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Abstract 

Background: Diffuse large B cell lymphoma (DLBCL) is the most common lymphoma in adults. Metabolic repro-
gramming in tumors is closely related to the immune microenvironment. This study aimed to explore the interac-
tions between metabolism-associated genes (MAGs) and DLBCL prognosis and their potential associations with the 
immune microenvironment.

Methods: Gene expression and clinical data on DLBCL patients were obtained from the GEO database. Metabolism-
associated molecular subtypes were identified by consensus clustering. A prognostic risk model containing 14 MAGs 
was established using Lasso-Cox regression in the GEO training cohort. It was then validated in the GEO internal test-
ing cohort and TCGA external validation cohort. GO, KEGG and GSVA were used to explore the differences in enriched 
pathways between high- and low-risk groups. ESTIMATE, CIBERSORT, and ssGSEA analyses were used to assess the 
immune microenvironment. Finally, WGCNA analysis was used to identify two hub genes among the 14 model MAGs, 
and they were preliminarily verified in our tissue microarray (TMA) using multiple fluorescence immunohistochemis-
try (mIHC).

Results: Consensus clustering divided DLBCL patients into two metabolic subtypes with significant differences in 
prognosis and the immune microenvironment. Poor prognosis was associated with an immunosuppressive microen-
vironment. A prognostic risk model was constructed based on 14 MAGs and it was used to classify the patients into 
two risk groups; the high-risk group had poorer prognosis and an immunosuppressive microenvironment character-
ized by low immune score, low immune status, high abundance of immunosuppressive cells, and high expression 
of immune checkpoints. Cox regression, ROC curve analysis, and a nomogram indicated that the risk model was an 
independent prognostic factor and had a better prognostic value than the International Prognostic Index (IPI) score. 
The risk model underwent multiple validations and the verification of the two hub genes in TMA indicated consistent 
results with the bioinformatics analyses.
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Background
Diffuse large B-cell lymphoma (DLBCL) is the most 
common type of non-Hodgkin’s lymphoma. About 60% 
of DLBCL patients experience effective remission after 
rituximab plus cyclophosphamide, doxorubicin, vin-
cristine, and prednisone (R-CHOP) regimens. However, 
approximately 30–40% of patients eventually relapse and 
10% are primary refractory cases [1]. The International 
Prognostic Index (IPI), which is widely used to evaluate 
the prognosis of DLBCL, mainly depends on five tra-
ditional clinicopathological features: age, the Eastern 
Cooperative Oncology Group (ECOG) performance, 
Ann Arbor stage, lactate dehydrogenase (LDH) level, 
and extranodal sites, but does not consider the molecu-
lar characteristics and microenvironmental differences in 
lymphoma. Given that DLBCL is a highly heterogeneous 
tumor, having the same clinicopathological features does 
not always lead to the same prognosis [2]. Therefore, IPI 
score is not sufficient to accurately predict the progno-
sis [3]. It is necessary for us to develop new strategies to 
identify risk among DLBCL patients more reliably, so as 
to personalize treatment strategies. Recent studies have 
shown that risk models based on multi-gene expression 
are a reliable choice [4–6].

Metabolic reprogramming in tumor cells—notably, 
aerobic glycolysis, glutamine catabolism, macromo-
lecular synthesis, and redox homeostasis—support the 
requirements of exponential growth and proliferation [7]. 
The upregulation of many metabolism-associated genes 
(MAGs) is driven by the activation of oncogenes. For 
example, the proto-oncogene c-MYC can activate most 
glycolytic enzyme genes (principally hexokinase 2(HK2), 
phosphofructokinase (PFK)-M1, lactate dehydrogenase 
(LDH)-A and pyruvate kinase M2(PKM2)) to provide 
fuel for aerobic glycolysis, which subsequently enhances 
oxidative phosphorylation (OXPHOS). Another onco-
gene closely related to MAGs is AKT, it directly promotes 
aerobic glycolysis by upregulating the expression of HK2, 
PFK1/2 and glucose transporters (GLUT). It can also 
activate mitochondrial hexokinase (mHK) to promote 
the coupling of glycolysis and OXPHOS [8, 9]. Therefore, 
MAGs are considered promising diagnostic markers and 
potential therapeutic targets. In addition, recent stud-
ies have focused on the relationship between metabo-
lism and survival: pan-cancer studies have indicated that 
tumor subtypes with different MAG expression patterns 

lead to significantly different survival [10, 11]. Moreover, 
several risk models based on MAGs have been proposed 
for breast cancer [6], colorectal cancer [12], gastric can-
cer [13] and osteosarcoma [14]. However, the value of 
MAGs in DLBCL subtype identification and prognostic 
prediction remains unclear.

The tumor microenvironment, as the hotbed of the 
tumor, has significant immune cell infiltration. In accord-
ance with the complexity of the tumor microenviron-
ment, immune cells recruited to the tumor tissues have 
dual tumor-promoting and tumor-antagonizing charac-
teristics [15]. The immune microenvironment plays a key 
role in tumor development and treatment. Studies have 
shown that metabolic reprogramming is closely related to 
the tumor immune microenvironment [16]. Metabolites 
derived from tumor cells can influence the composition 
and distribution of cells in the immune microenviron-
ment in many ways, ultimately leading to immune dys-
function and tumor progression [17]. For example, 
metabolic reprogramming can affect the differentiation 
subtypes and functions of T cells and the polarization 
and function of macrophages [18]. However, studies on 
the relationship between MAGs and the immune micro-
environment in DLBCL remain limited.

In the present study, we used multiple bioinformatics 
methods to comprehensively analyze MAGs, identified 
metabolism-associated molecular subtypes in DLBCL 
patients, constructed a novel MAG-based risk model 
evaluating the prognostic value of MAGs in DLBCL, 
and explored the relationships between MAGs and the 
immune microenvironment. Finally, two hub genes in the 
risk model were selected and verified using our own tis-
sue microarray (TMA), and their potential utility as ther-
apeutic targets and diagnostic markers was discussed. 
Our study may provide new clues on mechanisms and 
metabolic targets in DLBCL, and it may lay the founda-
tion for accurate immunotherapy that targets metabolic 
pathways in DLBCL.

Methods
Data sources and preprocessing
The GSE10846 Series Matrix File data were downloaded 
from the National Center for Biotechnology Informa-
tion (NCBI) Gene Expression Omnibus (GEO) database 
(the annotation platform was GPL570). The data of 412 
DLBCL patients with a complete mRNA expression 

Conclusions: The molecular subtypes and a risk model based on MAGs proposed in our study are both promis-
ing prognostic classifications in DLBCL, which may provide novel insights for developing accurate targeted cancer 
therapies.
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profile and survival time > 0 was extracted from the 
GSE10846 dataset. Of the 412 patients in the GSE10846 
dataset, 232 patients had undergone R-CHOP treatment, 
while 180 patients only received CHOP treatment. We 
randomly divided (4:1 ratio) the 412 cases extracted from 
the GSE10846 dataset into a training cohort (n = 330) 
and a testing cohort (n = 82). Additionally, data on 
DLBC were downloaded from The Cancer Genome Atlas 
(TCGA) database (https:// portal. gdc. cancer. gov/), and 47 
DLBCL cases with a complete mRNA expression profile 
and survival time > 0 were obtained from the TCGA data-
base. We used the TCGA dataset (n = 47) as an external 
validation cohort to evaluate the predictive efficacy and 
robustness of the prognosis-associated risk model. Rel-
evant grouping information and clinicopathological fea-
tures were shown in Table 1.

