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Low CCL19 expression is associated 
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Abstract 

Background: This study aimed to recognize the hub genes associated with prognosis in follicular lymphoma (FL) 
treated with first-line rituximab combined with chemotherapy.

Method: RNA sequencing data of dataset GSE65135 (n = 24) were included in differentially expressed genes 
(DEGs) analysis. Weighted gene co-expression network analysis (WGCNA) was applied for exploring the coexpres-
sion network and identifying hub genes. Validation of hub genes expression and prognosis were applied in dataset 
GSE119214 (n = 137) and independent patient cohort from Cancer Hospital, Chinese Academy of Medical Sciences & 
Peking Union Medical College (n = 32), respectively, by analyzing RNAseq expression data and serum protein concen-
tration quantified by ELISA. The Gene Set Enrichment Analysis (GSEA), gene ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichments analysis were performed. CIBERSORT was applied for tumor-
infiltrating immune cells (TIICs) subset analysis.

Results: A total of 3260 DEGs were obtained, with 1861 genes upregulated and 1399 genes downregulated. Using 
WGCNA, eight hub genes, PLA2G2D, MMP9, PTGDS, CCL19, NFIB, YAP1, RGL1, and TIMP3 were identified. Kaplan–Meier 
analysis and multivariate COX regression analysis indicated that CCL19 independently associated with overall survival 
(OS) for FL patients treated with rituximab and chemotherapy (HR = 0.47, 95% CI [0.25–0.86], p = 0.014). Higher serum 
CCL19 concentration was associated with longer progression-free survival (PFS, p = 0.014) and OS (p = 0.039). TIICs 
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Introduction
Follicular lymphoma (FL) is the second common B-cell 
lymphoma that compromises about 12% of all mature 
non-Hodgkin lymphoma (NHL) [1, 2]. FL is an indolent 
NHL and is characterized with repeatedly relapse in the 
long disease history in most patients [3]. Although the 
advent of rituximab improved the progression-free sur-
vival (PFS) and overall survival (OS) of FL [4, 5], still 
approximately 20% patients with FL relapsed within two 
years after first-line chemoimmunotherapy [6], which 
lead to a dismal prognosis. Therefore, identifying the 
high-risk patients with suboptimal treatment response 
before treatment and improving their survival outcomes 
are necessary for the management of FL.

Most previous studies focused on screening differential 
expression genes and establishing gene models in FL [7, 
8]. However, the interconnectivity and co-expression of 
the genes was ignored. Weighted gene co-expression net-
work analysis (WGCNA) is a useful method to explore 
the interactions and relationships within genes and can 
help to recognize the hub genes associated with clini-
cal characteristics [9, 10]. WGCNA can recognize the 
core gene and provide information for potential clini-
cal prognosis biomarkers and has been widely used in 
cancer genome-related researches, including other sub-
types of lymphoma [11–13]. In this study, we sought to 
identify the hub genes for FL using WGCNA conducted 
in a cohort containing FL samples and normal samples. 
We focused on the prognosis value of the identified hub 
genes. The association of hub genes and survival out-
comes was validated in two independent cohorts includ-
ing both tumor samples and serum samples of FL patients 
receiving standard first-line treatment, respectively. We 
aimed to raise new potential biomarkers for FL, which 
could bring more insight for diagnosis and clinical treat-
ment in FL.

Materials and methods
Patients and datasets
GSE65135 containing RNA sequencing (RNA-seq) data 
of 24 cases, including 10 normal tonsil tissue (control 
group) and 14 FL tissue (cancer group)  was obtained 
from Gene Expression Omnibus (GEO) database (https:// 
www. ncbi. nlm. nih. gov/ geo/) and used for exploring the 
differential expressed genes (DEGs). GPL570 (Affymetrix 

Human Genome U133 Plus 2.0 Array) was used for this 
dataset and the annotation for the gene IDs was con-
ducted using the hgu133plus2.db package in R software 
(Vienna, Austria. https:// www.R- proje ct. org/). The Affy 
package in R was applied for raw data quality control, 
preconditioning and sorting out [14]. The expression of 
repeated genes was expressed as mean values.

