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Abstract 

Background: An important task in developing accurate public health intervention evaluation methods based on 
historical interrupted time series (ITS) records is to determine the exact lag time between pre‑ and post‑intervention. 
We propose a novel continuous transitional data‑driven hybrid methodology using a non‑linear approach based on a 
combination of stochastic and artificial intelligence methods that facilitate the evaluation of ITS data without knowl‑
edge of lag time. Understanding the influence of implemented intervention on outcome(s) is imperative for decision 
makers in order to manage health systems accurately and in a timely manner.

Methods: To validate a developed hybrid model, we used, as an example, a published dataset based on a real health 
problem on the effects of the Italian smoking ban in public spaces on hospital admissions for acute coronary events. 
We employed a continuous methodology based on data preprocessing to identify linear and nonlinear components 
in which autoregressive moving average and generalized structure group method of data handling were combined 
to model stochastic and nonlinear components of ITS. We analyzed the rate of admission for acute coronary events 
from January 2002 to November 2006 using this new data‑driven hybrid methodology that allowed for long‑term 
outcome prediction.

Results: Our results showed the Pearson correlation coefficient of the proposed combined transitional data‑driven 
model exhibited an average of 17.74% enhancement from the single stochastic model and 2.05% from the nonlinear 
model. In addition, data demonstrated that the developed model improved the mean absolute percentage error and 
correlation coefficient values for which 2.77% and 0.89 were found compared to 4.02% and 0.76, respectively. Impor‑
tantly, this model does not use any predefined lag time between pre‑ and post‑intervention.

Conclusions: Most of the previous studies employed the linear regression and considered a lag time to interpret the 
impact of intervention on public health outcome. The proposed hybrid methodology improved ITS prediction from 
conventional methods and could be used as a reliable alternative in public health intervention evaluation.
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Introduction
Due to advances in technology and improvements in 
recording reliable data and sharing methods, the time 
series (TS) concept has emerged in many theoretical 
and practical studies over the past few decades [1]. This 
concept allows researchers to access the outcome of any 
phenomenon or intervention, at any time, with minimum 
cost and effort, and to plan possible solutions and con-
trol measures based on the forecasted data [2]. Therefore, 
improving knowledge about studying TS, preprocessing, 
modeling and, if needed, post-processing is imperative 
[3].

In the domain of public health interventions, the 
interrupted time series (ITS) concept has been widely 
employed to evaluate the impact of a new interven-
tion at a known point in time in routinely observed data 
[4–10]. ITS is fundamentally a sequence of outcomes 
over uniformly time-spaced intervals that are affected 
by an intervention at specific points in time or by change 
points. The outcome of interest shows a variation from 
its previous pattern due to the effect of the intervention. 
The applied intervention splits TS data into pre- and 
post-intervention periods. Based on this definition, Wag-
ner et  al. [11] proposed segmented regression analysis 
for evaluating intervention impacts on the outcomes of 
interest in ITS studies. In this approach, the choice of 
each segment is based on the change point, with the pos-
sible additional time lag in some cases, in order for the 
intervention to have an effect [12–17]. In addition, for 
pre- and post-intervention period segments of a TS, the 
level and trend values should be determined either by lin-
ear [17] or nonlinear [6] approaches. Therefore, accurate 
values of the change point and time lag parameters are 
essential in segmented regression analysis.

Affecting an intervention at a change point produces 
different possible outcome patterns in the post-inter-
vention period for both level and trend parameters. Fig-
ure 1 illustrates some possible impacts of an intervention 
on the post-intervention period. As shown in Fig. 1a–c, 
a change in level (or intercept) may lead to a change in 
level after a time lag or a temporary level change after 
the intervention. Other possible patterns are a change 
in slope (or trend) with a change in slope after a time 
lag, or a temporary slope change as shown in Fig. 1d–f, 
respectively. In some cases, a change in both of these 
parameters could take place as an immediate change, e.g., 
a change after a time lag or temporary level and slope 
changes (Fig. 1g–i).