Identification of metabolism‑associated subtypes
MAGs were obtained from the GeneCards database 
(https:// www. genec ards. org/). We identified 92 candi-
date prognosis-related MAGs in GSE10846 by univariate 
Cox regression. Based on the 92 MAGs, the 412 patients 
were divided into subgroups with different metabolic 
expression patterns by consensus clustering using the 
"ConsensusClusterPlus" R package, and unbiased and 
unsupervised outcomes were obtained.

Construction and validation of a MAG‑based risk model
The 92 candidate MAGs related to prognosis were 
selected, and a prognostic model was constructed using 
least absolute shrinkage and selection operator (LASSO) 
regression. The risk score formula (based on the expres-
sion of each included gene weighted by its LASSO 

Table 1 Clinicopathological characteristics of the DLBCL cases in GSE10846 and TCGA datasets

The GSE10846 dataset was randomly divided (4:1 ratio) into a training cohort (n = 330) and a testing cohort (n = 82). ECOG Eastern Cooperative Oncology Group, PS 
performance status, LDH lactate dehydrogenase, COO cell-of-origin, ABC activated B-cell-like, GCB germinal center B-cell-like, NA not available

Characteristic GSE10846 TCGA 

All GSE10846 (n = 412) Training cohort (n = 330) Testing cohort (n = 82) Validation 
cohort 
(n = 47)

Gender

 Male 222 (53.9%) 173 (52.4%) 49 (59.8%) 26 (55%)

 Female 172 (41.7%) 141 (42.7%) 31 (37.8%) 21 (45%)

 NA 18 (4.3%) 16 (4.8%) 2 (2.4%)

Age (year)

 ≤ 60 188 (45.6%) 144 (43.6%) 44 (53.7%) 26 (55%)

 > 60 224 (54.4%) 186 (56.4%) 38 (46.3%) 21 (45%)

ECOG-PS

 < 2 296 (71.8%) 239 (72.4%) 57 (69.5%)

 ≥ 2 93 (22.6%) 75 (22.7%) 18 (22.0%)

 NA 24 (5.8%) 17 (5.2%) 7 (8.5%)

(COO) Subtypes

 ABC 167 (40.5%) 132 (40.0%) 35 (42.6%)

 GCB 182 (44.2%) 148 (44.8%) 34 (41.4%)

 NA 63 (15.3%) 50 (15.2%) 13 (15.9%)

LDH level

 Normal 173 (42.0%) 134 (40.6%) 39 (47.6%)

 Elevated 177 (43.0%) 143 (43.3%) 34 (41.5%)

 NA 62 (15.0%) 53 (16.1%) 9 (11.0%)

Ann Arbor stage

 I–II 188 (45.6%) 147 (44.5%) 41 (50.0%)

 III–IV 217 (52.7%) 176 (53.3%) 41 (50.0%)

 NA 7 (1.7%) 7 (2.1%)

Extranodal sites

 < 2 297 (72.1%) 236 (71.5%) 61 (74.4%)

 ≥ 2 23 (5.6%) 19 (5.8%) 4 (4.9%)

 NA 92 (22.3%) 75 (22.7%) 17 (20.7%)

https://portal.gdc.cancer.gov/
https://www.genecards.org/
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regression coefficient) was constructed using the fol-
lowing format: risk score = 

∑n
i=1

coef ∗ geneexpression . 
Thereafter, the risk score of each patient was calculated. 
Using the median risk score as the cutoff, the train-
ing cohort was divided into low- and high-risk groups. 
Survival curves were generated by the Kaplan–Meier 
method and the two groups were compared using the 
log-rank test. A time-dependent receiver operating char-
acteristic (ROC) curve analysis was used to study the 
model prediction accuracy. Cox regression was used to 
assess the independent prognostic value of the risk score 
and other clinicopathological features. To provide a refer-
ence for predicting the prognosis of DLBCL patients, we 
used the "rms" R package to construct a nomogram based 
on the risk score and clinicopathological features, and a 
calibration plot was used to assess the prognostic ability 
of the nomogram.

Immune analyses
The Estimation of Stromal and Immune cells in Malig-
nant Tumor tissues using Expression data (ESTIMATE) 
method was performed to calculate the stromal score, 
immune score, ESTIMATE score, and tumor purity. 
Next, the Cell-type Identification By Estimating Rela-
tive Subsets Of RNA Transcripts (CIBERSORT) algo-
rithm was used to analyze the RNA-Seq data of DLBCL 
patients in order to determine the relative proportions 
of 22 infiltrating immune cells. Furthermore, to quantify 
the immune cell infiltration in each sample, single-sam-
ple Gene Set Enrichment Analysis (ssGSEA) was used to 
assess the enrichment of 28 immune cells in the tumor 
samples. We then calculated the correlations between 
the risk score and immune regulatory genes, especially 
immune checkpoints.

Drug sensitivity analysis and construction of competing 
endogenouse RNA (ceRNA) network
Based on the Genomics of Drug Sensitivity in Can-
cer (GDSC) database (https:// www. cance rrxge ne. org/), 
which is the largest pharmacogenomics database, we 
used the "pRRophetic" R package to predict the chemo-
therapy sensitivity of each tumor sample. The estimated 
half-maximal inhibitory concentration (IC50) value of 
each chemotherapy drug was obtained by regression, 
and the accuracy of regression and prediction was tested 
by cross-validation with GDSC training set for 10 times. 
All parameters were selected as default values, including 
"combat" for removing batch effect and the average value 
of repeated gene expression. Furthermore, we used Fun-
Rich (v3.1.3) and NPInter (v4.0) to construct a ceRNA 
network based on the model genes.

Gene Set Variation Analysis (GSVA) and functional 
enrichment analyses
GSVA is a non-parametric and unsupervised method 
for evaluating the enrichment of gene sets in relation 
to mRNA expression data. In this study, gene sets were 
downloaded from the Molecular Signatures Database 
(v7.0). Each gene set was comprehensively scored by the 
GSVA algorithm, and the potential differences in bio-
logical functions between the high- and low-risk groups 
were evaluated. Additionally, to explore the functions of 
the prognosis-associated MAGs, the "ClusterProfiler" R 
package was used to annotate the genes with their pre-
dicted functions based on Gene Ontology (GO) terms 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways. GO terms and KEGG pathways with p and q 
values < 0.05 were deemed statistically significant.

Weighted Gene Co‑expression Network Analysis (WGCNA)
To identify the hub genes among the 14 model genes, 
we used the WGCNA algorithm. After constructing 
a weighted gene co-expression network, the gene co-
expression modules were identified, and the correla-
tions between gene network and clinical phenotype were 
explored. The WGCNA-R package was used to construct 
the co-expression network of all genes in the GSE10846 
dataset, and the genes with variance within the first 5000 
were identified by the algorithm for subsequent analy-
sis. The soft-threshold β was determined by the function 
"sft$powerEstimate". The weighted adjacency matrix was 
transformed into a topological overlap matrix (TOM) to 
estimate the network connectivity, with hierarchical clus-
tering being used to construct the clustering tree struc-
ture of the TOM. Different branches of the clustering 
tree represented different gene modules, and different 
colors represented different modules. Tens of thousands 
of genes were classified into modules based on having 
similar expression patterns (using their weighted correla-
tion coefficients).

