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Abstract 

Background  Immunotherapy has significantly improved survival of esophageal squamous cell cancer (ESCC) 
patients, however the clinical benefit was limited to only a small portion of patients. This study aimed to perform 
a deep learning signature based on H&E-stained pathological specimens to accurately predict the clinical benefit 
of PD-1 inhibitors in ESCC patients.

Methods  ESCC patients receiving PD-1 inhibitors from Shandong Cancer Hospital were included. WSI images 
of H&E-stained histological specimens of included patients were collected, and randomly divided into training (70%) 
and validation (30%) sets. The labels of images were defined by the progression-free survival (PFS) with the inter-
val of 4 months. The pretrained ViT model was used for patch-level model training, and all patches were projected 
into probabilities after linear classifier. Then the most predictive patches were passed to RNN for final patient-level 
prediction to construct ESCC-pathomics signature (ESCC-PS). Accuracy rate and survival analysis were performed 
to evaluate the performance of ViT-RNN survival model in validation cohort.

Results  163 ESCC patients receiving PD-1 inhibitors were included for model training. There were 486,188 patches 
of 1024*1024 pixels from 324 WSI images of H&E-stained histological specimens after image pre-processing. There 
were 120 patients with 227 images in training cohort and 43 patients with 97 images in validation cohort, with bal-
anced baseline characteristics between two groups. The ESCC-PS achieved an accuracy of 84.5% in the valida-
tion cohort, and could distinguish patients into three risk groups with the median PFS of 2.6, 4.5 and 12.9 months 
(P < 0.001). The multivariate cox analysis revealed ESCC-PS could act as an independent predictor of survival from PD-1 
inhibitors (P < 0.001). A combined signature incorporating ESCC-PS and expression of PD-L1 shows significantly 

†Butuo Li and Wenru Qin contributed equally to this work.

*Correspondence:
Taotao Dong
dongtt1982@163.com
Linlin Wang
wanglinlinatjn@163.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-024-04997-z&domain=pdf
http://orcid.org/0000-0002-2231-6642


Page 2 of 12Li et al. Journal of Translational Medicine          (2024) 22:195 

improved accuracy in outcome prediction of PD-1 inhibitors compared to ESCC-PS and PD-L1 anlone, with the area 
under curve value of 0.904, 0.924, 0.610 for 6-month PFS and C-index of 0.814, 0.806, 0.601, respectively.

Conclusions  The outcome supervised pathomics signature based on deep learning has the potential to enable 
superior prognostic stratification of ESCC patients receiving PD-1 inhibitors, which convert the images pixels 
to an effective and labour-saving tool to optimize clinical management of ESCC patients.

Keywords  Pathomics, Esophageal cancer, Immunotherapy, Deep learning, Survival

Introduction
Esophageal cancer ranked seventh in incidence and 
sixth in mortality worldwide [1]. Esophageal squa-
mous cell carcinoma (ESCC) is the predominant 
type, accounting for 90% of all cases in East Asia and 
Africa[2]. Despite the gradual improvement in sur-
vival, the 5-year relative survival rate of ESCC patients 
remains less than 20% [3].

Immunotherapy have revolutionized the treatment 
schemes across ESCC patients [4]. The phase III KEY-
NOTE-181 [4] and ATT​RAC​TION-3 [5] trials have dem-
onstrated better efficacy and tolerable adverse effect with 
immune checkpoint inhibitors (ICIs) in advanced ESCC 
patients compared with conventional chemotherapy. It 
should be noted that the clinical benefit of ICIs was lim-
ited to only a small portion of ESCC patients, and a sub-
set of patients might experience rapid tumor progression 
after receiving ICIs [5]. This suggests the importance to 
identify biomarkers to predict which patients could ben-
efit from ICIs.

Expression of PD-L1 is now currently considered as a 
predictive marker for ICIs [6]. Nonetheless, the predic-
tive value of PD-L1 status in ESCC is still controversial 
[7]. Checkmate 648 indicated that patients with PD-L1 
of 1% or higher was associated with a significant pro-
gression-free survival (PFS) benefit after receiving ICIs 
[8]. However, ESCORT-1st trial indicated no significant 
correlation between PD-L1 status and efficacy of camre-
lizumab in ESCC patients [9]. It follows that single bio-
marker could not adequate for the accurate prediction of 
outcomes of PD-1 inhibitors.

