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Abstract
Background  Postoperative liver metastasis significantly impacts the prognosis of pancreatic neuroendocrine tumor 
(panNET) patients after R0 resection. Combining computational pathology and deep learning radiomics can enhance 
the detection of postoperative liver metastasis in panNET patients.

Methods  Clinical data, pathology slides, and radiographic images were collected from 163 panNET patients post-R0 
resection at Fudan University Shanghai Cancer Center (FUSCC) and FUSCC Pathology Consultation Center. Digital 
image analysis and deep learning identified liver metastasis-related features in Ki67-stained whole slide images (WSIs) 
and enhanced CT scans to create a nomogram. The model’s performance was validated in both internal and external 
test cohorts.

Results  Multivariate logistic regression identified nerve infiltration as an independent risk factor for liver metastasis 
(p < 0.05). The Pathomics score, which was based on a hotspot and the heterogeneous distribution of Ki67 staining, 
showed improved predictive accuracy for liver metastasis (AUC = 0.799). The deep learning-radiomics (DLR) score 
achieved an AUC of 0.875. The integrated nomogram, which combines clinical, pathological, and imaging features, 
demonstrated outstanding performance, with an AUC of 0.985 in the training cohort and 0.961 in the validation 
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Introduction
Pancreatic neuroendocrine tumors (panNETs) are rare, 
but their incidence has notably risen in recent years [1, 
2]. These tumors have a strong tendency to spread to the 
liver, which significantly impacts patient survival [3–5]. 
Surgical resection, particularly complete resection (R0) of 
pancreatic lesions or resectable liver metastases, is com-
monly recommended for treating panNET patients, as it 
greatly improves the survival rate of patients with local-
ized lesions [4, 6]. Postoperative liver metastasis is a cru-
cial adverse prognostic factor for patients after surgical 
resection [7]. Currently, there is no consensus regarding 
the management and treatment strategies for patients 
with panNETs following R0 resection. Therefore, devel-
oping effective methods to predict postoperative liver 
metastasis is a top research priority and challenge.

Previous studies have shown that nomogram models 
based on textual data from clinical histories and patho-
logical reports can predict postoperative recurrence and 
liver metastasis [8, 9]. Given the significant role of Ki67 
proliferative activity in the diagnosis and prognosis of 
neuroendocrine neoplasms [10], we used a novel digital 
image analysis (DIA) algorithm to predict postoperative 
liver metastasis by analyzing Ki67-stained whole slide 
images (WSIs) [9]. This DIA algorithm can accurately 
and objectively calculate the Ki67 value in a region of 
interest (ROI), enabling manual counting with greater 
precision. More importantly, this DIA can analyze the 
spatial variability of Ki67 in panNETs, providing valuable 
insights into tumor heterogeneity. Computational pathol-
ogy parameters, such as the Morisita-Horn (MH) index, 
were utilized to digitize the spatial distribution of Ki67-
stained cells. These digital biomarkers can reflect the 
heterogeneity of proliferative activity and provide a novel 
perspective on observing the characteristics of panNETs 
from a heterogeneous standpoint based on ecological 
knowledge. Integrating the DIA Ki-67 index with the MH 
index enables a comprehensive assessment of panNETs 
that encompasses conventional Ki-67 quantification 
and tumor heterogeneity analysis. The use of composite 
computational pathology parameters may improve liver 
metastasis prediction in postoperative panNET patients.

Although CT is the standard method for detecting 
liver metastasis, it has limited accuracy in identifying 

microscopic metastasis. Recently, there has been growing 
interest in CT-based radiomics to improve the diagnosis 
and prognosis of patients with panNETs [8, 11]. In a pre-
vious study, we presented an innovative model that inte-
grates radiomics and deep learning to predict lymph node 
metastasis in non-functional panNET patients [12]. This 
deep learning network was pretrained using radiomic 
data to create radiomic deep learning signatures. These 
signatures, extracted from contrast-enhanced CT images 
of primary pancreatic areas, can improve the prediction 
accuracy of tumor metastasis and patient outcomes for 
non-functional panNET patients. This finding suggested 
a correlation between CT imaging features and tumor 
metastasis. Consequently, further investigations are war-
ranted to explore the relationships between these imag-
ing characteristics and postoperative liver metastasis.

