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Abstract 

Background: Acute Myeloid Leukemia (AML) is a hematological cancer characterized by heterogeneous hemat‑
opoietic cells. Through the use of multidimensional sequencing technologies, we previously identified a distinct 
myeloblast population,  CD34+CD117dim, the proportion of which was strongly associated with the clinical outcome 
in t (8;21) AML. In this study, we explored the potential value of the  CD34+CD117dim population signature (117DPS) in 
AML stratification.

Methods: Based on the  CD34+CD117dim gene signature, the least absolute shrinkage and selection operator (LASSO) 
Cox regression analysis was performed to construct the 117DPS model using the gene expression data from Gene 
Expression Omnibus (GEO) database (GSE37642‑GPL96 was used as training cohort; GSE37642‑GPL570, GSE12417‑
GPL96, GSE12417‑GPL570 and GSE106291 were used as validation cohorts). In addition, the RNA‑seq data from The 
Cancer Genome Atlas (TCGA)‑LAML and Beat AML projects of de‑novo AML patients were also analyzed as validation 
cohorts. The differences of clinical features and tumor‑infiltrating lymphocytes were further explored between the 
high‑risk score group and low‑risk score group.

Results: The high‑risk group of the 117DPS model exhibited worse overall survival than the low‑risk group in both 
training and validation cohorts. Immune signaling pathways were significantly activated in the high‑risk group. 
Patients with high‑risk score had a distinct pattern of infiltrating immune cells, which were closely related to clinical 
outcome.

Conclusion: The 117DPS model established in our study may serve as a potentially valuable tool for predicting clini‑
cal outcome of patients with AML.
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Background
Acute myeloid leukemia (AML) is a heterogeneous hema-
tological cancer that arises from the clonal proliferation of 
malignant myeloid precursor cells and exhibits rapid pro-
gression [1]. The European Leukemia Net (ELN) for AML 
risk stratification 2017 [2] has been clinically adopted as 
a standard guideline. However, AML patients still faces 
major challenges related to drug resistance and relapse. An 
in-depth study of the prognostic clinical factors of AML 
will help improve the prognostic stratification and treat-
ment efficacy.

Our previous studies [3, 4] identified the heterogene-
ous  CD34+CD117dim and  CD34+CD117bright (bri) myelo-
blast populations in patients with t (8;21) AML. These 
myeloblasts are blocked at different stages of myeloid dif-
ferentiation and have distinct molecular and clinical char-
acteristics that identified through several approaches, 
including RNA sequencing (RNA-seq), single-cell RNA-
seq, and morphological and immuno-phenotypic analyses. 
The  CD34+CD117dim myeloblasts are found to be present 
at the earliest myeloid stage, exhibit high expression lev-
els of granulocyte-monocyte progenitor markers, present 
a leukemia stem cell gene signature, and are drug-resist-
ant to chemotherapy. scRNA-seq results at different dis-
ease time points identified  CD34+CD117dim myeloblasts 
as an important leukemic population which expanded at 
refractory stage after several cycles of chemotherapy. Uni-
variate and multivariate analyses identified the proportion 
of  CD34+CD117dim myeloblasts as an independent fac-
tor for clinical outcome in AML. Patients with a higher 
 CD34+CD117dim proportion exhibited a poorer overall 
survival (OS). Further studies indicated that patients with 
higher expression levels of  CD34+CD117dim-associated 
genes experienced an inferior OS [4]. Therefore, 
 CD34+CD117dim population is a group of myeloblasts 
with a high degree of malignancy, the proportion of which 
is significantly associated with prognosis. Establishing 
a prognostic model based on the signature gene-set of 
 CD34+CD117dim population and using this model as one of 
the risk factors may help improving the capability for risk 
prediction and prognosis prediction of AML. In this study, 
we aimed to investigate the potential prognostic value of 
the  CD34+CD117dim population signature (117DPS) model 
for clinical risk stratification system in AML patients.