To validate the prognostic value of hub genes identified 
from GSE65135, GEO database was searched using the 
term “follicular lymphoma”, with organism restricted to 
“homo sapiens”. Up to January 9th, 2021, a total of 147 FL 
related GEO series was screened. Datasets of expression 
data with complete prognostic information were included 
in the validation cohort. Only one dataset, GSE119214, 
contained expression data and survival data (failure-free 
survival and OS) of pre-treated formalin-fixed and par-
affin-embedded samples of 137 FL patients treated with 
rituximab and chemotherapy and was included in the 
validation cohort. GPL13938 (Illumina HumanHT-12 
WG-DASL V4.0 expression beadchip) was selected for 
this microarray dataset and gene IDs were mapped to the 
microarray probes using the annotation information pro-
vided by GEO dataset.

Additionally, pre-treated serum samples of patients 
with FL treated with first-line chemoimmunotherapy 
in the Cancer Hospital, Chinese Academy of Medical 
Sciences & Peking Union Medical College (CAMS & 
PUMC) from 2014 to 2018 were used for further vali-
dation of hub genes with clinical significance identified 
from GSE119214. Inclusion criteria including: patients 
with newly diagnosed FL, receiving standard first-line 
R-CHOP (rituximab plus cyclophosphamide, doxo-
rubicin, vincristine, and prednisone) or R-CHOP-like 
chemoimmunotherapy regimen, with follow-up informa-
tion. All the samples were obtained before the initiation 
of treatment and were with informed consent. Sample 
collection was approved by the Hospital’s Protection of 
Human Subjects Committee. All data collected were 
anonymized. This study was approved by the medical 
ethics committee of Cancer Hospital, CAMS & PUMC 
(No. 19/088-1873). The cutoff date for follow-up was July 
2nd, 2021. A total of 32 samples were included in this 
cohort (CHCAMS cohort). The patient characteristics of 
GSE119214 and CHCAMS cohort were shown in Addi-
tional file 1: Table S1.

subset analysis showed that CCL19 expression had a positive correlation with monocytes and macrophages M1, and a 
negative correlation with naïve B cells and plasma cells.

Conclusion: CCL19 expression was associated with survival outcomes and might be a potential prognostic bio-
marker for FL treated with first-line chemoimmunotherapy.
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Differentially expressed genes screening
The limma package in R was used for screening the DEGs 
between control group and cancer group in GSE65135 
[15]. The thresholds for DEGs were set  as follows: (1) 
p < 0.05; (2) log2 (fold change) > 1 or < − 1. Volcano plot 
and heatmap generated by the ggplot2 package were dis-
played to show the DEGs.

Gene enrichment analysis
Gene Ontology (GO) analysis was performed for analyz-
ing the unique biological significance based on DEGs. 
The Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis was performed to find the important pathways 
among the DEGs. The clusterProfiler package in R was 
used for analyzing GO annotation and KEGG pathway 
[16]. Gene Set Enrichment Analysis (GSEA) was applied 
to analyze the signal pathway enriched in tumor samples 
[17]. The GOplot package in R was used for result visuali-
zation [18].

Coexpression network construction and hub gene 
selection
WGCNA package in R was applied for exploring the 
coexpression network and identifying hub genes [9, 10]. 
Expression data of DEGs were input into R and under-
going quality check before coexpression analysis. Sam-
ples and genes with poor quality would be excluded. 
Expression data of qualified samples were included in the 
analysis and similar matrix was constructed by calculat-
ing the Pearson correlation coefficient of two genes. Soft 
thresholding power was explored to ensure a scale-free 
network. The mean connectivity and scale independence 
of network modules were analyzed using gradient under 
soft thresholding power ranging from 1 to 20. Hierarchi-
cal clustering dendrogram summarized the gene mod-
ules. The minimum number of each gene module was set 
at 50 to ensure the reliability of each module. Heatmap 
and topological overlap matrix (TOM) plot were drawn 
to display the intensity of interaction among the modules.

The genes of modules were then used to construct the 
functional protein network. To further analyze the hub 
genes of the network, edges and nodes of network were 
output under certain threshold value (0.4) to Cytoscape 
software (version 3.8.0; http:// www. cytos cape. org/) for 
analyzing and visualizing [19]. CytoHubba plugin in 
Cytoscape was applied for analyzing the degree of con-
nectivity for each gene. The degree of connectivity set to 
rank genes. Genes with connectivity degree over 20 were 
identified and were considered to be hub genes. Identi-
fied hub genes were uploaded in the Search Tool for 
the Retrieval of Interacting Genes/Proteins (STRING) 
online database (version 11.0, https:// string- db. org/) for 

analyzing the protein–protein interaction (PPI). Involved 
pathways of identified hub genes were explored in KEGG 
website (https:// www. kegg. jp/ kegg/).