The novel Ki67 heterogeneity index and radiomics deep 
learning signature may offer deeper insight into tumor 
characteristics beyond clinicopathological informa-
tion. This study is the first to analyze a combination of 
pathological, clinical, and CT features to develop a pre-
cise model for predicting liver metastases in postopera-
tive panNET patients. This model may assist clinicians in 
developing appropriate management and treatment strat-
egies for panNET patients after R0 resection.

Methods
Study patients
This retrospective study included panNET patients 
who underwent complete resection at Fudan Univer-
sity Shanghai Cancer Center (FUSCC) and the FUSCC 
Pathology Consultation Center between 2015 and 2022 
(Fig.  1). The inclusion criteria were as follows: (a) con-
firmed neuroendocrine tumor through pathological 
examination, (b) primary lesion located in the pancreas, 
(c) achieved R0 resection for both the primary pancre-
atic lesion and synchronous liver metastasis if present, 
(d) postoperative liver condition confirmed by enhanced 
liver CT/MRI during follow-up, and (d) no other sites of 
metastasis. All patients from our hospital and non-affili-
ated hospitals were divided into two groups based on the 
occurrence of postoperative new-onset liver metastasis: 
the liver metastasis group and the non-liver metasta-
sis group. Clinical information, including sex, age, site, 

cohort. High-risk group had a median recurrence-free survival of 28.5 months compared to 34.7 months for the low-
risk group, showing significant correlation with prognosis (p < 0.05).

Conclusion  A new predictive model that integrates computational pathologic scores and deep learning-radiomics 
can better predict postoperative liver metastasis in panNET patients, aiding clinicians in developing personalized 
treatments.

Keywords  Pancreatic neuroendocrine tumors, Postoperative liver metastasis, Deep learning-radiomics, 
Computational pathology, Nomogram
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Fig. 1  Workflow of the patient selection process
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tumor size, vascular invasion status, nerve infiltration 
status, tumor grade, T stage, and lymph node status, was 
collected from medical records. Pathological diagno-
ses were reviewed by pathologists (D.H. and M.Z.) and 
Ki67-stained slides were collected for each patient. Pre-
operative contrast-enhanced pancreatic/abdominal CT 
images were collected and reviewed by radiologists (Y.C. 
and W.T.). This retrospective study received approval 
from the ethical review committee of the World Health 
Organization of the Collaborating Center for Research in 
Human Production and the human ethics committee of 
FUSCC (No. 050432-4-2108).

Patient follow-up was conducted via either outpatient 
visits or telephone via the Tumor Registry at FUSCC. 
Recurrence and metastasis were detected through rou-
tine CT or MRI scans performed 6 months after surgery 
and subsequently annually from the initial follow-up. The 
follow-up period ended on January 11, 2024. Recurrence-
free survival (RFS) was considered the interval from the 
date of surgery to the first occurrence/recurrence of liver 
metastasis or the last follow-up.

Computational pathology model
Ki67 staining was routinely performed using a Ki67 anti-
body (MIB-1 clone; Roche) on the Ventana automated 
Benchmark staining system (Ventana Medical Systems), 
following the manufacturer’s instructions. The Ki67-
stained slides were scanned to whole-slide images (WSIs) 
at 40× magnification with a resolution of 0.5 μm per pixel 
by the KF-pro-005 automatic digital slide scanning sys-
tem (KFBIO Technology for Health). Our previous DIA 
enables the calculation of the Ki67 index in hotspot areas 
and the Morisita-Horn (MH) index in heterogeneous dis-
tributions. First, regions of interest (ROIs) were marked 
interactively by a pathologist (D.H.) and then divided into 
500 to 1000 fields. Within these ROIs, hotspot candidate 
regions (HCRs) were identified based on a 1500-pixel 
grid. HCRs with more than 500 tumor cells were consid-
ered “valid HCRs”. Second, a sliding window algorithm 
was utilized to identify positive cells and calculate the 
percentage of Ki67-positive cells in each valid HCR. To 
determine the Ki67 index, a pre-established model was 
applied to identify the highest positivity among all valid 
HCRs [9].