Methods
Study population
RNA-seq data from 62 t (8;21) AML patients in our pre-
vious study were deposited at the National Omics Data 

Encyclopedia (NODE) (http:// www. biosi no. org/ node/ 
proje ct/ detail/ OEP00 0629) and detailed treatment infor-
mation was provided as previously described [3]. GEO: 
GSE37642 (AMLCG1999), GSE12417 and GSE106291 
(AMLCG2008) could be downloaded from the Gene 
Expression Omnibus (GEO) databases. RNA-seq data 
from the Beat AML project [5] could be accessed by fol-
lowing the authors’ instructions. The Beat AML cohort 
was composed of 562 patients diagnosed with pri-
mary and relapse AML. However, only de novo AML 
cases with available survival information (n = 200) were 
selected for the subsequent analysis. RNA-seq data of 
TCGA-LAML cohort were downloaded from the online 
database (https:// portal. gdc. cancer. gov/) [6].

Construction of the  CD34+CD117dim gene signature
Differentially expressed genes (DEGs) between the  
 CD34+CD117dim%-high group and the  CD34+CD117dim%- 
low group obtained from the RNA-seq data of 62 t (8;21) 
AML patients in our previous study were identified as 
previously described [3]. Overexpressed genes of the 
 CD34+CD117dim%-high group were determined with 
a P Value < 0.001 and an average log fold change (avg_
logFC) > 1.0 [4]. The least absolute shrinkage and selection 
operator (LASSO) Cox regression analysis [7] was then 
applied to the training cohort (GSE37642-GPL96) to con-
struct the  CD34+CD117dim population signature (DPS). 
To choose the optimal value for the λ parameter with the 
minimum criteria, parameters “family = ‘cox’, maxit = 1000” 
were used. Finally, with the λ value, we obtained the 117DPS 
model consisting of six genes and model coefficients. The 
overall survival analysis was conducted using the Kaplan–
Meier analysis and the P value were compared using the log-
rank test. For specificity and sensitivity analysis, ROC curve 
analysis using the timeROC package [8] was performed to 
evaluate the area under the curve (AUC) values.

Protein–protein interactions (PPI) network construction
STRING database (https:// cn. string- db. org) was used to 
predict protein–protein interactions (PPI) network of the 
overexpressed genes identified from  CD34+CD117dim 
population [9]. The minimum required interaction score 
was 0.4. The processed interaction predictions included 
text-mining, experiments, databases, et al.

Immune infiltration analysis
CIBERSORT was used to investigate the enrichment of 
immune cells in the bone marrow microenvironment of 
AML patients [10]. For each sample, a relative abundance 
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of 22 types of infiltrating immune cells, including T cells, 
B cells, NK cells, macrophages were analyzed. Correla-
tion between immune cells inferred by CIBERSORT and 
117DPS model was evaluated by Spearman correlation. 
Distribution of immune cells between high- and low-
risk groups was compared using two-sided Wilcoxon test 
P-values.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) was performed by 
GSEA software (http:// softw are. broad insti tute. org/ gsea/ 
login. jsp) [11]. HALLMARK gene sets (H) and MSigDB 
curated gene sets (C2) were used.

Statistical analysis
The comparison of the clinical characteristics between 
the high- and low-risk groups were performed with SPSS 
22.0 (IBM). For categorical parameters, the  χ2-test or 
Fisher’s exact test was used, while the Mann–Whitney 
U test was used for continuous variable. Univariate and 
multivariate Cox regression analyses were performed for 
the contributions of clinical factors to  overall survival 
(OS) in AML patients. The other statistical analyses were 
performed using the R software (version 4.0.2, https:// 
www.r- proje ct. org/).

Ethics statement
This study was approved by the Ruijin Hospital Review 
Board and informed consent was obtained from all 
patients in accordance with the Declaration of Helsinki.

Results
Identification of the over‑expressed genes 
of the  CD34+CD117dim population
The differentially expressed genes (DEGs) between the   
CD34+CD117dim%-high group and the  CD34+CD117dim%-low 
group were extracted from the RNA-seq data of 62 t 
(8;21) AML patients from our previous study [3]. To 
identify the gene-set of the  CD34+CD117dim popula-
tion, genes of average log fold change (avg_logFC) > 1.0 
and P value < 0.001 in the  CD34+CD117dim%-high group 
were selected. Thus, we obtained a 45-gene set (Addi-
tional file 8: Table S1) with little interaction among them 
through protein–protein interaction (PPI) network 
(Additional file 1: Fig. S1).