TMA tissue samples
The DLBCL TMA contained 104 DLBCL tissues and 28 
reactive hyperplasia tissues (from cases with the same 
gender ratio and age range) collected from 2008 to 2015. 
It was prepared by the Department of Clinical Biobank 
of the Affiliated Hospital of Nantong University. Clin-
icopathological data, including gender, age, B symptoms, 
Ann Arbor stage, hemoglobin (Hb) level, LDH level, IPI 
score were collected. In addition, X-tile 3.6.1 software 
was performed to determine the optimal cutoff values 
for two hub genes expression. This study was a retrospec-
tive study, and the informed consent of all patients was 

https://www.cancerrxgene.org/
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obtained before the study. The Ethics Committee of the 
Affiliated Hospital of Nantong University approved this 
research.

Fluorescence‑based multiplex immunohistochemistry 
(mIHC) staining
The DLBCL TMA slides were stained with multiplex 
fluorescence by using the Opal 7-color Manual IHC 
Kit (PerkinElmer, MA). After dewaxing by xylene and 
rehydration by ethanol, slides were heated in a micro-
wave with AR6 Buffer (AR600, AKOYA) and AR9 Buffer 
(AR900, AKOYA) for antigen retrieval. The slides were 
incubated with primary antibodies overnight at 4 °C and 
then incubated with secondary antibody for 10  min at 
room temperature. At last, we used 4’,6-diamidino-2-phe-
nylindole (DAPI; F6057, Sigma) to stain the nuclei and 
seal the slides. Imaging was achieved using the Vectra 
3.0 Automated Quantitative Pathology Imaging System. 
Tumor and stroma images were captured at ×20 magni-
fication. Finally, the staining was scored by inForm® Cell 
Analysis software based on the intensity and degree of 
staining. The degree of staining was compared using the 
Wilcoxon rank-sum test.

The primary antibodies used in this study were as fol-
lows: rabbit anti-PHKA1 (24279-1-AP, Proteintech), rab-
bit anti-PLTP (ab282456, Abcam), rabbit anti-CD163 
(93498, Cell Signaling Technology), rabbit anti-CD68 
(76437, Cell Signaling Technology), rabbit anti-CD11B 
(49420, Cell Signaling Technology), mouse anti-CD66b 
(ARG66287, Arigobio), rabbit anti-PD-1 (86163, Cell 
Signaling Technology) and rabbit anti-PD-L1 (13684, 
Cell Signaling Technology). The secondary antibody 
was Opal™ polymer HRP Ms + Rb (ARH1001EA, Perkin 
Elmer).

Statistical analysis
Survival curves were generated by the Kaplan–Meier 
method and compared using the log-rank test. Multi-
variate Cox proportional hazards regression was used 
to identify independent prognostic factors. Wilcoxon 
rank-sum test was applied to continuous variables with 
nonnormal distribution. All statistical analyses were per-
formed in R software (v4.0). All statistical tests were two 
tailed, and p < 0.05 was considered statistically significant.

Results
Identification of prognosis‑associated MAGs in DLBCL
The whole study process is depicted in the flow chart 
in Additional file  1: Figure S1. First, we obtained 
958 MAGs from the GeneCards database by using 
“metabolism” as the search term and setting the rel-
evance score > 5. Second, DLBC mRNA expression 

data (Fragments Per Kilobase of transcript per Million 
mapped reads [FPKM]) in the GSE10846 dataset was 
downloaded, and 877 MAGs were extracted (based on 
the 958 MAGs identified using GeneCards). To identify 
the prognosis-associated genes among the 877 MAGs, 
we used prognostic data on DLBCL patients and 
obtained 92 prognosis-associated MAGs by univariate 
Cox regression (p < 0.001; Additional file 2: Figure S2).

Identifying metabolism‑associated molecular 
subgroups and differences in prognosis and the immune 
microenvironment between subgroups
Based on the expression patterns of 92 prognosis-
associated MAGs, we used consensus clustering to 
cluster the 412 patients in the GSE10846 dataset into 
different metabolism-associated molecular subgroups. 
By increasing the clustering variable (k) from 2 to 5, 
we found that consensus clustering was most suit-
able when k = 2 (Fig.  1A). This indicated that DLBCL 
patients could be readily divided into two clusters, with 
183 patients in cluster 1 and 229 patients in cluster 2. 
Heatmap visualization showed significant differences in 
the expression of the 92 MAGs between the two clus-
ters (Fig. 1B). Survival analysis showed that the overall 
survival in the two clusters was different, with clus-
ter 1 patients having a significantly worse prognosis 
than cluster 2 patients (follow-up time was 20 years in 
cluster 1 and 10  years in cluster 2) (Fig.  1C). In addi-
tion, the CIBERSORT algorithm was used to evaluate 
the differences in immune cell infiltration between the 
two clusters. The abundances of infiltrating immune 
cells between clusters are shown in Additional file  3: 
Figure S3, and the quantitative analysis demonstrated 
that there were significant differences. Cluster 1 had 
higher infiltration levels of Tregs, NK cells resting and 
mast cells activated, and lower infiltration levels of 
T cells gamma delta, T cells CD4 memory activated, 
monocytes and dendritic cells resting, while cluster 2 
showed the opposite trends (Fig.  1D). Analysis of the 
differences in the expression of immune checkpoints 
between the two clusters showed that ADORA2A, 
CD244, CD274, CSF1R, CTLA4, HAVCR2, KIR2DL1, 
KIR2DL3, LAG3, LGALS9, PDCD1, TGFB1, TGFBR1, 
and VTCN1 expression levels were significantly higher 
in cluster 1 than in cluster 2 (Fig. 1E). Higher infiltra-
tion of immunosuppressive cells and increased expres-
sion of immune checkpoints in the cluster 1 indicated 
an immunosuppressive tumor microenvironment, 
which was consistent with the poor prognosis. These 
findings indicate that the expression of MAGs is related 
to the prognosis and the immunosuppressive microen-
vironment in DLBCL patients.
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Fig. 1 Consensus clustering and the different immune profiles between two clusters. A Consensus matrix heatmap indicating that the optimal 
value for consensus clustering is K = 2. B Heatmap visualizing the different expression pattern of the 92 MAGs in the two clusters. C Survival curve 
of the patients in the two clusters. D CIBERSORT analysis in the two clusters. E The expression of immune checkpoints among two clusters. P values 
were showed as: ns not significant; *p < 0.05; **p < 0.01; ***p < 0.001
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Functional enrichment analyses of prognosis‑associated 
MAGs and construction of transcriptional regulatory 
network
We further conducted functional enrichment analyses 
of the 92 prognosis-associated MAGs. GO analysis indi-
cated that in biological processes (BP), 92 MAGs were 
mainly enriched in monosaccharide metabolic process, 
vitamin metabolic process, cofactor metabolic process, 
cofactor biosynthetic process and small molecule cata-
bolic process. In cell component (CC), 92 MAGs were 
mainly enriched in cytochrome complex, respiratory 
chain complex, oxidoreductase complex, mitochondrial 
inner membrane and mitochondrial matrix. Regarding 
molecular function (MF), 92 MAGs were mainly enriched 
in fatty acid derivative binding, acyl-CoA dehydrogenase 
activity, amide binding, vitamin binding and coenzyme 
binding (Additional file 4: Figure S4A). Moreover, KEGG 
analysis revealed similar pathways, including biosynthe-
sis of cofactors, starch and sucrose metabolism, central 
carbon metabolism in cancer, fatty acid degradation, 
and biosynthesis of amino acids (Additional file 4: Figure 
S4B). Combined with the results of GO and KEGG, we 
found that 92 MAGs were significantly enriched in many 
key biosynthetic and metabolic pathways, especially the 
biosynthesis and metabolism of cofactors, which might 

contribute to the hyperproliferation of tumor cells and 
dismal outcomes. Furthermore, we used Cytoscape soft-
ware to construct a protein–protein interaction network 
of these prognostic MAGs (Additional file 4: Figure S4C).