The algorithm of the MH index was used to quanti-
tatively evaluate the spatial colocalization of the Ki67 
parameters in the grid-based ROIs. The intra-field vari-
ability of the Ki67 score was calculated, and the MH 
index was calculated to reflect spatial heterogeneity 
across the WSIs, as described in our previous work [9].
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The value of the MH index ranges from 0 to 1, indicating 
that negative and positive nuclei are not similar or highly 
similar in spatial distribution.

Both the Ki67 index and MH index were recorded as 
pathomics signatures for each panNET patient. These 
signatures were then used in logistic regression to assign 
a “Pathomics score” for each patient.

Radiomics and deep learning model
The atrial phase of CT images was utilized for tumor seg-
mentation using ITK-SNAP (version 4.0.2; http://www.
itsnap.org). The methodology was consistent with our 
prior study [12]. Radiomic features were extracted using 
the Pyradiomics package in Python (version 3.7; https://
github.com/Radiomics/pyradiomics). The deep learn-
ing features were derived from the maximum of the ROI 
slide using a convolutional neural network (ResNET101). 
Feature selection was conducted in three stages: (1) 
initially, images from 30 randomly selected patients 
were chosen for intraclass correlation coefficient (ICC) 
analysis. Features with an ICC value less than 0.8 were 
excluded; (2) then, patients were randomly divided into 
training and test cohorts at a ratio of 6:4. Based on the 
training cohort, the Mann‒Whitney U test and Pearson 
correlation test were then applied to evaluate significant 
differences between the two groups and correlations with 
each feature. Features with an adjusted p value less than 
0.05 according to the Mann‒Whitney U test and a cor-
relation coefficient smaller than 0.5 were retained and 
normalized using z-score. LASSO logistic regression was 
subsequently utilized to further decrease the number of 
features via 10-fold cross-validation. The machine learn-
ing method was conducted through the ridge algorithm, 
which led to the generation of both radiomics and deep 
learning scores. Ultimately, the deep learning-radiomics 
(DLR) score was derived using logistic regression to com-
bine the radiomics and deep learning scores.

Construction of an integrated nomogram model
A novel nomogram model was developed to predict liver 
metastasis in panNET patients. This model combines 
the clinically independent risk factor and the Pathomics 
score from DIA with the DLR score from radiology, as 
illustrated in Fig.  2. The training and validation cohorts 
were selected as a random 6:4 split. In the training 
cohort, univariate analysis of clinical information was 
performed to identify prognostic factors related to liver 
metastasis in panNET patients. Then, through multivari-
ate analysis, independent prognostic factors related to 
liver metastasis were selected and applied to the nomo-
gram model.

Model discrimination and accuracy were assessed 
based on the Harrell’s concordance index (C-index), 
receiver operating characteristic (ROC) curve, and area 

http://www.itsnap.org
http://www.itsnap.org
https://github.com/Radiomics/pyradiomics
https://github.com/Radiomics/pyradiomics
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under the curve (AUC). The calibration curve was used 
to evaluate the alignment between the predicted and 
actual models. The Hosmer‒Lemeshow goodness of fit 
test (HL test) was used to evaluate the degree of consis-
tency between the observed and predicted outcomes. 
The clinical utility of the nomogram was evaluated using 
decision curve analysis (DCA) [13]. Additionally, we per-
formed internal validation through a bootstrap resam-
pling process to provide an unbiased estimate of model 
performance, with the C-index serving as the primary 
metric for evaluation.

Risk group stratification and statistical analysis
Based on the established nomogram model, the total 
predicted score for each patient was obtained by sum-
ming the scores corresponding to each relevant factor. To 
further distinguish patients at risk of liver metastasis, all 
patients were categorized into high- and low-risk groups 
based on the total scores from the nomogram. RFS was 
then compared between the groups.