Establishment of the  CD34+CD117dim population signature 
(117DPS)
Next, public AML datasets with clinical data available 
were used for the 117DPS model estimation and valida-
tion. Gene expression data from five GEO datasets includ-
ing GSE37642  (GPL96, n = 417), GSE37642 (GPL570, 
n = 136), GSE12417 (GPL96, n = 163), GSE12417 

(GPL570, n = 79) and GSE106291 (n = 250) were ana-
lyzed. In addition, RNA-seq data from TCGA includ-
ing LAML (n = 151) and Beat AML (n = 200) of de-novo 
AML patients were also included in this study. GSE37642-
GPL96 was used as the training cohort and the rest six 
datasets served as validation cohorts. A total of 1396 AML 
patients with clinical data available were analyzed in this 
study and the whole design was summarized in Fig. 1.

In the training cohort (GSE37642-GPL96), through 
univariate Cox regression analysis, ten out of the 45-gene 
set including ARTN, IL5RA, LTK, MYRF, SERPINI2, 
SLC9A3R2, TPPP3, TPSAB1, TPSB2 and TUBB3, were 
found to be associated with the OS of patients with AML 
(Additional file 2: Fig. S2). Only SERPINI2 was associated 
with inferior survival of patients with AML, and the other 
nine genes were correlated with better prognosis. Subse-
quently, to identify the optimal weighting coefficients, a 
least absolute shrinkage and selection operator (LASSO) 
regression analysis was performed using a penalized 
maximum likelihood estimator with 1000 bootstrap rep-
licates (Fig. 2a and b) to derive a six-gene risk model. The 
risk score for the 117DPS model was calculated using 
the following formula: 117DPS = (−  0.257) × ARTN 
expression + (−  0.400) × IL5RA expression + (−  0.239)  
× LTK expression + 0.534 × SERPINI2 expression +  
(−  0.530) × SLC9A3R2 expression + (−  0.189) × TPPP3 
expression (Fig. 2c and Additional file 3: Fig. S3).

The expression patterns of the six genes differed in 
patients with different risk scores (Fig.  3a). In order to 
explore the prognostic accuracy of the 117DPS model 
in the training cohort, we performed a time-dependent 
receiver operating characteristic (ROC) analysis. In the 
training cohort (GSE37642-GPL96), the area under the 
curve (AUC) values of 1-, 3- and 5-year OS were 0.632, 
0.719 and 0.701, respectively (Fig.  3b). Next, the OS of 
the high- and low-risk groups classified based on the 
median value of the 117DPS model (cut-off = 1.0514) 
was compared using the log-rank test. The Kaplan–Meier 
plot showed that the high-risk group (n = 208) had a sig-
nificantly shorter OS (P < 0.001) (Fig.  3c). The five-year 
survival for the high- and low-risk group was 14.63% 
(10.38–20.63%) and 39.81% (33.58–47.19%), respectively.

Validation of the 117DPS signature in external GEO cohorts
Further, the prognostic value of the 117DPS model 
was estimated in the validation cohorts. After classi-
fying patients into high- and low-level groups based 
on the optimal cutoff value of the 117DPS model, we 
observed that the high-risk groups exhibited worse OS 
as in GSE37642_GPL570 (P = 0.032), GSE12417_GPL96 
(P = 0.044), GSE12417_GPL570 (P = 0.049) and GSE106291 
(P = 0.040) (Fig.  4). The 5-year survivals for the high- 
and low-risk group in GSE37642_GPL570 were 18.12% 
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(10.68–30.74%) and 36.85% (26.61–51.02%), respectively 
(Fig. 4a). In GSE12417_GPL96, the three-year survival for 
the high- and low-risk group were 28.80% (21.60–38.30%) 
and 55.20% (38.50–79.10%), respectively (Fig.  4b). In 
GSE12417_GPL570, the three-year survival for the high- 
and low-risk group were 20.00% (7.27–55.03%) and 46.02% 
(34.96–60.57%), respectively (Fig.  4c). In GSE106291, the 
three-year survival for the high- and low-risk group were 
38.95% (31.14–48.71%) and 49.67% (41.55–59.39%), respec-
tively (Fig.  4d). The AUC values in GSE37642_GPL570, 
GSE12417_GPL96, GSE12417_GPL570 and GSE106291 
were 0.632, 0.637, 0.646, and 0.612 (Additional file 4: Fig. 
S4), respectively.