Construction and validation of a prognosis‑associated risk 
model composed of 14 MAGs
Based on the MAGs identified in univariate Cox regres-
sion analyses, we selected 14 MAGs by LASSO regression 
in order to construct a metabolism-associated prognosis 
risk model (Additional file 5: Figure S5 and Table 2). The 
412 GEO patients were randomly divided (4:1 ratio) into 
a training cohort (n = 330) and a testing cohort (n = 82). 
Because of random grouping, the expression patterns of 14 
MAGs in the training cohort and the testing cohort were 
similar. After constructing the model, the risk score of each 
DLBCL patient in the training cohort was computed based 
on the following formula: risk score = NR3C1 × (− 0.2859
69433071478) + IGFBP3 × (− 0.16695536054869) + RAR
RES2 × (− 0.14291303044122) + F5 × (− 0.096103796583
7689) + APOC1 × (− 0.0768487272489624) + CSF2RA × 
(− 0.056110125649913) + ENPP1 × (− 0.0221430402174
049) + GYG1 × 0.0449620982512186 + PHKA1 × 0.0693
510636252306 + CPT1A × 0.0752116074259248 + PDK4 
× 0.0767229743647787 + CLOCK × 0.085885146893817

Table 2 Features of MAGs in the risk model

No Gene symbol Full name Function Risk coefficient

1 NR3C1 Nuclear receptor subfamily3 group C member1 Involved in inflammatory responses, cellular prolifera-
tion, and differentiation

 − 0.28597

2 IGFBP3 Insulin like growth factor binding protein 3 Prolongs the half-life of IGFs and alters their interaction 
with cell surface receptors

 − 0.16696

3 RARRES2 Retinoic acid receptor responder2 As an adipokine and as an antimicrobial protein with 
activity against bacteria and fungi

 − 0.14291

4 F5 Coagulation factor V Participates with activated coagulation factor X to 
activate prothrombin to thrombin

 − 0.0961

5 APOC1 Apolipoprotein C1 Plays a central role in high density lipoprotein and very 
low density lipoprotein metabolism

 − 0.07685

6 CSF2RA Colony stimulating factor 2 receptor subunit alpha Controls the production, differentiation, and function 
of granulocytes and macrophages

 − 0.05611

7 ENPP1 Ectonucleotide Pyrophosphatase/Phosphodiesterase1 Hydrolyzes nucleoside 5′ triphosphates and diadeno-
sine polyphosphates

 − 0.02214

8 GYG1 Glycogenin 1 Associated with glycogen storage disease XV 0.044962

9 PHKA1 Phosphorylase kinase regulatory subunit alpha1 Associated with glycogen storage disease type 9D, 
known as X-linked muscle glycogenosis

0.069351

10 CPT1A Carnitine palmitoyltransferase 1A Key enzyme in the carnitine-dependent transport 
across the mitochondrial inner membrane

0.075212

11 PDK4 Pyruvate dehydrogenase kinase 4 Involved in regulation of glucose metabolism 0.076723

12 CLOCK Clock circadian regulator Plays a central role in the regulation of circadian 
rhythms

0.085885

13 CTH Cystathionine gamma-lyase Converts cystathione derived from methionine into 
cysteine

0.108709

14 PLTP Phospholipid transfer protein Involved in regulating the size of HDL particles and 
cholesterol metabolism

0.160136
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3 + CTH × 0.108708800807851 + PLTP × 0.16013617077
787. Patients were divided into high- and low-risk groups 
according to the median risk score. The distribution of risk 
score, survival status, and the expression of the 14 MAGs 
in the training cohort are depicted in Fig. 2A. Combining 
the hazard ratio and gene expression heatmap of 14 MAGs, 
we found that the expression of genes with hazard ratio > 1, 
such as GYG1, PHKA1, CPT1A, PDK4, CLOCK, CTH, 
and PLTP, was higher in the high-risk group, while the 
expression of genes with hazard ratio < 1, such as NR3C1, 
IGFBP3, RARRES2, F5, APOC1, CSF2RA, and ENPP1, was 
higher in the low-risk group. Additionally, Kaplan–Meier 
curves indicated that the DLBCL patients in the high-
risk group had significantly worse overall survival (OS) 
(Fig.  2B). The area under the curve (AUC) values of the 
ROC curves for 1-, 2-, and 3-year OS were 0.79, 0.81, and 
0.81, respectively (Fig. 2C), demonstrating the great predic-
tive performance of the prognosis-associated risk model.

Next, we used the GEO testing cohort as an internal 
validation cohort and the TCGA dataset as an external 
validation cohort to evaluate the prediction performance 
and robustness of the prognosis-associated risk model. 
Using the same formula, we obtained consistent results in 
the testing cohort, which confirmed the robustness of the 
risk model. The risk score distribution and gene expression 
profiles are shown in Fig.  2D. OS was significantly worse 
in the high-risk group than the low-risk group (Fig.  2E). 
The AUCs for 1-, 2-, and 3-year OS were 0.79, 0.83 and 
0.81, respectively (Fig. 2F). In addition, the TCGA results 
concurred with the GEO training cohort results. The risk 
score distribution and gene expression profile are shown 
in Fig. 2G. Patients with higher risk scores had worse OS 
(Fig.  2H). The AUCs for 1-, 2-, and 3-year OS were 0.78, 
0.61, and 0.61, respectively, indicating that the risk model 
had a strong prognostic value for DLBCL patients in the 
TCGA validation cohort (Fig.  2I). In conclusion, these 
results confirmed that the risk model had a robust and 
accurate ability to predict OS.

Clinical correlations and independent prognosis analysis 
of risk score
Next, we further validated the clinical value of the risk 
score. Firstly, we investigated the applicability of the risk 
score to the immunotherapy cohort. Rituximab (an anti-
CD20 monoclonal antibody) plus polychemotherapy 
(R-CHOP) is the standard of care in DLBCL. Among the 
412 patients in GSE10846, only 232 received R-CHOP 

treatment. We selected these 232 patients as the immu-
notherapy cohort and compared the survival differences 
between the high- and low-risk groups in this cohort. 
The results showed that OS was significantly worse in the 
high-risk group than the low-risk group (Fig. 3A), indicat-
ing that the risk score also had a strong prognostic value 
for patients who have received immunotherapy. Secondly, 
to identify whether the risk score was related to clinico-
pathological features, we compared the risk scores between 
groups divided based on clinical features, as shown in box 
plots in Fig. 3B–H. Using Kruskal–Wallis rank sum tests, 
we found that the risk score significantly differed by age, 
ECOG status, stage, LDH level, and IPI score (Fig. 3B–F), 
but it was not related to gender or extranodal sites (Fig. 3G, 
H). These results indicated that the risk score had good 
clinical value for classifying DLBCL samples.

In addition, univariate and multivariate Cox regression 
indicated that risk score was an independent prognostic 
factor in DLBCL (Fig.  3I). Next, we constructed a prog-
nostic nomogram that integrated the risk score and all 
significant clinical features. Nomograms can be used to 
quantitatively predict the prognosis of patients, providing 
a reference for clinical decision-making. The nomogram 
demonstrated that the risk score contributed the most to 
the prognosis, more than the IPI score and other clinical 
features (such as age, stage, ECOG status, and LDH level) 
(Fig.  3J). Additionally, the calibration curves for 3- and 
5-year OS indicated high consistency between the nomo-
gram predictions and actual observations (Fig. 3K). These 
findings confirmed that the risk score was a satisfactory 
prognostic tool for use in DLBCL. Instinctively, we would 
compare it with the current widely used scoring system, 
IPI score. Time-dependent ROC curve analysis was further 
used to determine which scoring system best predicted the 
OS of DLBCL patients. The AUC of the risk score for pre-
dicting 1-year OS (AUC = 0.799) was significantly higher 
than that of IPI score (AUC = 0.631) (Fig.  3L). This dem-
onstrated that the risk score was superior to the IPI score 
regarding survival prediction accuracy in DLBCL.