Random grouping was performed using the R function 
“createDataPartition”. Statistical analysis and nomogram 
analysis were conducted using SPSS version 25.0 software 
(IBM, Armonk, NY, USA) and R software version 4.3.1 
(http://www.r-project.org). Continuous variables were 
compared using either Student’s t-test or the Mann–
Whitney U test, while categorical variables were assessed 
using the χ2 test or Yates’ correction. The Delong test 
was used to employed to compare the diagnostic per-
formance of various prediction models. Risk stratifica-
tion was conducted based on the median total predicted 
score. Kaplan-Meier survival analysis was utilized, and 
the log-rank test was used to compare outcomes among 
different risk groups. Statistical significance in all analy-
ses was defined as a two-tailed p value or adjusted p value 

less than 0.05. Variables with a p value less than 0.05 in 
the univariate logistic regression were chosen for inclu-
sion in the multivariate logistic regression analysis. The 
calibration curve was determined using the bootstrap-
ping method (1,000 intervals).

Results
Patient characteristics
This study included 163 panNET patients with available 
preoperative enhanced CT images and postoperative 
pathological slides (Table  1). Among these patients, 37 
had postoperative liver metastasis, with an average tumor 
size of 4.79 cm. Of those with liver metastasis, 24 patients 
(64.9%) had vascular invasion, and 18 patients (48.6%) 
had nerve infiltration. The distribution of tumor grades 
in the liver metastasis group was as follows: 4 patients 
(10.8%) had G1 tumors, 30 patients (81.1%) had G2 
tumors, and 3 patients (8.1%) had G3 tumors. In terms of 
tumor stage, there were 2 patients (5.4%) with T1 tumors, 
23 patients (62.2%) with T2 tumors, and 12 patients 
(32.4%) with T3 tumors. The group without liver metas-
tasis consisted of 126 panNET patients with an average 
tumor size of 2.69 cm. Among them, 65 patients (51.6%), 
58 patients (46.0%), and 3 patients (2.4%) were classi-
fied as having G1, G2, and G3 tumors respectively, while 
55 patients (43.7%), 60 patients (47.6%), and 11 patients 
(8.7%) had T1, T2, and T3 tumors, respectively.

The measurement of pathologic signatures
The Ki67 index was significantly greater in the group 
with liver metastasis (median: 0.10, IQR: 0.04–0.15) than 
in the group without liver metastasis (median: 0.02, IQR: 
0.02–0.05) (p < 0.05, Fig. 3A, B). Similarly, the MH index 
was significantly greater in the liver metastasis group 
(median: 0.18, IQR: 0.12–0.37) than in the group without 

Fig. 2  Schematic illustration of the study design. Features were selected from clinical history, pathologic slides, and CT images. Logistic analysis of clini-
cal information identified independent prognostic factors for liver metastasis. A computational pathology model was used to calculate the Ki67 index in 
hotspot areas and the MH index in heterogeneous distributions to determine the Pathomics score. The radiomics and deep learning models were used 
to analyze CT images to derive the DLR model. Finally, based on the total scores from the nomogram, patients were categorized into high- and low-risk 
groups for predicting postoperative liver metastasis
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liver metastasis (median: 0.07, IQR: 0.02–0.17) (p < 0.05, 
Fig. 3C, D). The Pathomics score, which was derived from 
the combination of these two parameters, also exhibited 
statistically significant differences between the groups 
(p < 0.05), with median values of 0.27 (IQR, 0.17–0.53) for 
the liver metastasis group and 0.15 (IQR, 0.12–0.18) for 
the group without liver metastasis.

The Ki67 index had an AUC of 0.794 (95% CI: 0.714–
0.874) for predicting liver metastasis in panNET patients, 
while the MH index achieved a similar AUC of 0.753 
(95% CI: 0.675–0.831). However, the prediction accuracy 
of the Pathomics score was even higher, with an AUC of 
0.799 (95% CI: 0.724–0.874) for liver metastases (Fig. 3E).