Validation of the 117DPS signature in TCGA and Beat AML 
cohorts
Thus, the prognostic value of 117DPS model from 
microarray platform was verified and we wondered 
whether the performance of 117DPS model in RNA-
seq data would be satisfying. The RNA-seq data from 

Beat AML [5] cohort included 562 patients that were 
diagnosed with primary and relapse stages. Never-
theless, only the de-novo AML patients with survival 
information available (n = 200) were selected for the 
subsequent analysis. Patients were classified into the 
high- and low-level groups with the median cut-off 
value (= 22.71) of 117DPS model. The Kaplan–Meier 
plot showed that the high-risk group (n = 100) had a 
significantly shorter OS (P = 0.002) (Fig. 5a). The 3-year 
survival for the high- and low-risk group were 22.30% 
(12.00–41.44%) and 45.38% (30.55–67.42%), respec-
tively. For the RNA-seq dataset of TCGA-AML, the 
same cut-off value with Beat AML was adopted. The 
Kaplan Meier survival also demonstrated patients of 
high-risk group (n = 105) presented an inferior out-
come (P = 0.016) (Fig.  5b). The three-year survival 
for the high- and low-risk group were 21.90% (14.20–
33.60%) and 41.78% (27.44–63.61%), respectively. The 
AUC values of three-year OS in Beat AML and TCGA 
AML were 0.706 and 0.701, respectively (Fig. 5c and d).

Fig. 1 Flow chart showing the study design of the estimation and validation of the 117DPS model
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The associations between 117DPS signature and clinical 
characteristics in AML patients
In addition, we analyzed the distribution of clinical char-
acteristics, including age, gender and other information, 
based on the information available from each database, 
between the high- and low-risk groups from the 117DPS 
model in the training and validation cohorts. In the training 
cohort, the median age of the high-risk group was 63 years, 

which was significantly higher than that of patients in the 
low-risk group (52 years) (P < 0.001). This was also validated 
in the validation cohorts (Additional file 9: Tables S2–S7). 
The patients of high-risk group harbored more RUNX1 
mutations and less RUNX1-RUNX1T1 fusions compared 
with those of low-risk group as revealed by data from 
GSE37642 (Additional file 9: Tables S2 and S3). In addition, 
the high-risk group had a greater proportion of patients 
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classified as intermediate/high risk based on ELN2017 
stratification in Beat AML and TCGA LAML cohorts 
(Additional file 9: Tables S6 and S7).

Improvement of the ELN2017 risk system in the prognosis 
prediction of AML patients
Furthermore, we investigated whether the addition of 
117DPS model in the ELN2017 system could achieve 
a better stratification for AML patients. In Beat AML 
cohort, the Kaplan–Meier analysis of ELN-117DPS 
model presented an improved stratification (Fig.  6a 
and b). In addition, the ELN-117DPS model for TCGA-
AML cohort also showed a better stratification (Fig. 6c). 

Accordingly, ELN plus 117DPS model could more accu-
rately define the clinical outcome for AML patients.

Immune dysregulation in the high‑risk group of 117DPS 
model
The proposed 117DPS model is based on the six genes 
including ARTN, IL5RA, LTK, SERPINI2, SLC9A3R2 
and TPPP3, all of which are known to participate in 
immune system and inflammation. To further clarify 
the molecular mechanism underlying the 117DPS 
model, we conducted a gene set enrichment analysis 
(GSEA) for the differentially expressed genes between 
high- and low- risk groups in the training cohort. 
The results revealed significant activation of immune 
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signaling pathways (Additional file 5: Fig. S5a), includ-
ing the interferon-gamma response and interferon-
alpha response, in the high-risk group. In contrast, 
the low-risk group exhibited significant activation of 
the glycolysis and oxidative phosphorylation pathways 
(Additional file 5: Fig. S5b). Thus, this aberrant activa-
tion of immune signaling indicated that the immune 
mechanism might play an important role in the patho-
genesis of the high-risk group in AML. Then, we cal-
culated the proportions of 22 types of immune cells 
in each AML sample and compared the differences in 