Pathology, which has traditionally been employed as 
the basis of diagnosis, is the cornerstone of modern med-
icine and cancer care. Moreover, the pathology of tumor 
could reflect the heterogeneous characteristics of the 
tumor microenvironment (TME), and has been found to 
have the ability to prognosis prediction [10]. The devel-
opment of the digital slide scanners advanced whole slide 
images (WSIs) from pathological slides which are high-
resolution panoramic images contains cell structure and 
stroma. Employing the rich information of WSIs, com-
putational pathology provided insights into the TME and 

facilitate computer-assisted diagnostics to alleviated the 
labour-intensive efforts of pathologists [11].

In the new era of artificial intelligence oncology, deep 
learning-based pathology can not only assist in image 
classification tasks, but also prognosis prediction by 
extracting risk-related histopathological features to iden-
tify intricate patterns and biological characteristics [12]. 
Jiang et al. performed a GC-SVM classifier using immu-
nomarkers in immunohistochemistry staining slices and 
demonstrated the ability to predict the adjuvant chemo-
therapy benefit of gastric cancer patients [13]. Besides, 
a convolutional neural network-based classifier based 
on H&E images was also demonstrated to perform 
well in prognosis prediction of stage III colon cancer 
patients [14]. Although these prognosis prediction stud-
ies achieved promising performance using pathologi-
cal images, the important role of pathomics to predict 
the clinical benefit from immunotherapy was largely 
unknown. Thus, we aimed to perform a deep learning-
based pathomics signature using ViT-RNN network to 
accurately predict the clinical benefit of immunotherapy 
in ESCC patients.

Material and methods
Patient cohorts and data resource
ESCC patients receiving PD-1 inhibitors between 1 
January 2018 and 1 January 2023 at Shandong Cancer 
Hospital and institute were included in this study. The 
inclusion criteria were as follows: (1) pathologically and 
radiological diagnosed as esophageal squamous cancer 
patients; (2) receiving PD-1 inhibitors; (3) with access to 
survival follow-up data. Patients with another primary 
malignant neoplasms were excluded from further analy-
sis. The baseline characteristics were collected, includ-
ing age, gender, smoking history, drinking history, TNM 
stage, metastasis and radiotherapy. Besides, the H&E-
stained histological specimens of included patients were 
collected. The WSI images of H&E-stained histological 
specimens from included patients were scanned using 
Pannoramic MIDI II, Pannoramic SCAN II scanner or 
Zeiss Axio Scan.Z1. All images were saved as TIF files 
in pathological dataset, and were randomly divided into 
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training (70%) and validation (30%) sets. The detailed 
clinical characteristics and survival time of the cohort 
are also retrieved. Immunohistochemistry staining for 
PD-L1 was performed on FFPE tumour tissue using 
PD-L1(22C3) monoclonal antibodies. The expression of 
PD-L1 was measured by tumor proportion score (TPS), 
which is defined as the percentage of membrane-positive 
tumor cells in all tumor cells.

Label generation
The primary endpoint of the study was PFS of included 
patients after receiving PD-1 inhibitors, which was 
defined as the time from the beginning of PD-1 inhibitors 
to the disease progression or death. And the secondary 
endpoint was overall survival (OS) of included patients 
after receiving PD-1 inhibitors, which was defined as the 
time from the beginning of PD-1 inhibitors to the death. 
The PFS time of the cohort was used as labels for fur-
ther model training. In this study, the survival prediction 
from PD-1 inhibitors was formulated as a classification 
problem.

WSI images pre‑processing
After digitization, the WSI images were pre-processed 
for further patch-level and patient-level model training. 
We split the WSI into small patches of 1024 × 1024 pix-
els at 20 × magnification. To eliminate unnecessary white 
background in the further process, we selected patches 
with variable of pixels more than 500. An additional chal-
lenge of these images was the stain color distribution dif-
fered from WSIs due to the complex staining process, 
which we chose to address slide level color normalization 
using Macenko method.

