid arthritis (20-32%) [6]. SS may 
potentially involve systemic organ damage and the devel-
opment of B-cell lymphomas, affecting the respiratory, 
digestive, urinary, and reproductive system [7–11]. For 
instance, it can lead to kidney damage and in severe cases 
progress to kidney failure and mortality. In comparison 
to isolated rheumatoid arthritis, the presence of Sjögren’s 
Syndrome intensifies joint inflammation and joint dam-
age, leading to heightened extra-articular symptoms such 
as pain, fatigue, anemia, and pulmonary function altera-
tions. Additionally, it escalates the mortality rate among 
rheumatoid arthritis patients [12]. Therefore, the early 
diagnosis of SS holds paramount significance in the treat-
ment of patients with rheumatoid arthritis or systemic 
lupus erythematosus.

Presently, SS is assessed through four distinct diagnos-
tic criteria: the European Classification (PEC) criteria 
[13], the American European Consensus Group (AECG 
2002) classification criteria [14], the American College 
of Rheumatology (ACR 2012) criteria [15], and the 2016 
criteria jointly established by the American College of 
Rheumatology (ACR) and the European League Against 
Rheumatism (EULAR) [16]. Among these four sets of cri-
teria, the histopathological evaluation of salivary gland 
tissue plays an irreplaceable role in the diagnosis of SS, 
particularly in the assessment of lymphocyte foci. How-
ever, lymphocyte counts in SS necessitate pathologists to 
engage in subjective assessment and manual enumera-
tion within each high-power field of whole-slide imag-
ing (WSI). Nonetheless, SS poses practical challenges 
due to its time-consuming nature, subjective judgment, 

potential counting inaccuracies, difficulty in diagnosing, 
and susceptibility to diagnostic errors.

Artificial Intelligence (AI) has witnessed substantial 
application in pathology image diagnosis [17, 18]. Deep 
learning facilitates computers in learning and synthe-
sizing tasks akin to human comprehension. Multiple 
research reports have attested to the high performance 
and precision of deep learning algorithms in pathology 
image diagnostics, with diagnostic outcomes parallel-
ing or surpassing human performance, encompassing 
ailments afflicting organs, for example, the kidneys, 
liver, brain, and lungs [19–22]. The majority of the work 
is accomplished using convolutional neural networks, 
such as ResNet-50 [23]. However, due to the large scale 
of pathological images, pixel-level analysis using convo-
lutional neural networks (CNNs) poses a computational 
challenge and training difficulties.

In recent years, graph-based approaches for pathologi-
cal imaging have gained increasing attention due to their 
interpretability and ability to effectively extract valuable 
information from images. The most common method 
for constructing a graph structure is to consider cells as 
nodes in the graph [24–27]. In addition to cell graphs, 
another common approach is to construct graph mod-
els using superpixels extracted from pathological images 
to utilize tissues information [28, 29]. However, current 
graph-based methods typically perform image classifica-
tion on the entire or local images for diagnostic purposes, 
making it challenging to achieve fine-grained analysis. 
Moreover, these methods often struggle to effectively 
leverage the valuable information from both individual 
cells and the surrounding tissue. To this end, we propose 
a cell-centric, tissue-assisted graph-based pathological 
image cell analysis model called Cell-tissue-graph-based 
pathological analysis model (CTG-PAM). CTG-PAM 
focuses on cells as the primary entities for feature extrac-
tion and classification, while incorporating the contextual 
information of tissues to complement cell features.

This study propounds a model based on the 2016 ACR-
EULAR diagnostic standards for SS. Leveraging graph-
based learning and WSI, this model enables expeditious 
and accurate scoring and diagnosis of SS, thereby fur-
nishing clinical and pathologists with objective, precise, 
reproducible, and standardized diagnostic capabilities.

Interpretation Our findings indicate that CTG-PAM is a reliable method for diagnosing SS. Additionally, CTG-PAM 
shows promise in enhancing the prognosis of SS patients and holds significant potential for the differential diagnosis 
of both non-neoplastic and neoplastic diseases. The AI model potentially extends its application to diagnosing 
immune cells in tumor microenvironments.

Keywords Artificial intelligence, Graph learning, Sjögren’s syndrome, Digital pathology, Single-cell feature
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Materials and methods
The baseline characteristics of the patients in the two 
datasets were summarized in Table S1 in supporting 
information.