Regardless of the popularity and consensus on using 
segmented regression-based methods for solving ITS 
problems, selecting the most appropriate time lag is a 
challenging task with an important impact on results in 
this type of modeling. The reason for the delicacy of this 
task is that there is no specific rule to define the time lag 
produced between the pre- and post-intervention peri-
ods. In some cases, the outcomes of interventions have 
an unknown delayed response to the implemented strate-
gies and a lag time may occur long after an intervention. 
However, in ITS modeling, when segmented regression 
approaches are used, the exact time lag after an inter-
vention should be taken into consideration to guarantee 
modeling result accuracy and appropriateness. In addi-
tion, an undocumented change point seriously compli-
cates ITS analysis. Applying a continuous nonlinear TS 
method is considered reliable if the ITS analysis can be 
released from all these fundamental concerns. Therefore, 
there is a necessity to introduce potential uses of linear, 
nonlinear or a combination of both models for solving 
such problems.

Over the past few years, soft computing methods have 
been employed across domains and have established reli-
able tools for modeling complex systems and predict-
ing different phenomena in healthcare [18–24]. Among 
soft computing techniques, the Group Method of Data 
Handling (GMDH) is a common self-organizing heuris-
tic model, which can be used for simulating complicated 
nonlinear problems. This evolutionary procedure is per-
formed by dividing a complex problem into some smaller 
and simpler problems. Based on GMDH, this study pro-
poses a novel methodology of the continuous modeling 
of an ITS based on data preprocessing. An example of the 
novel ITS modeling uses a linear-based stochastic model, 
a nonlinear-based model and an integration of a stochas-
tic and a nonlinear model (hybrid). In order to run the 
models, certain tests and preprocessing methods are ini-
tially applied to the TS to prepare the data for stochastic 
modeling. It is crucial to investigate the structure of the 
TS being studied prior to modeling. Therefore, the TS 
undergoes stationarity testing along with normality test-
ing. After surveying the characteristics of the TS, station-
arizing methods appropriate to the TS are used. Then, in 
case of non-normal distribution, a normal transforma-
tion is applied to the stationarized TS. For the second TS 
modeling approach, the dataset is modeled with an arti-
ficial intelligence (AI) method which is, in this case, the 
Generalized Structure Group Method of Data Handling 
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(GS-GMDH). In the third and final step, a hybrid model 
that combines the linear and nonlinear results is applied. 
Finally, the results are compared according to various 
indices and methods. Therefore, using this method facili-
tates modeling the ITS continuously, i.e. there is no need 
to identify the change point and intervention lag time.

Dataset description
Barone-Adesi et  al. [25] carried out an extensive study 
on the effect of a smoking ban in public places on hos-
pital admissions for acute coronary events (ACEs). In 
January 2005, Italy introduced legislation that prohib-
its smoking in indoor public spaces, the goal of which 
was the reduction of health issues caused by second-
hand smoke [25]. Second-hand smoke consists of smoke 
exhaled by smokers and from lit cigarettes and causes 
numerous health problems in non-smokers every year, 
as well as high treatment costs for both patients and the 
government. The ban was undertaken on 10 January 

2005 to confront the growing trend of ACEs and to con-
trol this problem.

Bernal et al. [6] used a subset of ACEs data from sub-
jects in Sicily, Italy, between 2002 and 2006 among those 
aged 0–69 years. They analysed the ITS data by applying 
segmented linear regression to the standardized rate of 
ACEs TS associated with the implementation of a ban 
on smoking in all indoor public places, to calculate the 
change in the subsequent outcome levels and trends. 
Based on Barone-Adesi et  al.’s [25] assumption, Bernal 
et al. [6] considered only a level change in ACEs occur-
ring and there was no lag between the pre- and post-seg-
ments in the modeling procedure.

Here, we used the dataset from Bernal et  al. (Fig.  4, 
[6]) as an example to illustrate the proposed method’s 
performance in ITS simulation from real data regard-
ing a health problem; it is not meant to contribute to the 
substantive evidence on the topic. The dataset employed 
comprises routine hospital admissions with 600–1100 

Fig. 1 Possible patterns in interrupted time series post‑intervention period data analysis
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ACEs. More information about the dataset can be found 
in the Barone-Adesi et al. article [25].