Validation of hub genes
To validate the prognostic power of hub genes, Kaplan–
Meier analysis were applied using the data of GSE119214 
and CHCAMS cohort. The best expression cut-off value 
for each hub gene for OS was obtained by the maxstat 
package in R. To identify the independent prognostic 
value of hub genes, multivariate analysis was applied.

To further explore mRNA levels of hub genes, 
ONCOMINE database (http:// www. oncom ine. org), a 
publicly accessible online cancer microarray database 
that facilitates the discovery of genome wide expression 
analyses, was applied. Student’s t test was conducted for 
comparing the mRNA level of cancer specimens and nor-
mal control datasets. Fold change value was set as 2 and p 
value < 0.05 were considered as significant.

Measurement of serum CCL19 concentration
Peripheral blood samples were obtained before first-line 
treatment, and serum was extracted and stored at − 80 °C 
until use. Serum CCL19 concentrations were quantified 
using the CCL19 human enzyme-linked immunosorb-
ent assay (ELISA) kit according to the manufacturer’s 
instructions (Mlbio, Enzyme-linked Biotechnology Co., 
Shanghai, China).

CIBERSORT analysis
CIBERSORT (https:// ciber sort. stanf ord. edu/) was 
applied to analyze the association of tumor microenvi-
ronment and the expression of CCL19 [20]. The propor-
tion of tumor-infiltrating immune cells (TIICs) of each 
samples in GSE119214, including naive B cells, memory 
B cells, plasma cells, CD8+ T cells, naive CD4+ T cells, 
CD4+ resting memory T cells, CD4+ memory-activated 
T cells, follicular helper T cells, Treg cells, γδ T cells, 
resting natural killer cells, activated natural killer cells, 
monocytes, M0 macrophages, M1 macrophages, M2 
macrophages, resting dendritic cells, activated dendritic 
cells, resting mast cells, activated mast cells, eosinophils, 
and neutrophils, was calculated.

Statistical analysis
Univariable analysis was performed using Kaplan–Meier 
survival analysis with log-rank test. Multivariable analy-
sis was performed using COX regression model. Cor-
relations between two groups were calculated with 
Spearman’s coefficient (R). Comparison of two groups 
was performed using Mann–Whitney–Wilcoxon test 
and comparison of multiple groups was performed 
using Kruskal–Wallis test. All statistical analyses were 

http://www.cytoscape.org/
https://string-db.org/
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https://cibersort.stanford.edu/
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performed and visualized by R studio software (ver-
sion 4.0.3, https:// www.r- proje ct. org/), GSEA software 
(version 4.1.0, http:// www. gsea- msigdb. org/ gsea/) and 
GraphPad PRISM (version 8.0.2). Two-side p value < 0.05 
was considered as statistically significant.

Result
Overview of differentially expressed genes
In differential expression analysis, a total of 3260 DEGs 
were obtained, of which 1861 genes were upregulated 
and 1399 genes were downregulated in tumor samples 
compared with normal samples (Fig. 1a, b).

To further analyze the biological function of the DEGs, 
the upregulated and downregulated genes were fur-
ther analyzed with GO and KEGG enrichment analysis, 
respectively. Functional enrichment analysis was per-
formed in the biological process. Up-regulated DEGs 
were enriched in extracellular matrix organization, extra-
cellular structure organization and regulation of vascu-
lature development, while down-regulated DEGs were 
enriched in nucleosome assembly, chromatin assembly 
or disassembly and chromatin assembly (Fig.  1c and d). 
KEGG analysis showed that the upregulated DEGs were 
enriched in PI3K-AKT signaling pathway, cytokine-
cytokine receptor interaction and cell adhesion mol-
ecules. The down-regulated DEGs were involved in 
alcoholism, neutrophil extracellular trap formation and 
systemic lupus erythematosus (Fig. 1e and f ).

As all the genes included in the GO and KEGG analysis 
were selected under the threshold set artificially (p < 0.05; 
log2 [fold change] > 1 or < − 1), the results might be dif-
ferent under different thresholds. Therefore, all expres-
sion dataset was included in GSEA analysis. Results 
showed that IL-6/JAK/STAT3 signaling, complement and 
mitotic spindle were three pathways that mostly enriched 
in tumor samples (Additional file 1: Fig. S1).