Training and internal validation data sets
Thirty-six labial gland biopsy patients were obtained 
from the Department of Pathology, Guanghua School 
of Stomatology, Hospital of Stomatology, Sun Yat-sen 
University (SYSU) in China from January 2009 to June 
2023 and were selected chronologically. Patients with 
hematoxylin-eosin staining (H&E) biopsy slides of low 
quality, including slides with drying effects, significant 
air bubbles, or broken glass, were excluded. An auto-
matic digitalslide scanner (NanoZoomer S210, HAMA-
MATSU, Japan) at × 40 magnification was used to create 
WSIs. Two out of the 36 WSIs, one of which is diagnosed 
as SS and the other as non-SS, were employed to train 
the network for lymphocyte classification. The remain-
ing 34 WSIs were utilized for validation. Four experi-
enced academic pathologists graded and quantified the 
biopsy slides. Pathologist 1 was involved with annotating 
portions of lymphocytes and non-lymphocytes on the 
slides, where the two slides in the training set for model 
training and the remaining slides in internal validation 
data set for testing in the experiments. We categorized 
the doctors mentioned above into two groups based on 
their experience in pathology: the junior group (less than 
three years of pathology experience) and the senior group 
(more than three years of pathology experience). When 
the pathologist disagrees with the diagnosis, they will 
discuss and agree on their opinion. Finally, we compared 
their accuracy, sensitivity, and time against the automatic 
method.

External test data set
Sixty-four labial gland biopsy patients with SS were ran-
domly selected from the First Affiliated Hospital of SYSU 
from January 2012 to January 2023. Independent prepa-
rations by each hospital were used for hematoxylin and 
eosin staining and WSI scanning. In total, 64 WSIs were 
obtained by using the method already mentioned. Pathol-
ogist 1 was involved with annotating portions of lympho-
cytes and non-lymphocytes on the slides in the external 
data set for testing in the experiments.

Immunohistochemical (IHC) staining
Following rehydration of paraffin-embedded tissue sec-
tions, antigen retrieval was achieved by exposing the sec-
tions to high heat and pressure in an EDTA buffer (pH 
9.0) for 10  min. After blocking endogenous peroxidase 
activity and applying tissue blocking agents, the sections 
were incubated with primary antibodies against CD45 
(1:100, clone: PD7/26 + 2B11, MXB, Fuzhou, China) at 

room temperature for 4  h. Biotin-conjugated second-
ary reagents were then applied for 1  h. The immuno-
histochemistry procedure was completed with DAB 
(3,3′-diaminobenzidine) staining and hematoxylin 
counterstaining.

Cell-tissue-graph-based pathological analysis model
We proposed a graph-based method to automated diag-
nosis for SS, referred to as Cell-tissue-graph-based 
pathological analysis model (CTG-PAM). Our method 
is primarily divided into five stages: preprocessing, Com-
putation of single-cell features and single-tissue features, 
Peripheral group feature evolution for cell-cell features 
and cell-tissue features, Cell classification for identify-
ing lymphocytes, and Lymphocyte group detection for 
SS diagnosis (Fig.  1). Through preprocessing, we detect 
cells and tissue structures in pathological images. Fea-
ture evolution based on a graph model is a key aspect 
of CTG-PAM. After computing single-cell features, two 
graph models are used to derive two types of group fea-
tures, which describe the characteristics of surrounding 
cells and the surrounding tissue structures, respectively. 
By combining single-cell features with these two types of 
group features, we perform cell classification to identify 
lymphocytes. Based on the recognition of lymphocytes, 
the model detects lymphocyte groups in the images, 
thereby achieving automatic diagnosis of SS. Below, we 
will introduce these five stages one by one.

Preprocessing
The primary focus of the preprocessing stage is the 
detection of cells and tissue structures within the regions 
of interest in pathological images. We initially utilize two 
models from prior research, namely “Stardist” [30] and 
“Segment Anything” [31] to detect cells and tissue struc-
tures respectively. Specifically, the detected cells and tis-
sue structures are represented as two sets:

 C = {c1, . . . , cnc} , T = {t1, . . . , tnt} ,

where nc  and nt  are the numbers of detected cells and 
tissue structures, respectively.

Computation of single-cell features and single-tissue features
Cell morphology is the foundation and gold standard for 
determining cell origin, type, and characteristics [32, 33]. 
Work based on handcrafted morphological features has 
achieved excellent performance in cell classification tasks 
[34–39]. Consequently, we use eight morphological fea-
tures commonly employed in image processing to char-
acterize the inherent geometric properties of cells and 
tissue structures. The following are the eight features:

Feature 1: mean of grayscale value,
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xmean =The mean of grayscale value
of pixels in the cell or tissue region.