Relationship between risk score and immune 
microenvironment
The tumor immune microenvironment significantly 
affects the therapeutic effect and prognosis of tumor. 
We assessed the relationship between the risk score 
and the tumor immune microenvironment in DLBCL 
by multiple immune analyses. The ESTIMATE results 

(See figure on next page.)
Fig. 2 Construction of the risk model in the GSE10846 training cohort and validation of the risk model in the GSE10846 testing cohort and TCGA 
cohort. A, D, G Distribution of the risk score, survival status, and gene expression of 14 MAGs in the GSE10846 training cohort (A), GSE10846 testing 
cohort (D) and TCGA cohort (G). B, E, H Kaplan–Meier curves of OS of patients in the high- and lowrisk groups in the GSE10846 training cohort (B), 
GSE10846 testing cohort (E) and TCGA cohort (H). C, F, I ROC curves for predicting the 1/2/3-year overall survival in the GSE10846 training cohort 
(C), GSE10846 testing cohort (F) and TCGA cohort (I)
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Fig. 2 (See legend on previous page.)
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Fig. 3 Clinical correlations of risk score and development of the nomogram in the GSE10846 dataset. A Survival curve of patients in the high- and 
low-risk groups in the GSE10846 immunotherapy cohort (232 patients who had received R-CHOP treatment). B–H Relationships between the 
risk score and clinicopathological features (including age, ECOG status, stage, LDH level, IPI score, gender and extranodal sites). 305 patients with 
complete clinicopathological features from the GSE10846 dataset were analyzed. The distance of both ends of boxes represents the interquartile 
range of values and the thick line represents the median value. I Univariate and multivariate analyses revealed the risk score was an independent 
prognostic factor for DLBCL patients. J Nomogram for predicting the 3- and 5-year OS of DLBCL patients. K Calibration curves of the nomogram for 
OS prediction at 3- and 5- year. L ROC curves indicating the comparisons of the risk score and the IPI score in predicting 1-year OS
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indicated that the patients in the high-risk group had 
significantly lower stromal and ESTIMATE scores, and 
higher tumor purity, than those in the low-risk group 
(Fig. 4A). The ssGSEA was used to assess the immune 
status of the two groups, which suggesting that the 
DLBCL patients in the high-risk group had a relatively 
low immune status (Fig.  4B), which was consistent 
with the ESTIMATE results. In addition, the results of 

the CIBERSORT analysis revealed that there were sig-
nificant differences in most infiltrating immune cells 
(Additional file  6: Figure S6A). The high-risk group 
was associated with significantly increased abun-
dances of B cells naive, monocytes, macrophages M2, 
NK cells resting, NK cells activated, and significantly 
decreased abundances of T cells CD4 naive, T cells fol-
licular helper, T cells gamma delta, macrophages M0 

Fig. 4 The different immune profiles between the low- and high- risk groups in the GSE10846 dataset. Two risk groups were divided based on the 
median risk score. A ESTIMATE algorithm. B ssGSEA analysis. C CIBERSORT analysis. D Correlation between risk score and immune cell content. E 
Expression variation of immune checkpoint. p values were showed as: ns not significant; *p < 0.05; **p < 0.01; ***p < 0.001
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and dendritic cells resting, while the low-risk group 
showed the opposite trends (Fig.  4C). Higher abun-
dance of immunosuppressive cells in the high-risk 
group indicated an immunosuppressive tumor micro-
environment, which was consistent with the poor 
prognosis.

Additionally, we further explored the correlations 
between the risk score and immune cell content. The 
results showed that the risk score was positively corre-
lated with macrophages M2, T cells CD4 naive, mono-
cytes, B cells naïve, NK cells resting, and negatively 
correlated with T cells gamma delta, macrophages M0 
and T cells follicular helper (Fig. 4D).

Thereafter, the immune-regulatory genes were further 
analyzed, and the differences in the expression levels of 
immune-related chemokines, immunosuppressants, 
immunostimulants, major histocompatibility com-
plex (MHC) factors, and immune receptors between 
the high- and low-risk groups are shown in a heatmap 
(Additional file 6: Figure S6B). As immune cell dysfunc-
tion and immunosuppressive microenvironments are 
characterized by high expression of immune check-
point-related transcripts, we subsequently focused on 
the differences in immune checkpoint expression levels 
and their correlations with the risk score. The results 
showed that the expression levels of ADORA2A, 
CD274, CSF1R, IL10, KIR2DL1, KIR2DL3, LGALS9, 
and TGFB1 were significantly higher in the high-risk 
group than the low-risk group (Fig.  4E). The corre-
lations between the risk score and the expression of 
immune checkpoints showed that the risk score was 
positively correlated with the expression of CD274, 
CSF1R, KIR2DL1, KIR2DL3, LGALS9, and PVRL2, 
and negatively correlated with the expression of CD96, 
PDCD1LG2, TGFBR1, and TIGIT (Additional file  6: 
Figure S6C). The significantly increased expression of 
most immune checkpoints in the high-risk group fur-
ther confirmed that the poor prognosis of high-risk 
patients was partly related to the immunosuppressive 
microenvironment. Based on these results, we can rea-
sonably assume that the immunosuppressive microen-
vironments (characterized by low immune scores, low 
immune status, high abundance of immunosuppressive 
cells, and high expression of immune checkpoints) led 
to poor prognosis in the high-risk group. This is also 
consistent with our immune analysis of metabolism-
associated molecular subtypes. Therefore, the risk 
model based on 14 MAGs is related to the immunosup-
pressive microenvironment of DLBCL, and abnormal 
immune cell infiltration and differential expression of 
immune checkpoints can be used as prognostic indica-
tors and targets of immunotherapy, which is clinically 
significant.

Heterogeneity of drug sensitivity and signaling pathways 
in high‑ and low‑ risk groups
Based on the drug sensitivity data from the GDSC data-
base, we used the "pRRophetic" R package to predict the 
drug sensitivity of each patient. Gemcitabine, vinblastine, 
and metformin had lower IC50 values in the high-risk 
group, while cisplatin and etoposide had higher IC50 val-
ues in the high-risk group (Additional file 7: Figure S7A). 
Furthermore, to explore the discrepancies in signaling 
pathways between the high- and low-risk groups, GSVA 
was performed. As shown in Additional file 7: Figure S7B, 
the differentially enriched signaling pathways between 
the two groups mainly involved the unfolded protein 
response, xenobiotic metabolism, KRAS signaling, gly-
colysis, TGF beta signaling, epithelial–mesenchymal 
transition, and heme metabolism. The GSVA results sug-
gest that disturbances in these signaling pathways may 
worsen the prognosis of DLBCL patients in the high-risk 
group compared to the low-risk group.

Construction of ceRNA network
To further understand how the 14 MAGs in the risk 
model regulate mRNA expression by acting as miRNA 
sponges in DLBCL, we constructed a ceRNA network 
based on the 14 MAGs. Using FunRich to reverse pre-
dict miRNAs based on the 14 MAGs, 57 miRNAs and 
130 mRNA-miRNA interactions were identified. Subse-
quently, using NPInter to reverse predict lncRNAs, 7395 
mRNA-miRNA-lncRNA interactions were obtained. 
Finally, a ceRNA network related to the 14 genes was suc-
cessfully constructed (Additional file 8: Figure S8). These 
data may provide clues for identifying the regulatory 
mechanism of the 14 MAGs in DLBCL.