Patch‑level model training
Firstly, the ViT_base_patch_16_384 architecture which 
has been pretrained in ImageNet dataset was used for 
patch-level model training. The input data were the 
patch images obtained from splitting the WSI, and the 
labels of patches were the same as the WSI image of 
respective patient. In order to reduce the influence of 
noise and prevent overfitting, symmetric cross-entropy 
was applied to calculate the loss. Adam optimizer was 
used as the optimizer algorithm with an initial learn 
rate of 0.0001, weight decay of 0.0001 and a 50-image 
batch size. The patch level model was trained for 50 
epochs.

Prediction probability distribution of patches in patient 
level
To obtain the patient-level probability distribution of 
patches, the softmax output vectors were used to train 

a linear classifier. All patches from the WSI image of 
a single patient were summed together, and projected 
into probabilities using the linear classifier. The patches 
were ranked by their prediction probabilities, and the 
top 100 patches with highest probabilities were selected 
and assigned to the patient. Then a feature extractor 
would be trained for patches selection.

Training and validation of patient‑level pathomics 
signature
The 40 most suspicious patches of each WSI image are 
sequentially passed to the RNN for features integration 
and final patient-level prediction. The cross-entropy 
was used to calculate the loss of RNN model, and 
Adam optimizer was used as the optimizer algorithm 
with a batch size of 2. The ESCC-pathomics signature 
(ESCC-PS) was constructed based on the patient-level 
ViT-RNN. All patients were assigned to three groups 
according to the ESCC-PS, and the accuracy rate were 
calculated to evaluate the performance in validation 
cohort. Univariate and multivariate survival analy-
sis was performed to confirm the predictive effect of 
ESCC-PS in validation cohort. The whole process of 
this study was shown in Fig. 1.

Incremental value of ESCC‑PS for expression of PD‑L1
The expression of PD-L1 was evaluated using immuno-
histochemical stains. And the cut-off values of PD-L1 
was determined by receiver operating characteris-
tic (ROC) curve in training cohort, in order to divide 
patients into high and low expression group. The pre-
dictive effect of PD-L1 was evaluated by cox regression 
analysis. ESCC-PS incorporating expression of PD-L1 
for the outcome prediction of PD-1 inhibitors were 
applied to determine the incremental value of ESCC-
PS. Patients in validation cohort were divided into 
low-risk, medium-risk and high-risk group based on 
the incorporation of ESCC-PS and PD-L1. The perfor-
mance of PD-L1, ESCC-PS and incorporation signature 
were assessed and compared by C-index in validation 
cohort.

Statistical analysis
The construction of ESCC-PS was performed using 
Python 3.6. And SPSS 26 and R 4.3.1 were used to con-
duct the data analysis and visualization. Kaplan–Meier 
survival was carried out to verify the clinical significance 
of ESCC-PS. Multivariable analysis was conducted using 
Cox proportional hazards modeling to validate the pre-
dictive value of ESCC-PS. Interactions between ESCC-PS 
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and patient characteristics were detected by χ2 test. ROC 
curve with area under the curve (AUC) was performed 
to compare the performance between PD-L1, ESCC-PS 
and incorporation signature. All tests were 2-sided, and 
P < 0.05 was considered to indicate statistical significance.

Results
Clinical characteristics of patients with ESCC receiving 
immunotherapy
There were 163 ESCC patients receiving PD-1 inhibi-
tors from Shandong Cancer Hospital with baseline data 
and known outcomes included in analysis. 324 WSI 
images of H&E-stained slides were retrieved from these 
patients, and were randomly divided into training cohort 
and validation cohort with the proportion of 7:3. The 
patches from a single patient were divided into the same 
cohort. There were 120 patients with 227 images in train-
ing cohort and 43 patients with 97 images in validation 
cohort. The clinical characteristics of patients in this 
cohort were illustrated in Table 1, and no significant dif-
ference was observed between training and validation 
cohort. After the median follow-up time of 14.2 months, 
the median PFS was 7.9  months for the whole patients. 
The optimal cut-off of PD-L1 expression was set as 57.5% 
with the AUC of 0.632 in training cohort.