Feature 2: variance of grayscale value,

 

xvariance =The variance of grayscale value
of pixels in the cell or tissue region.

Feature 3: area,

 xarea = Total number of pixels in the cell or tissue region.

Feature 4: perimeter,

 

xperimeter =Total number of pixels along
the boundary of the cell or tissue region.

Feature 5: major axis length,

 

xmajor =The length of the long axis of ellipse
fitting to the cell or tissue region.

Feature 6: minor axis length,

 

xminor =The length of the short axis of ellipse
fitting to the cell or tissue region.

Feature 7: eccentricity,

 
xeccentricity =

√(xmajor
2

)2
+
(
xminor

2

)2
xmajor

2

.

Feature 8: compactness,

 
xcompactness =

(xperimeter)
2

xarea
.

In these features, area [34–39], perimeter [34–36], major 
axis length [35, 36, 38, 39], minor axis length [35, 36, 38, 
39], eccentricity [35–37] and compactness [37, 39] are 
used for cell classification in existing researches. The fea-
tures other than compactness are calculated using the 
“scikit-image” library [40], and compactness is calculated 
directly from the above formula. The feature computa-
tion process is denoted by the operator F , which can be 
expressed as:

 x
(c)
i = F (ci) , x

(t)
j = F (tj) , i = 1, . . . , nc, j = 1, . . . , nt,

where,

Fig. 1 The pipeline of the proposed CTG-PAM for Automatic diagnostic method for SS automatic diagnostic
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∈ R8

These single-cell features and single-tissue features will 
serve as the foundation for the subsequent feature evo-
lution that derives peripheral group features. It is worth 
noting that the selection of these eight fundamental fea-
tures is not fixed. The number and types of fundamental 
features can be adjusted according to different applica-
tion scenarios or diseases.

Peripheral group feature evolution for cell-cell features and 
cell-tissue features
When classifying each cell, doctors consider not only 
the characteristics of the cell itself but also its surround-
ing context. In existing studies [24–27], cell features are 
evolved to obtain more complex features for cell clas-
sification. We establish two graph models to derive two 
types of peripheral group features, including the features 
of surrounding cells, named cell-cell features, and sur-
rounding tissue structures, named cell-tissue features, 
based on single-cell features and single-tissue features. 
In this process, each cell is sequentially assessed to deter-
mine if it is a lymphocyte, with the cell under evalua-
tion referred to as the target cell. During this process, we 
establish two corresponding graph structures for each 
cell: the cell-cell graph (CCG) and the cell-tissue graph 
(CTG), where the CCG representing the relationships 
between the cell and its surrounding cells, and the CTG 
representing the relationships between the cell and its 
surrounding tissue structures. In both graphs, cells or tis-
sue structures are nodes and edges are formed between 
those with relatively small distances, with predefined 
parameters governing the number of cells/tissue struc-
tures included and the distance threshold for edge cre-
ation. This approach of establishing edges based on the 
spatial distance between nodes is known as the k-nearest 
neighbor algorithm and is commonly used in cell graph 
models [26, 34, 41]. To approximate the actual distances 
between cells or between cells and tissue, we calculate 
the Euclidean distance between the center coordinates of 
two objects, subtracting the sum of their radii. The radii 
are estimated based on the area. Specifically, for any two 
cells or tissue structures u, v ∈ C ∪ T , the distance is 
defined as:

 
D (u, v) = Dcenter (u, v)− (

√
Su

π
+

√
Sv

π
),

where D center (u, v) represents the Euclidean distance 
between the centers of u  and v , with Su  and Sv  repre-
senting the areas of u  and v , respectively.

Below is the specific process for constructing CCG 
and CTG. Let’s denote the node feature matrix, degree 
matrix and adjacency matrix of the graph model as 
X, D, A . Specifically, denote the corresponding 
matrices for CCG and CTG as XCCG, DCCG, ACCG 
and XCTG, DCTG, ACTG.  The maximum numbers of 
nodes for CCG and CTG are given as nCCG and nCTG. 
And the distance thresholds are dCCG and dCTG.  The 
node feature matrices represent the set of node fea-
tures, i.e., XCCG ∈ R8× nCCG, XCTG ∈ R8× nCTG.  First, 
from C  select the nearest nCCG − 1 elements to the 
target cell c∗  based on their distance, forming a node 
set Nc∗ = {u1, . . . , unCCG},  which contain nCCG cells. 
The edge connections are determined based on the 
computed XCCG  and the threshold dCCG,  i.e., for 
ACCG(nCCG × nCCG):

 
ACCG,i,j =

{
1, if D (ui, uj) < dCCG

0, other.