Weighted gene correlation network analysis
To explore the key modules and hub genes in FL, 
WGCNA was performed for network construction to 
find highly-correlated genes. All the cancer samples and 
controlled samples were included in the analysis after 
quality check (Additional file 1: Fig. S2). Soft threshold-
ing power was set at 6 to ensure a scale-free network, 
with scale-free R2 = 0.88 and mean k = 134 (Additional 
file  1: Fig. S3). Gene modules were explored and the 
identified modules were showed in the hierarchical clus-
ter tree (Fig. 2a). A total of 3260 DEGs were allocated in 
three modules, with 633 genes in blue gene module, 209 
genes in brown gene module and 2418 genes in turquoise 
gene module. Heatmap plot showed the TOM among all 
genes and the interactive relationships between all three 
coexpression modules (Fig.  2b). The relationship of the 

modules with FL was illustrated in Fig. 2c. According to 
the Pierson correlation coefficient between a module and 
sample feature for each module, turquoise module was 
closely associated with FL (R = 0.99) and the genes of this 
module were further analyzed. The functional enrich-
ment of genes in turquoise module was further explored. 
GO analysis showed that cell chemotaxis, extracellular 
matrix organization and extracellular structure organi-
zation were the most enriched pathways of genes in tur-
quoise module. KEGG analysis indicated that genes of 
turquoise module were mostly enriched in alcoholism, 
neutrophil extracellular trap formation and systemic 
lupus erythematosus pathways (Additional file 1: Fig. S4).

Identification of hub genes
The threshold of edge weight was set to be more than 
0.4 to localized hub genes. A total of 1791 edges and 382 
nodes of turquoise module were included in Cytoscape 
analysis. The genes involved in the network were ranked 
by degree calculated in cytoHubba plugin to explore 
potential hub genes. Additional file 1: Fig. S5a showed the 
top 50 genes ranked by degree in turquoise module. The 
top eight genes with a threshold degree > 20 were iden-
tified and considered as hub genes (PLA2G2D, MMP9, 
PTGDS, CCL19, NFIB, YAP1, RGL1, and TIMP3). The 
PPI network of hub genes was illustrated in Additional 
file 1: Fig. S5b.

RNA expression analysis for the validation of hub genes
Oncomine database was applied to analyze the mRNA 
expression of the eight hub genes. Additional file 1: Fig. 
S6 illustrated the expression of the hub genes among 
different cancer types. All of the eight hub genes were 
overexpressed and MMP9, NFIB, YAP1, RGL1 and 
TIMP3 expression were down-regulated across different 
datasets.

Next, the expression and prognostic value of hub genes 
were validated in another independent GEO dataset with 
expression profiling and survival information of 137 FL 
samples (GSE119214) [21]. The whole 137 patients were 
all received rituximab in combination with chemother-
apy as first-line treatment. The detailed baseline patient 
characteristics and survival information were shown in 
Additional file  1: Table  S1. Kaplan–Meier analysis was 
performed and PLA2G2D, CCL19, and YAP1 were found 
to be significantly associated with OS while the expres-
sion of other five genes (MMP9, PTGDS, NFIB, RGL1, 
and TIMP3) showed no significant relationship with 
OS (Fig.  3a–h and Additional file  1: Fig. S7). To deter-
mine independent prognostic genes, multivariate COX 
regression analysis was performed among the eight hub 
genes. Higher expression of CCL19 and RGL1 were sig-
nificantly associated with longer OS (HR = 0.47, 95% 

https://www.r-project.org/
http://www.gsea-msigdb.org/gsea/
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CI [0.25–0.86], p = 0.014 for CCL19; HR = 0.34, 95% CI 
[0.13–0.90], p = 0.03 for RGL1) (Fig. 3i).

Overall, 137 samples in GSE119214 were grouped into 
CCL19 high expression group and CCL19 low expres-
sion group and were further included in GSEA to explore 

the pathways enriched in CCL19 high expression and 
low expression groups. Results showed that in CCL19 
low expression group, genes were enriched in pathways 
of spliceosome, protein export and ubiquitin medi-
ated proteolysis, while genes in CCL19 high expression 

a

-5 0 5

0

10

5

-lo
g1

0(
P
va

lu
e)