The training of ViT‑RNN survival model and construction 
of ESCC‑PS
There were 486,188 patches with 1024 × 1024 pix-
els after image pre-processing from 324 WSI images. 
Then subsampling was used to resize these patches 

into 384*384 pixels to adapt to pretrained ViT_base_
patch_16_384. All patches were used as input to 
ViT for patch-level model training, then were pro-
jected into group probabilities. The 40 most predic-
tive patches are sequentially passed to the ViT-RNN 
for final patient-level prediction and construction of 
ESCC-PS. Patients in validation cohort were projected 
into three groups based on ESCC-PS, and 19 patients 
were projected in ESCC-PS 1 group, 13 patients in 
ESCC-PS 2 group and 11 patients in ESCC-PS 3 group. 
As shown in Table  2, no potential interactions were 
found between ESCC-PS and patient characteristics in 
validation cohort.

Test performance of ESCC‑PS for outcome prediction 
of PD‑1 inhibitors in validation cohort
The ViT-RNN based ESCC-PS achieved the accuracy of 
92% in training cohort, and 84.5% in validation cohort. 
Four iterations of random partition of all patients were 
performed to investigate the stability of the model, 
and the accuracies of the model ranged from 82.7% to 
95.1% in the validation cohort, indicated the stability 
of the model. The Kaplan Meier survival curves indi-
cated the significant difference on the PFS (P < 0.001) 
with the median PFS of 2.7, 4.8 and 16.7 months respec-
tively between ESCC-PS 1, ESCC-PS 2, and ESCC-PS 
3 group (Fig. 2A). The superiority in OS (P < 0.001) was 
found for patients in ESCC-PS 3 group (Unreached) 
compared to ESCC-PS 1 (6.3  month) and 2 group 
(20.2  month) (Fig.  2B). And the predictive effect of 
ESCC-PS (P < 0.001) was also shown according to the 

Fig. 1  The overall workflow of ESCC-PS construction. A The process of sample splitting. B Schematic illustration of histopathology image 
processing and ESCC-PS construction based on ViT-RNN. ESCC-PS esophageal squamous cell cancer-pathomics signature, ViT-RNN Vision 
Transformer-Recursive Neural Network
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univariate cox analysis, highlighting the predictive value 
of ViT-RNN based ESCC-PS. As shown in Table  3, the 
expression of PD-L1 was also associated with the PFS of 
ESCC patients receiving immunotherapy (HR = 0.486, 

Table 1  Baseline characteristics of patients in training cohort 
and validation cohort

Patient characteristics Training 
Cohort 
(N = 120)

Validation 
Cohort (N = 43)

P value

Age (Median) 61.21 60.35 0.582

Gender

 Male 108 (90.0%) 34 (79.1%) 0.066

 Female 12 (10.0%) 9 (20.9%)

Smoking history

 No 57 (47.5%) 25 (58.1%) 0.231

 Yes 63 (52.5%) 18 (41.9%)

Drinking history

 No 72 (60.0%) 23 (53.5%) 0.457

 Yes 48 (40.0%) 20 (46.5%)

 T stage

 T1-T2 29 (24.2%) 5 (11.6%) 0.083

 T3-T4 91 (75.8%) 38 (88.4%)

N stage

 N0-N1 59 (49.2%) 17 (39.5%) 0.277

 N2-N3 61 (50.8%) 26 (60.5%)

Stage

 III 31 (25.8%) 13 (30.2%) 0.577

 IV 89 (74.2%) 30 (69.8%)

Lung metastasis

 No 101 (84.2%) 34 (79.1%) 0.447

 Yes 19 (15.8%) 9 (20.9%)

Brain metastasis

 No 118 (98.3%) 43 (100.0%)  > 0.999

 Yes 2 (1.7%) 0 (0%)

Bone metastasis

 No 110 (91.7%) 41 (95.3%) 0.734

 Yes 10 (8.3%) 2 (4.7%)

Liver metastasis

 No 104 (86.7%) 38 (88.4%) 0.775

 Yes 16 (13.3%) 5 (11.6%)

Radiotherapy

 No 32 (26.7%) 12 (27.9%) 0.875

 Yes 88 (73.3%) 31 (72.1%)