DCCG  can be obtained from ACCG as a diagonal matrix:

 

DCCG,i,j =






nCCG∑
k=1

ACCG,i,k, i = j

0, i �= j.

Similarly, for CTG, based on the predefined parameters 
nCTG and dCTG, ACTG, XCTG, DCTG  can be obtained. 
This completes the construction of CCG and CTG for the 
target cell c∗ .

After constructing the two graphs, we utilize the Light-
GCN model [42] for unsupervised graph feature evolu-
tion based on the two graphs. LightGCN is a widely 
used model for graph embedding feature computation, 
achieving significant success in graph-based fields such 
as recommender systems [43, 44]. Specifically, given 
the adjacency matrix A(n× n), the degree matrix 
D(n × n),  and the initial feature matrix X(n× q) of 
the graph, where n  represents the number of nodes in 
the graph and q  represents the number of initial features. 
By performing calculations, we obtain the final extracted 
embedding features

 E =
∑

K
k=0α kE

(k),

where

 
E(k+1) =

(
D−1

2AD
1
2

)
E(k),
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and E(0) = X . We denote the LightGCN as L . Accord-
ing to the results in the paper, we set α k  to be uniformly 
distributed as 1

K+1 , and fix K = 3. Thus, we can simplify 
the LightGCN as

 E = L(A,D,X).

Specifically, applying LightGCN to both the cell-cell 
graph and the cell-tissue graph can be expressed as

 

{
Ecell = L (Acell, Dcell, Xcell) ,

Etissue = L (Atissue, Dtissue, Xtissue) ,

where Acell, Dcell and Xcell represent the adjacency 
matrix, the degree matrix and the feature matrix of the 
cell-cell graph, Atissue, Dtissue and Xtissue represent the 
adjacency matrix, the degree matrix and the feature 
matrix of the cell-tissue graph. The results of feature evo-
lution Ecell and Etissue  encompass the evolved features of 
all nodes in two graphs. We extract the cell-cell features 
and cell-tissue features corresponding to the target cell 
from Ecell and Etissue . These features represent the infor-
mation of the surrounding cells and tissue structures of 
the target cell.

Cell classification for identifying lymphocytes
For any cell ci ∈ C , after concatenating cell-cell feature 
vector x(cc)i

 from CCG and cell-tissue feature vector x(ct)i
 

from CTG with the original single-cell feature vectorx(c)i
, we employ a pre-trained classifier for cell classification. 
Specifically, we utilize a double-hidden-layer fully con-
nected neural network, i.e. multilayer perceptron (MLP), 
as the classifier, and the classification process can be 
expressed as

 pi = W3σ (W2σ (W1xi + b1) + b2) ,

where xi = x
(c)
i ⊕ x

(cc)
i ⊕ x

(ct)
i , xi ∈ R24  is the feature 

vector of the cell ci , W1, W2 and W3 are weight matrices, 
b1  and b2  are bias vectors, σ  is the activation function, 
and pi represents the probability distribution over the 
final class labels for the cell ci . The class label with the 
highest probability in pi  is chosen as the final prediction. 
We use cross-entropy as the loss function for network 
training and employ Adam optimizer to optimize the loss 
function. Additionally, we ensure consistency in the types 
of cells sampled in each training batch by using a random 
sampling method.

Lymphocyte group detection for SS diagnosis
In the lymphocyte group detection stage after identify-
ing lymphocytes, we detect lymphocyte groups based on 
connected components in the lymphocyte graph struc-
ture, as a cluster containing more than 50 lymphocytes in 

a pathological image is diagnosed as SS according to clin-
ical practice. First, we construct a graph with all lympho-
cytes in the pathological image as nodes, and we establish 
edges between two lymphocytes if their distance is less 
than a given threshold. Using a connected component 
detection algorithm based on breadth-first search [45], 
we extract all connected subgraphs from this graph and 
count the number of nodes in each connected subgraph. 
If there exists a connected subgraph with a node count 
exceeding 50, which serves as a diagnostic criterion for 
SS in clinical practice, then the patient corresponding to 
that pathological image is diagnosed with SS.