Screening for hub genes in the risk model by WGCNA
To identify the most critical genes among the 14 
model genes for further experimental verification, 
the WGCNA algorithm was applied. We constructed 
a weighted gene co-expression network based on 
the genes with variance within the first 5000 in the 
GSE10846 dataset (Additional file  9: Figure S9A). The 
soft-threshold was set to 1 to build a scale-free network 
(Additional file  9: Figure S9B). Next, we constructed 
an adjacency matrix and transformed it into a topo-
logical overlapping matrix (TOM). Based on the TOM, 
three gene modules were identified, namely blue (208), 
brown (151) and turquoise (4641) modules. Correlation 
analyses between the modules and clinical trait showed 
that the turquoise module had the highest correlation 
(cor = 0.4, p =  2e−17) (Additional file 9: Figure S9C). To 
identify the hub genes among the 14 model genes, we 
identified the overlapping genes between the turquoise 
module and the 14 model genes. This led to two hub 
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genes being identified: PLTP and PHKA1 (Fig.  5A). 
Then, firstly, we explored the correlation between these 
two hub genes and infiltrating immune cells. We found 
that both hub genes were positively correlated with 
the infiltration of M2 macrophages and CD8 T cells 
(Fig. 5B). Secondly, we further analyzed the correlation 
between the two hub genes and immune checkpoints. 
As we expected, we found that PD-1, PD-L1 and LAG3, 

the common immune checkpoints on T cells, were also 
positively correlated with both hub genes, which indi-
cated that the highly infiltrated CD8 T cells were dys-
functional (Fig. 5C). Thus, we speculated that these two 
hub genes were closely related to the immunosuppres-
sive microenvironment and the potential mechanism of 
these two genes in DLBCL deserved further verification 
and discussion.

Fig. 5 Identification of two hub genes and prediction of their relationship with immune cell content and experimental validation of their 
expression in the DLBCL TMA cohort. A Venn diagram analysis showed that the overlap of WGCNA analysis and LASSO model led to two hub genes 
being identified: PLTP and PHKA1. B Prediction of correlations between hub genes and immune cell content. C Prediction of correlations between 
hub genes and immune checkpoints. D Differences in PLTP expression between reactive hyperplasia tissues and DLBCL tissues with mIHC (p value 
by Wilcoxon rank-sum test). E Differences in PHKA1 expression between reactive hyperplasia tissues and DLBCL tissues with mIHC (p value by 
Wilcoxon rank-sum test)
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Experimental verification of hub gene expression 
and their relationships with prognosis and the immune 
microenvironment in the DLBCL TMA cohort
Next, we preliminarily verified the two hub genes using 
mIHC in our own TMA cohort. First, we compared 
DLBCL tissues with benign reactive hyperplasia tis-
sues, and we found that the expression levels of PLTP 
and PHKA1 were both significantly increased in DLBCL 
patients (Fig.  5D, E). Next, X-tile analysis of 5-year OS 
was performed using the TMA cohort to determine the 
optimal cutoff values for PLTP and PHKA1 expression. 
According to the optimal cutoff value for each gene, we 
divided the 104 DLBCL samples in the TMA cohort into 
high- and low-expression groups (high-PLTP expression: 
n = 36, low-PLTP expression: n = 68; and high-PHKA1 
expression: n = 40, low-PHKA1 expression: n = 64). 
Relevant grouping information and clinicopathologi-
cal features are shown in Tables  3, 4. We then studied 
the differences in the tumor immune microenvironment 
between the pairs of groups. Regarding PLTP, the high-
expression group had worse prognosis and higher infil-
tration of M2 macrophages and tumor-associated 
macrophages (TAMs) compared to the low-expression 
group (Fig.  6A–E). Moreover, PLTP expression was 
positively correlated with clinical stage (Table  3) and 
immune checkpoints PD-1 and PD-L1, but not correlated 

with LAG3 (Table  3 and Fig.  6F–I). Likewise, regarding 
PHKA1, the high-expression group had worse prog-
nosis and higher infiltration of M2 macrophages and 
TAMs compared to the low-expression group (Fig. 7A–
E). Moreover, PHKA1 expression was positively cor-
related with immune checkpoints PD-1 and PD-L1, but 
not correlated with clinical features and LAG3 (Table  4 
and Fig.  7F–I). Finally, univariate and multivariate Cox 
regression analyses indicated that PLTP and PHKA1 
were both independent prognostic factors for patients 
with DLBCL (Additional file 10: Figure S10). Our verifi-
cation results confirmed that these two genes were both 
overexpressed in DLBCL tissues, and their expression 
levels were closely related to the prognosis and immu-
nosuppressive microenvironment of DLBCL. The con-
clusions were basically consistent with the results of our 
bioinformatics analyses.

Discussion
The molecular heterogeneity of DLBCL brings great 
challenges to precision therapy. It is generally accepted 
that the traditional IPI score cannot adequately predict 
the prognosis of DLBCL, and developing more reliable 
strategies for subtype identification and prognostic clas-
sification is urgent [3, 19]. In this study, we identified two 
metabolism-associated molecular subtypes, and there 

Table 3 Association of PLTP expression levels with clinicopathological characteristics in patients with DLBCL

* P < 0.05. Hb, hemoglobin; LDH, lactate dehydrogenase; IPI, International Prognostic Index

Characteristic Total no Low expression, No. (%) High expression, No. (%) Pearson χ2 p‑value

Gender  < 0.0001 0.987

 Male 55 36 (65.5) 19 (34.5)

 Female 49 32 (65.3) 17 (34.7)

Age (year) 0.025 0.874

 ≤ 60 56 37 (66.1) 19 (33.9)

 > 60 48 31 (64.6) 17 (35.4)

B symptoms 1.18 0.277

 No 84 57 (67.9) 27 (32.1)

 Yes 20 11 (55.0) 9 (45.0)

Ann Arbor stage 4.007 0.045 *

 I or II 76 54 (71.1) 22 (28.9)

 III or IV 28 14 (50.0) 14 (50.0)

Hb level (g/L) 2.579 0.108

 ≥ 120 63 45 (71.4) 18 (28.6)

 < 120 41 23 (56.1) 18 (43.9)

LDH level (g/L) 0.465 0.495

 Normal 51 35 (68.6) 16 (31.4)

 Elevated 53 33 (62.3) 20 (37.7)

IPI score 0.184 0.668

 0–2 55 37 (67.3) 18 (32.7)

 3–5 49 31 (63.3) 18 (36.7)
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were significant differences in prognosis and the immune 
microenvironment between these two subtypes. In addi-
tion, we developed a prognostic risk model based on 
14 MAGs. We found that it was a powerful independ-
ent prognostic tool with better predictive performance 
than the IPI score and was closely related to the immu-
nosuppressive microenvironment. Finally, we identified 
two hub genes among the model genes, and preliminar-
ily verified them in our own TMA cohort using mIHC. 
Our results may contribute to the development of accu-
rate immunotherapy for DLBCL that targets metabolic 
pathways.