Chemotherapy

 No 23 (19.2%) 12 (27.9%) 0.231

 Yes 97 (80.8%) 31 (72.1%)

PD-L1

  < 57.5% 26 (63.4%) 34 (79.1%) 0.112

  ≥ 57.5% 15 (36.6%) 9 (20.9%)

ESCC-PS

 ESCC-PS 1 32 (26.7%) 19 (44.2%) 0.071

 ESCC-PS 2 57 (47.5%) 13 (30.2%)

 ESCC-PS 3 31 (25.8%) 11 (25.6%)

Table 2  Correlation analysis between ESCC-PS and patient 
characteristics

Patient 
characteristics

ESCC-PS 1
(N = 19)

ESCC-PS 2
(N = 13)

ESCC-PS 3
(N = 11)

P value

Age

  ≤ 60 10 (52.6%) 8 (61.5%) 6 (54.5%) 0.879

 > 60 9 (47.4%) 5 (38.5%) 5 (45.5%)

Gender

 Male 15 (78.9%) 11 (84.6%) 8 (72.7%) 0.892

 Female 4 (21.1%) 2 (15.4%) 3 (27.3%)

Smoking history

 No 12 (63.2%) 7 (53.8%) 6 (54.5%) 0.838

 Yes 7 (36.8%) 6 (46.2%) 5 (45.5%)

Drinking history

 No 9 (47.4%) 8 (61.5%) 6 (54.5%) 0.730

 Yes 10 (52.6%) 5 (38.5%) 5 (45.5%)

T stage

 T1-T2 1 (5.3%) 3 (23.1%) 1 (9.1%) 0.413

 T3-T4 18 (94.7%) 10 (76.9%) 10 (90.9%)

N stage

 N0-N1 5 (26.3%) 8 (61.5%) 4 (36.4%) 0.131

 N2-N3 14 (73.7%) 5 (38.5%) 7 (63.6%)

Stage

 III 6 (31.6%) 5 (38.5%) 2 (18.2%) 0.581

 IV 13 (68.4%) 8 (61.5%) 9 (81.8%)

Lung metastasis

 No 14 (73.7%) 11 (84.6%) 9 (81.8%) 0.892

 Yes 5 (26.3%) 2 (15.4%) 2 (18.2%)

Bone metastasis

 No 18 (94.7%) 13 (100.0%) 10 (90.9%) 0.726

 Yes 1 (5.3%) 0 (0.0%) 1 (9.1%)

Liver metastasis

 No 16 (84.2%) 13 (100.0%) 9 (81.8%) 0.351

 Yes 3 (15.8%) 0 (0.0%) 2 (18.2%)

Radiotherapy

 No 8 (42.1%) 2 (15.4%) 2 (18.2%) 0.217

 Yes 11 (57.9%) 11 (84.6%) 9 (81.8%)

Chemotherapy

 No 5 (26.3%) 4 (30.8%) 3 (27.3%) 0.961

 Yes 14 (73.7%) 9 (69.2%) 8 (72.7%)

PD-L1

 < 57.5% 17 (89.5%) 10 (76.9%) 7 (63.6%) 0.218

  ≥ 57.5% 2 (10.5%) 3 (23.1%) 4 (36.4%)
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P = 0.092). Multivariate cox analysis indicated both 
PD-L1 (HR = 0.231, P = 0.009) and ESCC-PS (P < 0.001) 
remained a significant prognostic indicator indicating 
the independent prognostic factors for ESCC patients 
receiving immunotherapy. The superior performance of 
ESCC-PS for the prediction of PFS (P < 0.001) and OS 
(P = 0.005) was also shown in the training cohort based 
on multivariate cox regression analysis (Additional file 1: 
Tables S1 and S2).