Hyperparameters setting
Here, we set hyperparameters in CTG-PAM. The maxi-
mum numbers of nodes and distance thresholds for edges 
in CCG and CTG, i.e., nCCG , nCTG , dCCG, dCTG, are set 
to 20, 2, 50, 5, respectively. In the fully connected neural 
network for cell classification, the width of hidden-layers 
is set to 50, the activation function is ReLU, and the train-
ing learning rate is 0.001. The subgraph edge establish-
ment threshold for lymphocyte groups detection is set to 
30. The experimental results include a sensitivity analysis 
of the hyperparameters in both CCG and CTG.

Statistical analysis
Accuracy, Sensitivity, and Specificity are used to evalu-
ate diagnostic performance, and the formula is shown 
below. Fisher exact test is used to compare the diagnos-
tic Accuracy, Sensitivity, and Specificity between model 
and pathologists of different qualifications via GraphPad 
Prism 8.0 software. When values of p < 0.05, were consid-
ered statistically significant (* p < 0.05; *** p < 0.001).

 
Accuracy =

TP + TN

TP + EP + TN + FN ,

 
Sensitivity =

TP

TP + FN ,

 
Specificity =

TN

TN + FP
.

Result
Lymphocyte identification performance of CTG-PAM
Accurate identification of lymphocytes is crucial in the 
SS diagnosis process. Therefore, we evaluate the lym-
phocyte identification performance in CTG-PAM. The 
experiment is divided into three parts. First, we validate 
that whether the eight single-cell features effectively rep-
resent the image information of individual cells by com-
paring the classification performance based on single-cell 
features and images. Second, we conduct sensitivity 
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analysis for the hyperparameters in the CCG and the 
CTG, including the maximum number of nodes: nCCG 
and nCTG , and the distance threshold parameters for 
establishing edges between nodes: dCCG and dCTG. Third, 
we perform feature ablation experiments to show the 
effects of the CTG, which taking the cell-tissue informa-
tion into the model for cell classification.

Validation the reasonableness of single-cell features
Eight fundamental features’ effectiveness in represent-
ing cell information determines the effectiveness of sub-
sequently evolved group features, thereby impacting the 
performance of cell classification. Therefore, we validated 
the reasonableness of the single-cell features by verify-
ing whether the eight single-cell features can effectively 
represent individual cell information through the follow-
ing experiment. It is generally believed that, compared to 
designing feature extraction methods for images followed 
by classification, automatic feature extraction based on 
deep learning, represented by CNNs, can fully utilize 
image information [46]. Therefore, we conducted cell 
classification on the internal validation dataset using an 
MLP based on the eight single-cell features and a CNN 
based on images of each cell. We compared the perfor-
mance of these two methods to verify whether the eight 
single-cell features sufficiently extracted the information 
from the images. The MLP’s hyperparameters were kept 
consistent with the previous setting. The CNN comprises 
two convolutional layers and two fully connected layers. 
The convolutional layers have 16 and 32 3× 3 kernels, 
respectively, each followed by a ReLU activation function 
and a 2× 2 max pooling layer. The two fully connected 
layers have the same widths and activation functions as 
those in the MLP.

The experimental results showed that both methods 
exhibited high sensitivity and low specificity for lympho-
cyte identification. Specifically, the accuracy, sensitivity, 
and specificity of the MLP based on the eight single-cell 
features were 0.9192, 0.9556, and 0.4902, respectively, 
while the accuracy, sensitivity, and specificity of the 
CNN based on images were 0.8894, 0.9225, and 0.5004, 
respectively.

On the one hand, the similar performance of the fea-
ture-based method to the image-based method suggests 
that the eight single-cell features adequately extract the 
image information of individual cells. On the other hand, 
the experimental results with unsatisfactory specific-
ity also highlighted the need to utilize group features in 
addition to single-cell features for cell classification.

Sensitivity analysis for the hyperparameters in CCG and CTG
Among the three types of features (single-cell features, 
cell-cell features and cell-tissue features) used for cell 
classification, the calculation of single-cell features does 

not involve hyperparameters that need adjustment. In 
contrast, the features of surrounding cells and surround-
ing tissues each include two hyperparameters: the maxi-
mum number of nodes (nCCG and nCTG) and the distance 
threshold for establishing edges between nodes (dCCG 
and dCTG). Through the adjustment and experimenta-
tion of these four parameters on the training dataset, 
we ultimately determined an optimal set of parameters. 
Specifically, the maximum number of nodes in the cell 
graph, nCCG , is 20; the maximum number of nodes in the 
tissue graph, nCTG , is 2; the distance threshold for edge 
connections in the cell graph, dCCG, is 50; and the dis-
tance threshold for edge connections in the tissue graph, 
dCTG, is 5. This set of parameters demonstrated the best 
cell classification performance in our experiments, with 
the accuracy of 0.9723, the sensitivity of 0.9741, and the 
specificity of 0.9518 in the internal validation dataset and 
the accuracy of 0.8024, the sensitivity of 0.7780, and the 
specificity of 0.9402 in the external dataset.