The performance of radiomics and deep learning
A total of 2048 DL features and 1834 radiomics features 
were extracted. Following the ICC analysis, 1460 DL and 
1344 radiomics features were retained (ICC > 0.8). After 

examining the correlations and conducting the U test, 
109 radiomics features and 278 deep learning features 
were selected for LASSO regression analysis. Subse-
quently, 8 DL and 10 radiomics features were utilized for 
model construction (Fig. 4A, B; Additional file 1: Figure 
S1). Each feature exhibited a correlation coefficient of 
less than 0.5 and a significance level of p < 0.05 (Fig. 4C, 
D). In the radiomics training cohort, the AUC was 0.821 
(95% CI: 0.671–0.971), and it was 0.807 (95% CI: 0.647–
0.967) for the test cohort. The AUCs of the training and 
test cohorts for the DL model were 0.86 (95% CI: 0.741–
0.978) and 0.795 (95% CI: 0.572-1), respectively. There 
were no significant differences between the training and 
test cohorts (Additional file 1: Figure S2).

Finally, the DLR score was developed by logistic 
regression with the radiomics score and DL score. The 
AUC of the radiomics model was 0.824 (95% CI: 0.720–
0.927), and the AUC of the DL model was 0.844 (95% 

Table 1  The clinicopathological features of panNET patients in postoperative liver metastasis and non-liver metastasis groups
Postoperative Liver Metastasis
(N = 37)

Postoperative Non-Liver Metastasis
(N = 126)

P value

Sex, n (%) 0.491
  Male 20 (54.1%) 60 (47.6%)
  Female 17 (45.9%) 66 (52.4%)
Age(y), median[range] 0.298
  Mean (SD) 50.6 (10.5) 52.8 (11.7)
  Median [Min, Max] 52.0 [28.0, 71.0] 53.0 [25.0, 76.0]
Tumor site, n (%) 0.782
  Head/Neck 11 (29.7%) 40 (31.7%)
  Body/Tail 14 (37.8%) 40 (31.7%)
  Multiple locations 12 (32.4%) 46 (36.5%)
Vascular invasion, n (%) <0.001
  Present 24 (64.9%) 18 (14.3%)
  Absent 13 (35.1%) 108 (85.7%)
Nerve infiltration, n (%) <0.001
  Present 18 (48.6%) 18 (14.3%)
  Absent 19 (51.4%) 108 (85.7%)
Grade, n (%) <0.001
  G1 4 (10.8%) 65 (51.6%)
  G2 30 (81.1%) 58 (46.0%)
  G3 3 (8.1%) 3 (2.4%)
T stage, n (%) <0.001
  T1 2 (5.4%) 55 (43.7%)
  T2 23 (62.2%) 60 (47.6%)
  T3 12 (32.4%) 11 (8.7%)
Lymph Node Metastasis, n (%) <0.001
  Present 17 (45.9%) 17 (13.5%)
  Absent 20 (54.1%) 109 (86.5%)
Synchronous Liver Metastasis, n (%) <0.001
  Present 35 (94.6%) 4 (3.2%)
  Absent 2 (5.4%) 122 (96.8%)
ATRX & DAXX, n (%) 0.967
  Both positive 21 (56.8%) 72 (57.1%)
  Any negative 16 (43.2%) 54 (42.9%)
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Fig. 3  The DIA of pathologic signatures. A Ki67 staining within WSIs was automatically analyzed in sliding windows. B The Ki67 index determined by the 
DIA was significantly greater in the group with liver metastasis than in the group without liver metastasis. C The DIA for Ki67 staining was used to calculate 
the distributions of Ki67-positive cells among the patients. One patient showed significant heterogeneity, while another had a more uniform distribution. 
The formula for calculating the heterogeneity index is provided below. D The heterogeneous distribution of the MH index was significantly greater in the 
liver metastasis group than in the group without liver metastasis. E The ROC curve indicated that the Pathomics score had better predictive ability than 
both the Ki67 index and MH index. n.s., P > 0.05; *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001 and ****P ≤ 0.0001
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Fig. 4  Radiomics and deep learning analysis. A The coefficient weights of radiomics features. B The coefficient weights of the deep learning features. C 
The correlation dotplot of radiomics features. D The correlation dotplot of the deep learning features. E The ROC curve indicated that the DLR score has 
better predictive ability than radiomic features and deep learning
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CI: 0.742–0.946). In contrast, the DLR model exhibited 
superior predictive ability, with an AUC = 0.875 (95% 
CI: 0.780–0.970) (Fig.  4E). The Delong test showed no 
significant differences between the DLR model and the 
Pathomics model (p = 0.903).