15

20

logFC

b

c d

e f

Fig. 1 Differential expression profile and enrichment analysis result of GSE65135. A Volcano plot of all differentially expressed genes (DEGs); B 
Heatmap of all DEGs between 14 tumor samples (red) and 10 normal samples (blue); C Top 10 Gene Ontology (GO) terms of upregulated DEGs; D 
Top 10 GO terms of downregulated DEGs; E Top 10 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of upregulated DEGs; F Top 10 
KEGG pathways of downregulated DEGs
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group  were enriched in IL6/JAK/STAT3 signaling path-
way, KRAS signaling up and complement (Additional 
file 1: Fig. S8). As CCL19 showed independent prognos-
tic value in both Kaplan–Meier analysis and multivari-
ate COX analysis in the GEO dataset, the expression of 
CCL19 was further explored. Oncomine dataset analysis 
indicated that mRNA of CCL19 was ≥ 84.549 and ≥ 1.438 
fold elevated in FL samples compared to normal tissue 
in Compagno lymphoma dataset and Brune lymphoma 
dataset, respectively (Fig. 4a and b). However, in Alizadeh 
lymphoma dataset and Rosenwald multi-cancer dataset, 
the expression level of CCL19 was showed no statisti-
cal significance between FL samples and normal tissue 
(Fig. 4c and d).

Serum CCL19 concentration measurement
The prognostic value of CCL19 was further validated in 
CHCAMS cohort. A total of 32 pre-treatment serum 

samples of treatment naïve FL were included in the 
ELISA test, with 16 (50%) patients were male. The 
median age was 47  years old. All the patients received 
first-line chemoimmunotherapy, including R-CHOP or 
R-CHOP-like regimens, with 10 of 32 (31.2%) receiv-
ing rituximab maintenance. Median follow-up time was 
58.0 (range: 12.0–98.0) months. The detailed baseline 
patient characteristics and survival information were 
shown in Additional file 1: Table S1. There were no dif-
ference of serum CCL19 concentration between differ-
ence age groups (mean concentration: 1.439 ng/ml in age 
over 60  years vs. 1.823  ng/ml in age less than 60  years, 
p = 0.468), Follicular Lymphoma International Prognos-
tic Index risk groups (mean concentration: 2.122  ng/
ml in low-risk group vs. 1.578  ng/ml in intermediated-
group vs. 1.070 ng/ml in high-risk group, p = 0.348) and 
rituximab maintenance groups (mean concentration: 
1.165  ng/ml in maintenance group vs. 1.578  ng/ml in 

Fig. 2 Weighted gene co-expression network analysis (WGCNA) for all DEGs identified from GSE65135. A Hierarchical cluster tree of co-expression 
modules identified by WGCNA. B Heatmap of topological overlap matrix (TOM); C Relationship of modules and cancer
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no maintenance group, p = 0.278) (Fig.  5a–c). The best-
cutoff value for serum CCL19 was 0.94 ng/ml (Additional 
file  1: Fig. S8) and patients were grouped into CCL19 
high concentration and CCL19 low concentration groups 
according to the cutoff value. Kaplan–Meier curves 
showed that serum CCL19 concentration was associated 
with PFS and OS, with CCL19 high concentration group 
having longer PFS (p = 0.014) and OS (p = 0.039) (Fig. 5d 
and f ) comparing with CCL19 low concentration group. 
CCL19 concentration, rituximab maintenance and FLIPI 
risk group were included in the multivariate COX analy-
sis for PFS. Results indicated that high concentration of 

CCL19 was the independent factor for PFS (HR = 0.14, 
95% CI [0.03–0.58], p = 0.007).

CIBERSORT analysis
To further elucidate which subset of TIICs might serve 
as regulatory role in different CCL19 expression groups, 
CIBERSORT analysis was applied in dataset GSE119214 
to calculate the relationship of CCL19 expression and 
microenvironment cell subsets. The proportion of differ-
ent subsets of TIICs between CCL19 low expression and 
high expression groups was showed in Fig. 6a. The corre-
lations were further quantified and CCL19 mainly had a 
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Fig. 3 Kaplan–Meier survival analysis and multivariate analysis of hub genes in GSE119214. A PLA2G2D; B MMP9; C PTGDS; D CCL19; E NFIB; F YAP1; 
G RGL1; H TIMP3; I forest plot of multivariate Cox analysis result



Page 8 of 13Zhou et al. J Transl Med          (2021) 19:399 

positive correlation with monocytes (R = 0.363, p < 0.001) 
and macrophages M1 (R = 0.325, p < 0.001), and it had 
a negative correlation with naïve B cells (R = − 0.304, 
p < 0.001) and plasma cells (R = − 0.229, p = 0.007, 
Fig. 6b).