Using this parameter combination, we conducted a 
sensitivity analysis for each parameter, examining how 
changes in the parameters affected cell classification per-
formance in Fig. 2. The results indicate that within a cer-
tain range of parameter variations, the cell classification 
performance does not undergo significant changes.

Evaluating the impact of cell-tissue features
We argue that cell-tissue information is important for 
accurate cell classification. To evaluate the impact of 
cell-tissue features provided by the CTG on classifica-
tion performance, we designed the following experiment. 
We compared CTG-PAM with a model that does not use 
cell-tissue features. The model that uses only cell-cell fea-
tures derived from CCG for cell classification is referred 
to as “CCG w/o CTG.” The experimental results of cell 
classification performance for both CCG w/o CTG and 
CTG-PAM are shown in Table  1. Based on the experi-
mental results, we found that adding cell-tissue features 
enhanced the model’s cell classification performance. In 
the next section, we will further discuss the diagnostic 
effectiveness of these features combinations.

Diagnostic performance of CTG-PAM and other models
We employed a model, referred to cell group detection 
model (CGDM), focused solely on cell group detection 
without lymphocyte differentiation, specifically only 
utilizing the stage “Lymphocyte group detection for SS 
diagnosis” of CTG-PAM, for comparative purposes in 
subsequent experiments. We completed the qualitative 
classification of both the internal validation and exter-
nal test data sets by using the ResNet-50 [23], CGDM, 
CCG w/o CTG, and CTG-PAM. The areas under the 
receiver operating characteristic curve from the inter-
nal validation and external test data sets of CTG-PAM 
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were 1.0 and 0.8035 respectively, which indicated that 
this was the best model (Fig. 3, A and B). The respective 
sensitivities for the internal and external data sets were 
57.14% and 64.28% for ResNet-50, 100% and 98.21% for 
CGDM, 100% and 91.07% for CCG w/o CTG, and 100% 
and 98.21% for CTG-PAM, respectively. The correspond-
ing accuracy were 50% and 56.25%, 94.11% and 87.5%, 
97.06% and 87.5%, and 100% and 93.75%, individually. 
Our study showed that internal authentication was far 
superior to external authentication (Fig. 4; Tables 2 and 
3). The CTG-PAM was visualized to identify the areas 
of tissue infiltration by lymphocytes, and both H&E and 
IHC confirmed that the model was able to learn from the 
characteristics of lymphocytes only (Fig. 5, A and B).

Achieving specialist levels of SS detection performance: 
interpretation accuracy comparison among beginner 
pathologists, skilled pathologists and CTG-PAM
CTG-PAM had exceeded skilled pathologists on predic-
tion accuracy scores (Fig. 6, A and B). The average accu-
racy rates of the validation data set were 79.41%, 97.05% 
and 100% for beginner pathologists, skilled pathologists, 
and CTG-PAM, respectively. The average accuracy rates 
of the external data set were 84.37%, 90.62% and 93.75% 
for beginner pathologists, skilled pathologists, and CTG-
PAM. On the other hand, beginner pathologists dem-
onstrated markedly worse prediction accuracy scores. 
The AUC from the internal validation and external test 
data sets were 1 and 0.8035 for CTG-PAM, 0.8035 and 

Table 1 Performance of cell classification for identifying lymphocytes with and without cell-tissue features in the internal validation 
data set and the external data set
Method Internal validation data set External data set

Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity
CCG w/o CTG 0.9183 0.9214 0.9180 0.7169 0.9957 0.6674
CTG-PAM 0.9723 0.9518 0.9741 0.8024 0.9402 0.7780

Fig. 2 Sensitivity analysis of key parameters affecting cell classification performance. (a) maximum node number in cell graph (nCCG ), (b) maximum 
node number in tissue graph (nCTG ), (c) edge connection distance threshold in cell graph (dCCG), and (d) edge connection distance threshold in tissue 
graph (dCTG). The red numbers on the horizontal axises represent the optimal parameters we selected
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Table 2 Model and algorithm performance evaluation in internal validation data set
Method TP TN FP FN Accuracy Specificity Sensitivity
ResNet-50 12 5 8 9 0.5000 0.3846 0.5714
CGDM 21 11 2 0 0.9411 0.8461 1.0000
CCG w/o CTG 21 12 1 0 0.9706 0.9231 1.0000
CTG-PAM 21 13 0 0 1.0000 1.0000 1.0000