Incremental value of the ESCC‑PS added to the expression 
of PD‑L1 for outcome prediction
The incorporation of ESCC-PS and expression of PD-L1 
was performed based on the multivariate cox regres-
sion analyses to elucidate the incremental value of the 

ESCC-PS added to the expression of PD-L1 for predicting 
the outcome of PD-1 inhibitors. As shown in Fig. 3, sur-
vival analysis indicated the incorporation signature could 
significantly distinguish patients into high-risk, medium-
risk and low-risk, with the PFS of 2.6, 4.5, 12.9 months, 
and OS of 6.3, 20.2, 34.8 months, respectively (Table 4)

The C-index of ESCC-PS for PFS after receiving PD-1 
inhibitors was 0.806, which was significantly higher than 
that of the expression of PD-L1 (0.601, P < 0.001). As 
shown in Table  5, the significantly incremental C-index 
was observed for incorporation of ESCC-PS and PD-L1 
compared with PD-L1 alone (0.814 vs 0.601, P < 0.001). 
The comparison of ROC for prediction of PFS and OS 
between PD-L1, ESCC-PS and ESCC-PS + PD-L1 was 
shown in Fig.  4. The AUC of ESCC-PS + PD-L1 for 
6 month- (0.904 vs 0.610, P < 0.001) and 12 month- PFS 
(0.868 vs 0.679, P = 0.099) prediction was higher than 
PD-L1. Similarly, ESCC-PS + PD-L1 also exhibited 
higher AUC for prediction of 12 month- (0.901 vs 0.643, 
P < 0.001) and 18 month- OS (0.883 vs 0.626, P < 0.001).

Discussion
Herein, we constructed a computational pathomics sig-
nature named ESCC-PS using H&E stained WSI images 
based on outcome supervised ViT-RNN to predict the 
survival of ESCC patients receiving PD-1 inhibitors. Vali-
dation experiments confirmed the excellent performance 
and independent predictive effect of this ESCC-PS, and 
the incremental value for the expression of PD-L1 for 
outcome prediction of PD-1 inhibitors.

The microscopic study including H&E-stained his-
topathological images was the cornerstone for cancer 
diagnosis and prognosis. However, the histological iden-
tificantion by pathologists faces challenges including the 
heterogeneity of tumor. Tumor with the same histology 
can develop in different prognosis, and tumor with dif-
ferent histology can develop in the same process. Some 
intrinsic pathological features which cannot be recog-
nized by human eyes might have a greater impact on 
the development and prognosis of tumors. Besides, the 
extremely large spatial size of WSIs makes it difficult to 
extract hand-crafted features.

Deep learning, the state-of-the-art technique in com-
puter vision, have presented the potential to automati-
cally identify and analyze high throughout features in 
WSI, which were not limited to hand-crafted features 
from existing knowledge. The deep learning pathomics 
can be used for objective diagnosis, phenotype recogni-
tion and prognostic prediction, and realize the pathologi-
cal pixel to patient care [15–17]. Shi etc. has established 

 

 

 

Unreached

A

B

Fig. 2  Kaplan–Meier survival curves according to the ESCC-PS 
in validation cohort. A Kaplan–Meier survival curves of PFS (2.7 vs 4.8 
vs 16.7 months, P < 0.001) according to the ESCC-PS. B. Kaplan–Meier 
survival curves of OS (6.3 vs 20.2 months vs Unreached, P < 0.001) 
according to the ESCC-PS. PFS progression-free survival, OS overall 
survival, ESCC-PS esophageal squamous cell cancer-pathomics 
signature
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Table 3  Univariate and multivariate cox regression analysis of ESCC-PS and clinicopathological characteristics for progression-free 
survival in validation cohort

*Statistcal significance

Patient characteristics Univariate Cox analysis Multivariate Cox analysis

HR (95%CI) P value HR (95%CI) P value

Age

  ≤ 60 1 0.977

 > 60 0.990 (0.507–1.935)

Gender

 Male 1 0.686

 Female 0.847 (0.378–1.896)

Smoking history

 No 1 0.955

 Yes 1.021 (0.501–2.081)

Drinking history

 No 1 0.497

 Yes 1.277 (0.631–2.584)

T stage

 T1-T2 1 0.895

 T3-T4 1.067 (0.411–2.766)

N stage

 N0-N1 1 0.984

 N2-N3 0.993 (0.504–1.959)

Stage

 III 1 0.603

 IV 1.219 (0.579–2.566)

Lung metastasis

 No 1 0.427

 Yes 1.412 (0.603–3.311)

Bone metastasis

 No 1 0.996

 Yes 1.003 (0.235–4.288)