Discussion
FL is a kind of indolent lymphoma with heterogeneity. 
Previous studies focused on identifying related genes 
using differential expression analysis. In this study, we 
applied WGCNA analysis utilizing RNAseq data of FL 
and found three related co-expression gene modules, 
explored the gene network relationship, and identified 
eight key genes of the network. The prognostic value of 
eight key genes were validated in two independent FL 
patient cohorts and we identified that CCL19 was signifi-
cantly associated with PFS and OS in FL patients receiv-
ing first-line chemoimmunotherapy, which indicated that 
CCL19 could be a potential prognosis biomarker for FL. 
To our best knowledge, this study is the first to report the 
potential prognostic value of CCL19 in FL.

In previous studies, different genes were reported to 
be related to the development of FL. About over 85% FL 
patients were characterized by t (14;18), which resulted 

in the overexpression of BCL2 protein, a family of pro-
tein that inhibits cell apoptosis [22]. Mutations of chro-
matin modifying genes, including EZH2, KMT2D and 
CREBBP, were reported to play a complex role in FL 
[23]. Mutations in linker histone genes (HIST1H1 B, C, 
D, and E; OCT2 [POU2F2]; IRF8; and ARID1A) were 
also reported to be associated with the pathogenesis of 
FL [24]. Besides, gene mutations including STAT6 and 
RRAGC  were related to FL pathogenesis, which involv-
ing multiple pathways including mTOR and JAK/STAT 
pathways [25–27]. In recent studies, clinicogenetic risk 
models integrating genes for predicting prognosis of FL 
has been established [7, 8] and has showed the value as 
the prediction model in FL management. For germinal 
center-derived lymphoma, including FL, moving out of 
germinal center and local endothelial cells is essential 
for dissemination to other lymph nodes or tissues [28]. 
Previous studies showed that interaction of lymphoma 
cell with chemokine played an important role in the 
movement of lymphoma cell through endothelial cells 
[29–31] in chronic lymphocytic leukemia and classical 
Hodgkin lymphoma. Chemokines modulated chemo-
taxis in the migration and pathogenesis of FL cells was 
also presented in previous studies [32, 33]. In this study, 

Fig. 4 Box plots of CCL19 mRNA expression in Oncomine database comparing follicular lymphoma and normal tissue (A–D)
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among the three modules identified, the turquoise mod-
ule showed significantly association with FL tumors. 
Functional analysis showed that genes in turquoise mod-
ule was enriched in cell chemotaxis, extracellular matrix 
organization and extracellular structure organization. 
Also, the signaling pathway and downstream factors of 
the eight hub genes identified from the turquoise module 
were further explored by retrieving KEGG database and 
previous reports (Additional file 1). Results of our study 
further supported that pathway of cell interaction with 
chemokine, as well as other pathways including PI3K/
AKT pathway and NF-kappa B signaling pathway, may be 
closely related to the development of FL.

In this study, we identified that CCL19 was significantly 
associated with survival for FL patients treated with 
rituximab in combination with chemotherapy. CCL19 
encoded cytokine that involved in immunoregulatory 
and inflammatory processes. CCL19 specifically binds 
to chemokine receptor CCR7. CCR7 and CCL19 played 
an important role in organizing thymic architecture and 
function, lymph-node homing of naive and regulatory T 
cell, as well as homeostasis and inflammation-induced 
lymph-node-bound migration of dendritic cells, which 
indicated that CCR7 and CCL19 involved in the homeo-
stasis, immune surveillance, and tumor formation [34]. 
In previous studies, CCR7/CCL19 was reported to be 

Number at risk
high
low

25            23             20               8               0
 7              4               2                0               0

Number at risk
high
low

25         25        25          9            1            1
 7           6          6           2            0            0

a b c

d e

Fig. 5 The correlation of CCL19 concentration with clinical characteristics and survival outcomes in CHCAMS cohort. Concentration of serum 
CCL19 among difference age groups (A), different FLIPI groups (B) and different rituximab maintenance groups (C). Kaplan–Meier curves of 
CCL19 concentration with D progression-free survival and E overall survival. FLIPI: Follicular Lymphoma International Prognostic Index; PFS: 
progression-free survival; OS: overall survival
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TIIC proportion of CCL19 low expression group