Fig. 4 Confusion matrix of the models’ diagnosis performance. (a)-(d), Confusion matrices of the internal validation data set for models of ResNet-50, 
CGDM, CCG w/o CTG, and CTG-PAM, respectively. (e)-(h), Confusion matrix of the independent external test data set for models of ResNet-50, CGDM, CCG 
w/o CTG, and CTG-PAM, respectively

 

Fig. 3 Performance of the CTG-PAM. (a) and (b), The ROC and the AUC for diagnostic. (a), Comparison of the AUC/ROC for ResNet-50, CGDM, CCG w/o 
CTG, and CTG-PAM by using the internal test data set. CTG-PAM had an AUC (1.0) significantly greater than those of the other two models. (b), Compari-
son of the AUC/ROC for ResNet-50, CGDM, CCG w/o CTG, and CTG-PAM in the independent external test data set. CTG-PAM also provided the best AUC 
(0.8035) compared with those of the other ones
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Table 3 Model and algorithm performance evaluation in the external data set
Method TP TN FP FN Accuracy Specificity Sensitivity
ResNet-50 36 0 8 20 0.5625 0.0000 0.6428
CGDM 55 1 7 1 0.8750 0.1250 0.9821
CCG w/o CTG 51 5 3 5 0.8750 0.6250 0.9107
CTG-PAM 55 5 3 1 0.9375 0.6250 0.9821

Fig. 6 Comparisons between CTG-PAM and pathologists of different qualifications. (a). The diagnostic results between model and pathologists of differ-
ent qualifications in the internal validation data set CTG-PAM, beginner pathologists, and skilled pathologists were significant differences among these 
three groups on the average accuracy rates. (b). The diagnostic results between model and pathologists of different qualifications in the external data set 
CTG-PAM, beginner pathologists, and skilled patho differed among these three groups on the average accuracy rates

 

Fig. 5 The models’ classification result of patch with a focus lymphocyte. (a), lymphocyte focus beside duct. (b), cell aggregates identify images, where 
distinct cell types are denoted by varying colors. The red color is employed to denote lymphocytes, whereas blue indicates duct cells. (c), a lymphocytes 
group, denoted in red color, detected by the connected subgraph detection technique on the constructed lymphocyte graphs. (d), CD45 confirmed that 
CTG-PAM identified the areas of lymphocyte focus
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0.6428 for beginner pathologists, and 0.975 and 0.7857 
for skilled pathologists. The average accuracy rates of 
the validation data set were 79.41%, 97.05%, and 100% 
for beginner pathologists, skilled pathologists, and CTG-
PAM, respectively (Fig. 7, A and B). The average accuracy 
rates of the external data set were 84.37%, 90.62%, and 
93.75% for beginner pathologists, skilled pathologists, 
and CTG-PAM. The different qualifications on the vali-
dation data set and external data set are shown in Table 4.

The CTG-PAM significantly reduces the diagnosis 
time compared to pathologists, as pathologists also 
need to invest time and effort in manually counting 
lymphocytes and lymphocytes foci under the micro-
scope. We compared the time required for diagnosis 
between the CTG-PAM and pathologist judgment. 
The result showed that the CTG-PAM (22.22s, 95%CI, 
21.49–22.96) took less time than beginner pathologist 
judgment (248.82s, 245.90-251.73) and skilled patholo-
gist judgment (129.91s, 127.70-132.12) (Table S2, in 
supporting information).

Discussion
Through single-cell features, cell cluster features, and 
cell-tissue features, our model can effectively accom-
plish cell classification, facilitating flexible subse-
quent research and analysis. To our knowledge, this 
is the first study to identify and evaluate a predictive 

model for SS. The disease of SS has well-established 
and specific diagnostic criteria in pathological clini-
cal settings, specifically, the presence of cell clusters 
with a lymphocyte count greater than 50, which con-
firms the diagnosis of SS [16]. Therefore, detecting cell 
clusters for automated diagnosis is a natural approach, 
and this can be achieved directly using connected 
component analysis in the cell graph. However, dur-
ing the implementation of this method, it was found 
that its accuracy depends on the accurate detection 
of lymphocytes. Consequently, enabling the model 
to understand the definition of lymphocytes assumes 
paramount significance.