Liver metastasis

 No 1 0.915

 Yes 1.059 (0.371–3.025)

Radiotherapy

 No 1

 Yes 0.543 (0.249–1.185) 0.125

Chemotherapy

 No 1 0.771

 Yes 1.121 (0.519–2.420)

PD-L1

  < 57.5% 1 0.092* 1 0.009*

  ≥ 57.5% 0.486 (0.210–1.124) 0.231 (0.077–0.696)

ESCC-PS

 ESCC-PS 1 1  < 0.001* 1  < 0.001*

 ESCC-PS 2 0.393 (0.172–0.897) 0.275 (0.108–0.700)

 ESCC-PS 3 0.055 (0.018–0.173) 0.029 (0.008–0.111)
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an interpretable pathomics model using Resnet-18 and 
quantified as “tumor risk score (TRS)” to predict the clin-
ical outcomes of hepatocellular carcinoma patients [18]. 
Qaiser T, et al. constructed a weakly supervised survival 
convolutional neural network (WSS-CNN) approach 
equipped with a visual attention mechanism based on 
WSI images of H&E-stained specimens, and demon-
strated its outperformed performance for outcome pre-
diction of lung cancer patients with the C-index of 0.6863 
[19].

In this study, the ESCC-PS based on WSI images 
of H&E-stained specimens were constructed for out-
come prediction of PD-1 inhibitors, and the deep neu-
ral network for model training is vision transformer 

embedded self-attention mechanism, with image data 
as the input rather than manual feature extraction. 
Previous study has demonstrated the superior per-
formance of ViT pretrained on Image-Net dataset, 
which was used in this study [20], compared to CNN. 
The output of survival prediction model was risk 
stratification by splitting the survival time into three 
discrete groups. The patches from WSI images includ-
ing positional embedding were as the input of trans-
former encoder [21], which incorporated more spatial 
information at lower layers. And the self-attentional 
mechanism allows ViT to capture the global features 
of the image rather than the dependencies between 
adjacent elements. This pathomics signature using 
ViT-RNN prognostic model is expected the identify 
ESCC patients who might benefit from PD-1 inhibi-
tors, and assist in the development of individual treat-
ment strategies.

H&E-stained specimens were also found to charac-
teristic TME to some extent based on deep learning, 
which could dig out more information for prognosis 
prediction [22, 23]. Jiao etc. has performed the CNN 
to recognize the stroma, tumor, necrosis, and lym-
phocyte components of TME from colon cancer H&E-
stained specimens, and survival analysis also indicated 
the prognostic value of them in colorectal cancer [23]. 
The WSI of H&E-stained specimens contains the deli-
cate details of the tissue. Deeep learning based pathom-
ics could be a useful tool for the data mining including 
the features of cells, intercellular junction and oth-
ers, which are more suitable for risk stratification and 
prognosis prediction and might be the reason for the 
outcome prediction of ESCC-PS. However, the inter-
pretability and the predictive biological features for 
ESCC-PS model need further investigated in future 
studies.

Despite limited performance, expression of PD-L1 
remains the cornerstone for predicting the outcome of 
ESCC patients receiving PD-1 inhibitors [24], which 
was also demonstrated in this study. Besides, we dis-
covered the superiority performance of ESCC-PS 
compared to the expression of PD-L1. As the ESCC-
PS was derived from the H&E-stained sections, which 
was routinely performed in the clinic, ESCC-PS might 
be conveniently applied without additional financial 
burden in clinical practice. In addition, significantly 
improved predictive performance was detected when 
the ESCC-PS was added to the expression of PD-L1, 
with the improvement in C-index ranged from 0.659 
to 0.819. The result indicated the additional biological 
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Fig. 3  Kaplan–Meier survival curves according to the incorporation 
of ESCC-PS and PD-L1 in validation cohort. A Kaplan–Meier survival 
curves of PFS (2.6 vs 4.5 vs 12.9 months, P < 0.001) according 
to the incorporation of ESCC-PS and PD-L1. B. Kaplan–Meier survival 
curves of OS (6.3 vs 20.2 vs 34.8 months, P < 0.001) according 
to the incorporation of ESCC-PS and PD-L1. PFS progression-free 
survival, OS overall survival, ESCC-PS esophageal squamous cell 
cancer-pathomics signature
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Table 4  Univariate and multivariate cox regression analysis of ESCC-PS and clinicopathological characteristics for overall survival in 
validation cohort