TIIC proportion of CCL19 high expression group
Cell type

Cell type

Cell type
a

b

Fig. 6 Results of tumor-infiltrating immune cell analysis using CIBERSORT. A The proportion of tumor-infiltrating immune cell (TIIC) in CCL19 
low-expression (above) and high-expression (below) groups. B Correlation of TIIC subtypes and CCL19 expression. TIIC: tumor-infiltrating immune 
cell
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associated with some types of cancer. CCR7 chemokine 
receptor binds to the ligand CCL19/CCL21 and pro-
motes lymphogenesis and metastasis in breast cancer 
[35]. CCL19 overexpression significantly inhibited gas-
tric cancer cell proliferation and tumor growth through 
CCL19/CCR7/AIM2 pathway [36]. Also, CCL19 over-
expression is associated with malignant transformation 
in cervical cancer [37]. For lymphoma, O’Connor et  al. 
reported that CCL19-CCR7 interactions may contrib-
uted to the increasing risk of age-related central nerv-
ous system lymphoma [38]. In T cell lymphoma, higher 
expression of CCR7 was associated with distant metasta-
sis as well as tumor cell migration in vitro and the under-
lying mechanism might be associated with PI3K/AKT 
signaling pathway [39].

In our study, CCL19 was found to be overexpressed 
in different FL cell lines utilizing public database analy-
sis. Previous studies have showed that strong in  vitro 
chemotactic activities of CCL19 for T cells and DCs and 
might activate a LTα1β2-dependent pathway of normal 
and pathological lymphoid tissue formation [40]. In addi-
tion, CCL19 mRNA overexpression was related to higher 
survival rate. Also, elevated serum CCL19 concentration 
was associated with longer PFS and OS. The protective 
prognostic value of higher CCL19 expression level had 
been validated at both the transcription and protein con-
centration in two independent FL patient cohorts. In the 
analysis of immune cell infiltration in tumor microenvi-
ronment, the expression of CCL19 was associated with 
macrophages M1 and monocyte. The protective effect 
of CCL19 overexpression might be explained from the 
mechanism of CCL19 and the formation of FL. CCL19 
was produced by T-zone fibroblastic reticular cells and 
are essential for the formation and maintenance of the 
T-cell zone in lymphoid organs, as well as T cells and 
DCs peripheral recruitment. Therefore, elevated CCL19 
expression could induce the function of T-zone reticular 
cells and recruit T cells and DCs to tumor tissues [41]. 
Previous studies have reported the chemotaxis function 
of CCL19 for macrophages M1 [42]. Also, decreased sub-
populations of CD4+ /CD8+ T cells, macrophages and 
dendritic cells in patients are associated with FL trans-
formation and are predictors of worse survival [43, 44], 
which was consistent with the result of TIIC subtype 
analysis in our study.

In B cell lymphomas, including FL, DCs have showed 
to be correlated with better prognosis, suggesting that 
DCs may act against tumor cells in lymphoma [45–47]. 
Although in this study, the DC proportion has no signifi-
cant correlation with the expression of CCL19, it is still 
worthwhile to exploring the function of CCL19 and DC 
cells for potential clinical treatment. In fact, new gen-
eration of CAR-T cell has been engineered to expressed 

IL-7 and CCL19 to elevate anti-tumor efficacy [48]. 
Moreover, dendritic cell-based active immunotherapies 
[49] and macrophage checkpoint inhibitor Hu5F9-G4 
have showed efficacy in FL [50]. Result of this study indi-
cated that CCL19 could act as a biomarker to identify 
FL patients who may have inferior efficacy derived from 
first-line immunotherapy. Considering the DC and mac-
rophages recruitment capability of CCL19, it is worth-
while to explore whether these patients could benefit 
from dendritic cell-based active or macrophage-medi-
ated immunotherapies for stimulating the innate immune 
system.

In this study, we sought to identify biomarkers for FL 
and further explore the prognostic role of CCL19 in FL. 
There are some limitations in our study. The OS data 
was not mature enough for multivariate COX analysis in 
CHCAMS cohort. Longer follow-up time was warranted. 
The mechanisms of immune reactions induced by CCL19 
were not explored in our study and need to be further 
investigated to explore the underlying mechanism.

Conclusion
CCL19 might be a potential survival biomarker for FL 
treated with first-line chemoimmunotherapy. In  vitro, 
in  vivo, and clinical studies are needed to be explored 
the underlying interaction and regulation mechanism of 
CCL19 for FL in our future studies.
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