Integrated nomogram for predicting liver metastasis
Univariate logistic analysis of clinical information in the 
training group revealed a significant relationship between 
vascular invasion (p = 0.007), nerve infiltration (p = 0.001) 
and T stage (p = 0.038 and p = 0.013) with liver metastasis 
(Table 2). Further multivariate analysis revealed that only 
nerve infiltration was an independent prognostic factor 
for liver metastasis in panNET patients (p = 0.007). This 
independent clinical factor, along with the Pathomics 
score and DLR score, were used to construct an inte-
grated nomogram. Additionally, the attention map of 
Ki67 distribution and radiomics/deep learning fea-
tures served as an interpretable visualization tool for 
model prediction (Fig.  5). To determine the probability 
of liver metastasis in panNET patients, each risk factor 
was assigned a score based on its corresponding value. 
These scores were then added together to obtain the total 
points. The probability of liver metastasis can be repre-
sented by drawing a line downward from the total points 
line (Fig. 6A).

In the performance test, the nomogram model 
achieved an AUC of 0.985 (95% CI: 0.960-1.000) in the 
training cohort and 0.961 (95% CI: 0.896-1.000) in the 
validation cohort (Fig.  6B, C). The contributions to the 
predictive model were as follows: a Pathomics score of 
58%, a DLR score of 32%, and a clinical factor of nerve 
infiltration of 10% (Fig.  6D). The HL test results for 
both cohorts showed no statistically significant differ-
ences (p = 0.999, p = 0.588), indicating a close alignment 
between the predicted and actual values. The calibra-
tion curve further confirmed this strong performance by 
showing no significant differences between the predicted 
and actual models (Additional file 1: Figure S3). The 
internal validation results, with a C-index of 0.969 (95% 
CI: 0.968, 0.999), demonstrated that employing bootstrap 
resampling yielded a robust and unbiased estimate of the 
model’s performance. Additionally, the DCA curve dem-
onstrated that the nomogram model exhibited greater 
net benefit than the other single-factor models across a 
wide range of threshold probabilities in both the training 
and validation cohorts (Fig. 6E, F). These findings suggest 
that the combined model is more clinically advantageous.

A novel model for predicting patient survival
A total of 163 patients were included in our follow-up 
study. Among them, 35 patients experienced recurrence, 

Table 2  Univariate and multivariate logistics analyses on variables for the prediction of liver metastasis of the panNET patients in the 
training cohort
Characteristics Univariate analysis Multivariate analysis

Odds Ratio (95% CI) P value Odds Ratio (95% CI) P value
Sex
  Male 1.000(Reference)
  Female 0.464(0.121–1.779) 0.263
Age(years) 0.964 (0.908–1.024) 0.233
Tumor site
  Head/Neck 1.000(Reference)
  Body/Tail 1.875 (0.336–10.463) 0.474
  Multiple locations 0.750 (0.136–4.127) 0.741
Vascular Invasion
  Present 1.000(Reference) 1.000(Reference)
  Absent 0.128 (0.029–0.566) 0.007 0.983 (0.073–13.211) 0.989
Nerve Infiltration
  Present 1.000(Reference) 1.000(Reference)
  Absent 46.500 (6.702–322.612) 0.001 40.792 (2.770–600.685) 0.007
T stage
  T1 1.000(Reference) 1.000(Reference)
  T2 10.500(1.142–96.576) 0.038 1.467(0.075–28.713) 0.800
  T3 24.000(1.952–295.061) 0.013 7.405(0.424–129.269) 0.170
Lymph Node Metastasis
  Present 1.000(Reference)
  Absent 0.200(0.037–1.082) 0.062
ATRX & DAXX
  Both positive 1.000(Reference)
  Any negative 0.600(0.151–2.390) 0.469
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with 2 patients developing liver metastasis during the 
observation period. Three patients who died without 
experiencing recurrence and were censored at the date of 
death. The median RFS was 31.78 months, ranging from 
0.8 to 62.7 months.

According to our predictive model, all patients were 
divided into two risk levels. The cut-off value, repre-
sented by the median total predicted score, was 25.1. 
The median RFS for the high-risk group was 28.5 
months, while for the low-risk group, it was 34.7 months 
(p < 0.0001, Fig. 6G).