proportions of immune cells between the high- and 
low-risk score groups using the CIBERSORT algorithm 
(Additional file 6: Fig. S6). We further performed a cor-
relation analysis between immune cells and the 117DPS 
risk score. The 117DPS model was negatively correlated 
with resting mast cells (R = − 0.23, P < 0.001) (Fig. 7b). 
The 117DPS model was positively correlated with B 
cells naive (R = 0.17, P < 0.001) and activated dendritic 
cells (R = 0.11, P = 0.021) (Fig.  7a and c), which were 
closely related to clinical outcome.
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In addition, we compared the expression levels of immune 
checkpoints and their ligands between the high- and low- 
risk score group. Patients with high-risk scores had a sig-
nificantly higher expression of LAG3 and PDCD1 compared 
with those with low-risk score (Additional file 7: Fig. S7).

Discussion
The clinical outcome of acute myeloid leukemia patients 
could be divergent and calls for more precise and 
improved risk stratification system. Currently, genetic 
and clinical factors, including cytogenetic and mutational 

events, are widely used in clinical practice. Recently, the 
updated European Leukemia Net (ELN) guidelines [2] 
incorporated gene mutations for AML stratification and 
Papaemmanuil et al. [12] proposed 14 subtypes of acute 
myeloid leukemia according to the genetic heterogeneity. 
Nonetheless, nearly 50% of patients are stratified into an 
intermediate-risk group [1] and remain obscure for the 
appropriate therapy regimen.

In this study, we constructed the  CD34+CD117dim 
population signature based on our previous findings in 
AML patients with t (8;21) [3, 4] and further explored 
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its prognostic value in the whole AML cohort. The ratio 
of  CD34+CD117dim population, first identified in the t 
(8;21) AML subtype, were proved to be associated with 
the disease clinical outcome and were efficient in strati-
fying the patients when combined with KIT mutations 
in t (8;21) AML. When employed the 117DPS model in 
AML patients, both the training cohort and the valida-
tion cohort demonstrated a good performance of strati-
fication power. Notably, though the data of training 
cohort was based on the gene expression profile from 
microarray platform, the validation were performed in 
cohorts including the RNA-sequencing data from two 
independent cohorts. Although the AUC values in the 
validation cohorts were not as satisfying as those in the 
training cohort, the Kaplan–Meier survival analysis of 
the 117DPS model still exhibited value for risk stratifica-
tion. In addition, when incorporated with the ELN2017 
risk system, the 117DPS model could be utilized in the 
intermediate-risk group of AML patients and provided 
potential for clinical application.

The six genes in this  CD34+CD117dim population 
signature model are ARTN, IL5RA, LTK, SERPINI2, 
SLC9A3R2 and TPPP3, all of which have been known to 
play roles in immune response and gene regulation [13–
19]. Recently, numerous studies have shown that a subset 
of AML patients may benefit from the immunotherapy. 
Our analysis revealed that there was significant activa-
tion of immune signal pathways such as IL6-JAK-STAT3 
and interferon-gamma-response in the high-risk group of 
117DPS model. In addition, high-risk group of 117DPS 
model had higher expression levels of LAG3 and PDCD1, 
suggesting that these patients may benefit from immu-
notherapy. However, our study was based on the retro-
spective analysis and was unable to perform the clinical 
examination of the 117DPS model in real-world practice. 
Further studies are needed to explore the treatment strat-
egy for the 117DPS-high subgroup.

The mechanism contributing to the poor prognosis in 
the high-risk group of 117DPS model is still unknown 
and may be quite complex. Firstly, the 117DPS model 
was derived from the  CD34+CD117dim population, which 
was demonstrated to be drug-resistant to chemotherapy 
in the t (8;21) AML patients [3]. On the other hand, the 
immune infiltration analysis showed that the high-risk 
group had a dysregulated immune system. Further analy-
sis of the immune cells, such as the function state of T 
cells may help reveal the underlying mechanism.

In conclusion, we constructed a novel gene signature 
model in AML based on our previous findings [3, 4]. 
 CD34+CD117dim population signature, which may serve 
as a novel and accurate model, could predict the overall 
survival of patients with AML.
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