*Statistcal significance

Patient characteristics Univariate Cox analysis Multivariate Cox analysis

HR (95%CI) P value HR (95% CI) P value

Age

  ≤ 60 1 0.495

  > 60 1.309 (0.604–2.838)

Gender

 Male 1 0.906

 Female 0.947 (0.379–2.365)

Smoking history

 No 1 0.660

 Yes 1.192 (0.546–2.602)

Drinking history

 No 1 0.214

 Yes 1.641 (0.751–3.583)

T stage

 T1-T2 1 0.644

 T3-T4 1.328 (0.398–4.434)

N stage

 N0-N1 1 0.482

 N2-N3 0.755 (0.345–1.653)

Stage

 III 1 0.673

 IV 1.205 (0.507–2.862)

Lung metastasis

 No 1 0.172

 Yes 1.834 (0.768–4.382)

Bone metastasis

 No 1 0.494

 Yes 1.666 (0.386–7.198)

Liver metastasis

 No 1 0.460

 Yes 1.497 (0.513–4.362)

Radiotherapy

 No 1 0.025*

 Yes 0.386 (0.168–0.888)

Chemotherapy

 No 1 0.981

 Yes 1.011 (0.423–2.16)

PD-L1

  < 57.5% 1 0.037* 1 0.041*

  ≥ 57.5% 0.214 (0. 050–0.909) 0.213 (0.048–0.942)

ESCC-PS

 ESCC-PS 1 1  < 0.001* 1  < 0.001*

 ESCC-PS 2 0.167 (0.056–0.496) 0.168 (0.055–0.516)

 ESCC-PS 3 0.040 (0.009–0.171) 0.034 (0.007–0.160)
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information from the ESCC-PS, and might favour the 
personalized application of PD-1 inhibitors.

There were still some limitations in this study. Firstly, 
further validation of this pathomics prognostic model 
was needed in external cohort. Besides, the black box 
feature of deep learning makes it difficult to explore the 

biological mechanism of ViT-RNN model for outcome 
prediction. The feasible way to explore the underlying 
mechanism of ESCC-PS with PD-1 inhibitors benefits 
needs further investigation. In addition, multi-omics-
based outcome prediction might achieve better per-
formance including but not limited to pathomics, 
radiomics and genomics.

In conclusion, we developed and verified a pathomics 
model named ESCC-PS based on ViT -RNN framework 
from WSIs. The ESCC-PS could act as an excellent pre-
dictor, and played complementary role of PD-L1 for 
outcome prediction of PD-1 inhibitors, which could aid 
the clinical decision making.

Table 5  Comparison of C-index for progression-free survival in 
validation cohort

*Statistcal significance

Model C-index (95%CI) P value

PD-L1 0.601 (0.533–0.669) Reference

ESCC-PS 0.806 (0.743–0.869)  < 0.001*

ESCC-PS + PD-L1 0.814 (0.773–0.855)  < 0.001*

Fig. 4  The comparison of ROC curves for survival of PD-L1, ESCC-PS and ESCC-PS + PD-L1 in validation cohort. A The comparison of ROC curves 
for evaluating 6-month PFS (AUROC: 0.610, 0.924 and 0.904). B The comparison of ROC curves for evaluating 12-month PFS (AUROC: 0.679, 
0.857 and 0.868). C The comparison of ROC curves for evaluating 12-month OS (AUROC: 0.643, 0.886 and 0.901). D. The comparison of ROC 
curves for evaluating 18-month OS (AUROC: 0.626, 0.838 and 0.883). ROC receiver operating characteristic, AUROC area under ROC curve, PFS 
progression-free survival, OS overall survival, ESCC-PS esophageal squamous cell cancer-pathomics signature
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ESCC	� Esophageal squamous cell cancer
ESCC-PS	� Esophageal squamous cell cancer-pathomics signature
TME	� Tumor microenvironment
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OS	� Overall survival
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