Discussion
Based on the digital analysis of pathological and radiolog-
ical images, we developed a specific and integrated model 
for predicting liver metastasis in postoperative panNET 
patients. Liver metastasis is an important prognostic fac-
tor for patients with panNET, with metachronous metas-
tases identified in approximately 50% of patients during 
postoperative follow-up [14]. Previous studies that exam-
ined clinical medical history and pathological reports 
have revealed a correlation between liver metastasis and 
certain clinical pathological features, such as tumor size 
and histological grade [15, 16]. These sources of informa-
tion contain valuable data related to disease outcomes 
that may improve prediction accuracy. In this study, we 
calculated the hotspot index and Ki67 heterogeneity 
distribution to create a Pathomics score, which offers 
a detailed microscopic assessment of panNETs. Then, 
by combining overall radiomics and deep learning, we 

developed a new network to accurately predict postop-
erative liver metastasis in panNET patients.

The Ki67 index determined via immunohistochemis-
try is a widely accepted prognostic marker for panNETs 
[17]. It can also be used to predict the risk of recurrence 
and metastasis in panNET patients who have undergone 
surgical resection [18]. Various methods are available 
for Ki67 scoring, including manual counting by patholo-
gists, automated microscopy and software counting, 
and reverse transcription-quantitative polymerase chain 
reaction [19]. Manual Ki67 counting based on immuno-
histochemically stained sections remains the most com-
monly used method in clinical practice. Currently, there 
is a growing interest in using DIA to assess the Ki67 
index. A comparative meta-analysis showed that DIA and 
manual counting have a high level of agreement (coeffi-
cient of concordance: 0.94, 95% CI: 0.83–0.98) [20]. DIA 
provides more objective and consistent results, with 
accuracy comparable to that of manual counting but with 
greater efficiency. Specifically, Ki-67 staining obtained 
from panNET patients is well suited for DIA because 
of the uniform cellular morphology of NETs, which 
allows the model to recognize tumor cells and analyze 
their distribution. Furthermore, both a single-cell RNA 
sequencing study and our previous findings indicate that 
spatiotemporal heterogeneity and the spatial distribution 
of Ki67-positive cells are associated with malignant pro-
gression and patient prognosis, respectively, in panNET 
patients [9, 21]. Additionally, the ecological MH index 
can be used to calculate and compare the heterogeneity 

Fig. 5  Visualization of the nomogram for predicting postoperative liver metastasis. As shown above, one patient exhibited low heterogeneity in Ki67 
staining under DIA analysis, along with a low imaging DLR score, indicating that this patient is a low-risk group for postoperative liver metastasis. As shown 
below, another patient displayed high heterogeneity in Ki67 staining with uneven distribution in the DIA. When combined with DLR score analysis, this 
patient was classified as a high-risk group for postoperative liver metastasis
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Fig. 6  Comprehensive evaluation of the combination model. A Combined nomogram for predicting the risk of liver metastasis. B-C Both the training 
and validation cohorts exhibited notable predictive power of the model, as illustrated by the ROC curve. D Contribution to the predictive model of each 
factor. E-F The calibration curves for the nomogram show that the combined model yields greater net benefits at nearly all threshold probabilities in 
both the training and validation sets. G Kaplan‒Meier plots for recurrence–free survival (RFS) curves demonstrating significant differences between the 
low- and high-risk groups
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of tumor proliferation in NETs. Therefore, to compre-
hensively assess the pathological characteristics of the 
primary pancreatic lesion, we measured both the hotspot 
index and heterogeneity MH index via Ki67 staining. Our 
findings indicate that both the Ki67 index and MH index 
were significantly greater in the liver metastasis group, 
with AUCs of 0.794 and 0.753, respectively, for predict-
ing liver metastasis. When combined with the Pathomics 
score, superior prediction accuracy was achieved, with an 
AUC of 0.799 for patients with liver metastases.