Consensus clustering is an unsupervised clustering 
method that can identify different molecular subtypes 
according to a gene expression matrix [20]. Using consen-
sus clustering, we identified two metabolism-associated 
molecular subtypes, which had significant differences 
in prognosis and the immune microenvironment. Com-
pared to cluster 2, the prognosis of the patients in clus-
ter 1 was poor, accompanied by a high abundance of 
immunosuppressive cells and a general increase in the 
expression of immune checkpoints, indicating an immu-
nosuppressive microenvironment. This is consistent with 
findings regarding other malignancies [6, 13, 14, 21]. As 
the consensus clustering was based on a MAG expression 
matrix, we inferred that the expression of MAGs was 

related to the prognosis and immunosuppressive micro-
environment of DLBCL patients.

To further evaluate the prognostic value of the MAGs, 
we established a 14-gene risk model in the GEO training 
cohort by univariate Cox regression and LASSO regres-
sion. We then constructed a prognostic nomogram that 
integrated the risk score based on this model and all 
significant clinical features. The risk score effectively 
predicted prognosis in the GEO training cohort and 
was validated in a GEO internal validation cohort and a 
TCGA external validation cohort. ROC curve analysis 
confirmed that the risk score was superior to the tradi-
tional IPI score. Multiple validation methods indicated 
the robustness of the risk model, and it is reasonable 
to believe that this risk model will be broadly applica-
ble for individualized risk management. As previously 
mentioned, in view of the close relationship between 
metabolic reprogramming and the tumor immune 
microenvironment, we performed multiple immune 
analyses (ESTIMATE, ssGSEA, and CIBERSORT) to 
explore the differences in the immune landscape between 
the high- and low- risk groups. As expected, the high-risk 
group had a poor prognosis and an immunosuppressive 
microenvironment characterized by low immune score, 
low immune status, high abundance of immunosuppres-
sive cells, and high expression of immune checkpoints. 

Table 4 Association of PHKA1 expression levels with clinicopathological characteristics in patients with DLBCL

Hb, hemoglobin; LDH, lactate dehydrogenase; IPI, International Prognostic Index

Characteristic Total No Low Expression, No. (%) High Expression, No. (%) Pearson χ2 p-value

Gender 0.117 0.733

 Male 55 33 (60.0) 22 (40.0)

 Female 49 31 (63.3) 18 (36.7)

Age (year) 3.254 0.071

 ≤ 60 56 30 (53.6) 26 (46.4)

 > 60 48 34 (70.8) 14 (29.2)

B symptoms 0.125 0.723

 No 84 51 (60.7) 33 (39.3)

 Yes 20 13 (65.0) 7 (35.0)

Ann Arbor stage 0.313 0.576

 I or II 76 48 (63.2) 28 (36.8)

 III or IV 28 16 (57.1) 12 (42.9)

Hb level (g/L) 0.009 0.924

 ≥ 120 63 39 (61.9) 24 (38.1)

 < 120 41 25 (61.0) 16 (39.0)

LDH level (g/L) 0.924 0.336

 Normal 51 29 (56.9) 22 (43.1)

 Elevated 53 35 (66.0) 18 (34.0)

IPI score 0.556 0.456

 0–2 55 32 (58.2) 23 (41.8)

 3–5 49 32 (65.3) 17 (34.7)
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Fig. 6 Experimental verification of the relationship between PLTP and prognosis and immune microenvironment in the DLBCL TMA cohort. A 
Kaplan–Meier curve for the PLTP high- and low- expression groups in our TMA cohort. The optimal cutoff point was obtained from X-tile 3.6.1 
software. B Characterization of cell immunophenotypes with mIHC. A staining panel was developed to visualize DAPI, CD68, CD163 and PLTP 
simultaneously on the same tissue slide. C M2 macrophages content in the PLTP high- and low-expression groups. CD68+CD163+ indicated 
the content of M2 macrophages (p value by Wilcoxon rank-sum test). D Characterization of cell immunophenotypes with mIHC. A staining panel 
was developed to visualize DAPI, CD11B and PLTP simultaneously on the same tissue slide. E TAMs content in the PLTP high- and low- expression 
groups. CD11B+ indicated the content of TAMs (p value by Wilcoxon rank-sum test). F Characterization of cell immunophenotypes with mIHC. A 
staining panel was developed to visualize DAPI, PD-1, PD-L1, LAG3 and PLTP simultaneously on the same tissue slide. CD274 indicated the content 
of PD-L1 and PDCD1 indicated the content of PD-1. G–I Correlations between PLTP expression and immune checkpoints (including PD-1, PD-L1, 
and LAG3)
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Fig. 7 Experimental verification of the relationship between PHKA1 and prognosis and immune microenvironment in the DLBCL TMA cohort. A 
Kaplan–Meier curve for the PHKA1 high- and low-expression groups in our TMA cohort. The optimal cutoff point was obtained from X-tile 3.6.1 
software. B Characterization of cell immunophenotypes with mIHC. A staining panel was developed to visualize DAPI, CD68, CD163 and PHKA1 
simultaneously on the same tissue slide. C M2 macrophages content in the PHKA1 highand low- expression groups. CD68+CD163+ indicated the 
content of M2 macrophages (p value by Wilcoxon rank-sum test). D Characterization of cell immunophenotypes with mIHC. A staining panel was 
developed to visualize DAPI, CD11B and PHKA1 simultaneously on the same tissue slide. E TAMs content in the PHKA1 high- and low- expression 
groups. CD11B+ indicated the content of TAMs (p value by Wilcoxon rank-sum test). F Characterization of cell immunophenotypes with mIHC. 
A staining panel was developed to visualize DAPI, PD-1, PD-L1, LAG3 and PHKA1 simultaneously on the same tissue slide. CD274 indicated the 
content of PD-L1 and PDCD1 indicated the content of PD-1. G–I Correlations between PHKA1 expression and immune checkpoints (including PD-1, 
PD-L1, and LAG3)
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The low-risk group showed the opposite trend. This is 
also consistent with our immune analysis of metabolism-
associated molecular subtypes. An increased risk score 
indicates a “cold tumor” [22], with attenuated immuno-
therapy effectiveness and an immunosuppressive tumor 
microenvironment caused by metabolic reprogramming, 
which is consistent with poor prognosis. These conclu-
sions further indicated that MAGs might play important 
roles in the altered immune response in DLBCL.

Notably, in the two groups with poor prognosis (clus-
ter 1 and the high-risk group), in addition to the increase 
in the abundance of immunosuppressive cells and the 
expression of immune checkpoints, there was a signifi-
cant increase in the infiltration of resting and activated 
NK cells. This is consistent with the results of previous 
studies, that is, an increased abundance of activated 
NK cells is associated with poor prognosis [23]. NK cell 
dysfunction is common in hematological cancer, and it 
is related to tumor immune escape [24]. We also found 
that KIR2DL1 and KIR2DL3 [25], the common immune 
checkpoints on NK cells, were also significantly over-
expressed in cluster 1 and the high-risk group. In the 
future, immunotherapy that blocks KIR2DL1/KIR2DL3 
might reduce the abundance of activated NK cells.

Most of the MAGs in the risk model have been 
reported to be associated with cancer. To identify the 
most critical genes, i.e., the hub genes, among the 14 
model genes for further experimental verification, we 
used the WGCNA algorithm to select key genes and then 
identified the overlapping genes among these genes and 
the model genes. As a result, we identified two hub genes: 
PLTP and PHKA1. The potential mechanisms of these 
two hub genes in DLBCL deserve further discussion.