Therefore, a cell-level classification model that 
describes the characteristics of surrounding cells and 
the structure of surrounding tissues is necessary. Cell 
morphology is the foundation and gold standard for 
determining cell origin, type, and characteristics. Ini-
tially, our model utilized a relatively simple set of 
eight features, combined with the clinical expertise 
of pathologists in cell identification, to classify cells. 
However, the experimental results for lymphocyte 
identification based on single cells show that neither 
the extracted single-cell features nor the image-level 
classification of individual cells can provide satisfac-
tory lymphocyte identification performance. This 
suggests that relying solely on single-cell features to 

Table 4 Diagnostic results between model and pathologists of different qualifications
Group Internal validation data set External data set

Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity
Beginner 0.7941 0.8571 0.7500 0.8437 0.3750 0.9107
Skilled 0.9705 1.0000 0.9500 0.9062 0.6250 0.9464
CTG-PAM 1.0000 1.0000 1.0000 0.9375 0.6250 0.9821

Fig. 7 Comparisons of ROC between CTG-PAM and two groups of human pathologist. (a), Comparison of the AUC/ROC for CTG-PAM, beginner patholo-
gists, and skilled pathologists by using the internal test data set. CTG-PAM had an AUC (1.0) significantly greater than pathologists. (b), Comparison of the 
AUC/ROC for CTG-PAM, beginner pathologists, and skilled pathologists in the independent external test data set. CTG-PAM also provided the best AUC 
(0.8035) compared with those of the other ones
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identify cell types is insufficient. In fact, in practical 
clinical applications, the differential diagnosis of non-
neoplastic and neoplastic diseases often requires con-
sideration of the characteristics of surrounding cells 
and tissues from multiple perspectives. Regarding SS, 
the disease’s characteristic lies in the identification of 
lymphocytes surrounding the duct, which serves as 
SS’s diagnostic criterion and foundation. This holds 
great significance for the condition. In contrast, for 
specific tumors such as breast cancer, esophageal can-
cer, and thyroid cancer, the diagnostic criteria primar-
ily emphasize the overall morphology, size, type, and 
structural arrangement of tumor cells. Based on this, 
we further improved our model and developed CTG-
PAM, a model that extracts cell features from these 
three perspectives. Training the model with a small 
amount of labeled data allows it to distinguish lym-
phocytes from other cell types. Classifying cells before 
detecting cell clusters effectively enhances detection 
accuracy and reduces false positives. CTG-PAM dem-
onstrates high accuracy and sensitivity in cell classifi-
cation and diagnosis, showing great potential in cases 
where the number of tumor cells is low and patholo-
gists face diagnostic challenges.

Furthermore, the emergence of precision medicine 
has significantly transformed cancer management. Cli-
nicians are increasingly interested in the relationship 
between tumors and immune cells in the surrounding 
microenvironment. Given CTG-PAM’s precise ability 
to identify and count lymphocyte foci, this algorithm 
can extend its accuracy to the identification and count-
ing of immune cells in the tumor microenvironment. 
This has the potential to significantly impact the treat-
ment and prognosis of patients with breast cancer, gas-
tric cancer, and squamous cell carcinoma. While the 
accuracy of cell classification may vary between differ-
ent diseases, this does not affect diagnostic outcomes.

This study has several limitations. Despite the use of 
a total of 100 WSIs, the number of patients is small to 
draw a conclusive outcome regarding the application 
of deep learning in the pathology diagnosis of SS since 
three images from a single patient may have similari-
ties. Further analysis with more patients and control 
subjects using H&E stained sections from multiple 
hospitals is needed. The control group consisted of 
patients who underwent lip gland biopsy but were not 
diagnosed with SS, without normal lip gland tissue or 
other parts such as the parotid gland. Distinguishing 
SS or sialadenitis of the parotid gland may be crucial, 
as the parotid gland is also one of the common sites 
for SS or sialadenitis. In this regard, the model may be 
effective in differentiating between sialadenitis and SS, 
as the lymphocytes in the sialadenitis of the parotid 
gland are scattered in the fibrous tissue, while SS is 

characterized by lymphocytic infiltration around the 
ducts.

Conclusion
Overall, the CTG-PAM shows great potential in 
improving the prognosis of patients with SS and has 
significant potential for diseases requiring multi-per-
spective differential diagnosis. It also demonstrates 
exceptional accuracy in cell classification and diagnos-
ing SS, providing clinical pathologists with objective, 
precise, reproducible, and standardized diagnostic 
results.
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