The rapid development of imaging technology, includ-
ing PET/CT and PET/MRI, has not sufficiently improved 
the detection sensitivity for low-proliferative NET 
metastases [22]. Somatostatin receptor-labeled nuclear 
medicine imaging holds promise in this regard, but its 
clinical application is limited due to the need for special-
ized instruments [23, 24].Despite this, CT scans remain 
commonly used for routine liver metastasis screening 
[25]. However, due to the low specificity of CT for detect-
ing microscopic lesions, recent studies have explored the 
use of radiomics or deep learning for predicting the out-
comes of panNET patients [26, 27]. Homps et al. devel-
oped a radiomics model using preoperative CT data that 
predicts recurrence-free survival in patients with pan-
NET [28]. Moreover, Yang et al. evaluated a deep learn-
ing radiomics model that greatly improved the ability to 
predict overall survival in patients with gastric neuro-
endocrine neoplasms [29]. Similarly, our previous study 
revealed that the DLR signature of the primary lesion is 
more closely associated with panNET metastasis than 
radiomics [12]. Likewise, in this study, we observed that 
the radiomics model had an AUC of 0.824 in predicting 
liver metastasis in panNET patients, while the DL model 
had a separate AUC value of 0.844. By combining the DL 
and radiomics scores with the DLR, an increase in the 
AUC was achieved (0.875), suggesting that this synergis-
tic approach to radiological image analysis offers optimal 
predictive power for liver metastasis in panNET patients 
who have undergone resection.

Integrating different perspectives, including clinical, 
pathological, and radiological features, can improve the 
understanding and prediction of tumors. Wang et al. 
[30]. reported a combined nomogram using pathomics 
and radiomics, which showed improved accuracy in pre-
dicting patient survival compared to using pathomics 
or radiomics alone for colorectal cancer lung metasta-
sis. However, for rare neuroendocrine tumors, there are 
limited predictive models based on clinical pathologi-
cal textual data or radiological imaging. Pan et al. [16]. 
previously developed a nomogram for predicting liver 
metastasis with C-indexes of 0.850 and 0.846 for the 
training and validation cohorts, respectively. Pulvirenti 
et al. [31]. created a nomogram for estimating survival in 
panNET patients postresection, with a C-index of 0.84 

in a multi-institutional cohort. Utilizing radiomics tech-
nology, An et al. [32] developed a CT radiomics model 
for predicting gastrointestinal pancreatic neuroendo-
crine neoplasm recurrence with an AUC of 0.712, which 
improved to 0.824 when integrated with clinical data. In 
this study, novel Ki67 heterogeneity and radiological DLR 
scores were first incorporated into a predictive model to 
enhance its performance. This integrated model provides 
accurate predictions for postoperative liver metastasis in 
panNET patients (AUC = 0.978), surpassing both indi-
vidual data models and previous models. The stratified 
results based on the model-assigned risk factors indi-
cated a significant difference in patient RFS (p < 0.0001). 
These findings confirmed that evaluating the progno-
sis accurately is enhanced by taking into account vari-
ous clinicopathological and radiological perspectives. By 
expanding on this pathology-imaging model, incorporat-
ing additional medical information in a multimodal anal-
ysis can yield more precise predictions.

It is crucial to recognize the constraints inherent in our 
predictive model. First, the number of patients included 
in this study was limited, as long-term follow-up is 
needed to confirm cases of postoperative liver metasta-
sis in panNET patients. Second, this study included two 
types of patients with R0 resected panNET: those who 
underwent resection of the pancreatic primary lesion 
only and those who underwent combined resection 
of the primary lesion and simultaneous liver metasta-
ses. Despite having different tumor stages, both groups 
required postoperative treatment guidance and predic-
tion of metastasis, so both groups were included in this 
study. Third, we relied on internal validation for model 
assessment due to data limitations. To minimize bias, 
we employed a bootstrap resampling method with 1000 
iterations, as suggested by a previous study [33]. In the 
future, a multicenter and large cohort study should be 
conducted to validate our model.

Conclusion
In conclusion, we developed an integrated model that 
combines a computational pathologic index and deep 
learning-radiomics. This model provides a more precise 
prediction of liver metastases in postoperative panNETs 
than do individual data models and can assist clinicians 
in making personalized treatment decisions following R0 
resection surgery in panNET patients.
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