Phospholipid transfer protein (PLTP) is a widely 
expressed lipid transfer protein that belongs to the 
lipopolysaccharide (LPS)-binding/lipid transfer gene 
family. PLTP can promote the transfer of a series of lipid 
molecules, including diacylglycerol, phosphatidic acid, 
sphingomyelin, phosphatidylcholine, phosphatidylglyc-
erol, brain glycosides, and phosphatidylethanolamine. 
These transport functions play an important role in lipid 
and lipoprotein metabolism [26, 27]. PLTP is differen-
tially expressed in many kinds of tumors, such as prostate 
cancer [27], ovarian cancer [28], breast cancer [29], lung 
cancer [30], gastric cancer [31] and glioma [32]. Such a 
wide range of cancer types with differential expression of 
PLTP indicate that PLTP may be an important regulator 
of some common processes related to tumors.

The phosphorylase kinase regulatory subunit alpha 
1 (PHKA1) gene encodes the muscle-type isoform of 
the PHK alpha subunit [33]. PHKA1 plays a key role 
in glycogen metabolism [34] and PHKA1 mutations 

cause glycogen storage disease type 9D, also known as 
X-linked muscle glycogenosis [35]. However, research 
on PHKA1 in tumors is still limited. Research has shown 
that PHKA1, as an important gene related to glycogen 
metabolism, is related to the metastasis of prostate can-
cer [36]. In addition, the increased expression of PHKA1 
was associated with younger ages of gastrointestinal stro-
mal tumor patients [36].

We further preliminarily validated the two hub genes 
in our TMA cohort using mIHC, which can quantify 
immune cells in the tumor microenvironment more 
objectively than traditional semi-quantitative meth-
ods [37]. Our verification results confirmed that the 
two hub genes were both overexpressed in DLBCL tis-
sues. Thereafter, using X-tile (a valuable tool for out-
come-based cutoff optimization) [38] and the 5-year 
OS of patients, we determined the optimal cutoff value 
for PLTP and PHKA1 expression. Based on each cutoff 
value, we subdivided the DLBCL patients into high- and 
low-expression groups, and further studied the differ-
ences in the tumor immune microenvironment between 
the pairs of groups. We found that the prognosis of the 
high-expression groups was poorer, accompanied by an 
immunosuppressive microenvironment characterized by 
higher abundances of immunosuppressive cells (M2 mac-
rophages and TAMs) and higher expression of immune 
checkpoints (PD-L1 and PD-1). Finally, univariate and 
multivariate Cox regression analyses indicated that PLTP 
and PHKA1 were both independent prognostic factors 
in DLBCL. These experimental results showed that high 
expression of the hub genes was closely related to the 
prognosis and immunosuppressive microenvironment 
of DLBCL, which was consistent with our bioinformatics 
analyses, and further verified the stability and accuracy of 
the risk model.

Studies have shown that metabolic reprogramming is 
an important feature of immune cell activation. Immune 
cells have different metabolic characteristics, which affect 
their immune function [16, 18]. Macrophages, as the 
main immune-infiltrating cells in solid tumors, can polar-
ize into inflammatory (M1) or immunosuppressive (M2) 
phenotypes based on external stimuli. M1 macrophages 
have pro-inflammatory and anti-tumor effects, while M2 
macrophages have anti-inflammatory and pro-tumor 
effects [39]. The metabolic reprogramming of tumors can 
affect the polarization process of macrophages [40, 41]. 
For example, hypoxia and lactic acid accumulation can 
promote the production of immunosuppressive M2 mac-
rophages. The increase in tumor glycolysis produces a 
large amount of lactic acid, and the accumulation of lac-
tic acid drives macrophages toward the M2 phenotype. 
M2 macrophages overexpress arginase 1 (ARG1). ARG1 
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consumes L-arginine, which is necessary for cytotoxic T 
lymphocytes to exert anti-tumor activity, and produces 
polyamines with strong immunosuppressive effects [18, 
42]. Additionally, hypoxia promotes tumor develop-
ment by inducing the production of angiogenic factors, 
mitogenic factors, and cytokines related to tumor metas-
tasis in macrophages [9]. Additionally, macrophages 
can undergo lipid-based metabolic reprogramming to 
promote tumor progression via increased membrane 
cholesterol efflux [43, 44]. Moreover, M2 macrophages 
up-regulate fatty acid oxidation, mitochondrial respira-
tion, and angiogenesis, thereby promoting tumor pro-
gression [9, 45]. Our mIHC results also confirmed that 
M2 macrophages in DLBCL patients with high metabolic 
gene expression were significantly increased. Therefore, 
M2 macrophages may have potential as immunotherapy 
targets.

Interactions between immune checkpoints and their 
cognate receptors can deliver inhibitory signals to 
immune cells leading to their dysfunction and exhaus-
tion, resulting in immunosuppressive microenviron-
ment and tumor progression [46]. Our study showed 
that the expression of most immune checkpoints signifi-
cantly increased with increasing risk score, indicating an 
immunosuppressive microenvironment that was con-
sistent with poor prognosis. Recent studies have shown 
that immune checkpoints are closely related to metabo-
lism. On the one hand, checkpoint signals can regulate 
metabolism [18]. For example, PD-L1 in tumor cells can 
activate the PI3K-Akt-mTOR pathway, stimulate gly-
colysis, and enhance glucose uptake by the tumor cells 
[47]. CD155-TIGIT signaling in T cells of human gas-
tric cancer inhibits glucose uptake, lactic acid produc-
tion, and glycolytic enzyme expression [48]. On the other 
hand, metabolism also modulate the tumor response to 
checkpoint blockade immunotherapy. For instance, obe-
sity is recognized to enhance the PD-1 expression, and is 
associated with better outcome to checkpoint blockade 
immunotherapy in metastatic melanoma and renal cell 
carcinoma [46]. Besides, 2-Deoxy-D-glucose (2-DG), a 
non-metabolizable glucose analog that inhibits normal 
glucose metabolism, can enhance the efficacy of anti-
CTLA-4 immunotherapy by decreasing PD-L1 protein 
abundance and increasing expression of type-I inter-
feron (IFN) and antigen presentation genes [49]. Moreo-
ver, Powell’s team showed that a glutamine metabolism 
inhibitor not only improved the immunosuppressive 
microenvironment, but also effectively reversed PD-1 
inhibitor resistance when combined with a PD-1 inhibi-
tor [50]. Therefore, combining metabolic inhibitors with 
checkpoint inhibitors is expected to improve the efficacy 
of checkpoint blockade.

Our research has some unique advantages. In this study, 
two metabolism-associated DLBCL subtypes were identi-
fied, and a risk model based on MAGs was constructed. 
We used multiple validation methods to evaluate the 
model: first, we tested the model in a GEO internal test-
ing cohort, then in a TCGA external validation cohort, 
and finally we identified two hub genes and carried out 
preliminary verification in our own TMA cohort. Satis-
factory results were obtained from the multiple validation 
methods, confirming the robustness and accuracy of the 
risk model. In addition, we not only studied the predictive 
performance of the risk model, but also explored the effect 
of MAG expression on the tumor immune microenviron-
ment in DLBCL.

Limitations
Although our findings have potential clinical significance, 
there are still some limitations. First, the clinical features 
extracted from the GEO and TCGA databases were lim-
ited, as they did not include potential prognostic factors 
such as smoking and background diseases. Second, this 
is a retrospective study, and an independent prospective 
cohort is needed to verify the risk model established in this 
study. Finally, the value of the two hub genes as potential 
pharmacological targets needs to be further investigated.

Conclusions
In this study, we identified two metabolism-associ-
ated DLBCL subtypes and constructed a risk model 
based on MAGs. Our risk model is related to the tumor 
immune microenvironment and prognosis of DLBCL. 
This study provides a new 14-gene signature for pre-
dicting the prognosis of DLBCL, which may facilitate 
personalized treatment strategies, and provides an impor-
tant basis for further study on MAGs and the immune 
microenvironment.
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