Methods
Preprocessing
Time series are data recorded continuously and based on 
time to institute a sequence of measures, each of which 
refers to a time. Thus, the ACE data collected monthly 
from 2002 to 2006 is a TS. Each TS consists of four terms: 
jump + trend + period + stochastic component. The first 
three terms, known as deterministic terms, are calcula-
ble and removable. The jump term represents the sudden 
changes that occur in TS. These changes are detectable 
as steps in TS plots or by numerical tests. The trend term 
represents the gradual upward or downward changes 
that take place during a long period of time; this term is 
denoted in TS as a linear fitted line. The third determinis-
tic term, the period, represents the periodic alternations 
in TS, which are seen as sinusoidal variations. Therefore, 
only the remaining stochastic term is required for use in 
stochastic or nonlinear modeling. This term is achieved 
while stationarity (absence of a deterministic term) 
occurs. Numerous tests and methods exist for investigat-
ing and omitting deterministic terms and some are pre-
sented below.

In stochastic modeling, two conditions must be met: 
the first is the stationarity (for details see below, Sta-
tionarizing methods); second, the distribution of the TS 
should be normal. Thus, in order to start stochastic-based 
modeling, the existence of deterministic terms must be 
checked, and when present, they should be removed. The 
Mann–Whitney (MW), Fisher, and Mann–Kendall (MK) 
tests are employed to check the jump, period and trend, 
respectively; the Kwiatkowski–Phillips–Schmidt–Shin 
(KPSS) test to assess the overall stationarity of the TS; 
and the Jarque–Bera (JB) test to check the normality of 
the TS.

Trend
A non-parametric test is used to assess the trend term in 
the studied TS. The MK test was developed to detect the 
gradual changes in TS, both seasonal and non-seasonal. 
The test equation is as follows [26]:

where UMK is the standard Mann–Kendall statistic, MK is 
the Mann–Kendall statistic, and var(MK) is the variance 
of MK. MK and var(MK) are defined as:

(1)UMK =











(MK − 1)var(MK )−0.5 MK > 0

0 MK = 0

(MK + 1)var(MK )−0.5 MK < 0

where p is the number of identical groups, tg is the obser-
vation number in the gth group, sgn is the sign function, 
and N is the number of samples.

The (MK) test equation for a seasonal trend is 
expressed as follows:

where ω is the number of seasons in a year and σij is the 
covariance of the statistic test in seasons i and j.

The trend in the TS is insignificant if 
Uα/2 < UMK < U1−α/2 and Uα/2 < USMK < U1−α/2 
and Uα/2 and U1 − α/2 are the α/2 and 1 − α/2 quartiles of 
the normal cumulative probability distribution. A prob-
ability corresponding to the test statistic less than 5% 
means the absence of a significant trend in the TS.

Jump
A numerical survey for the jump term in the ACE TS, 
namely the non-parametric MW test, is employed as fol-
lows [27]:

where g(t) is the ascending ordered ACE series, R(g(t)) is 
the order of g(t), and N1(x1(t) = {x(1), x(2), ..., x(N1)}) 
and N2(x2(t) = {x(N1 + 1), x(N1 + 2), .., x(N )}) are the 
numbers of sub-series of the main series, such that the 
sum of these series is equal to main series. IfP|UMW | is 
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larger than the significant level (in this study α = 0.01), 
then the jump term is insignificant.

Period
The significance of periodicity is investigated with the 
following statistic [28]:

where F* is the Fisher statistic, N is the number of sam-
ples, αz and βz are Fourier coefficients, and Ωz is the 
angular frequency. Αz, βz and Ωz are defined as follows:

where fz is the zth harmonic of the base frequency.
The periodicity related to Ωz is significant if the critical 

value of the F distribution at a significant level (F(2, N-2)) 
is lower than  F*:

For the considerable level of 0.05 (α = 0.05), the critical 
value of freedom degrees in the Kwiatkowski–Phillips–
Schmidt–Shin (KPSS) test

The test is named after its authors [29] and is used to 
assess the overall stationarity of the ACE TS: 

where

n is the number of TS, et is the residuals, and St2 is the 
average square of errors between time 1 and t. The sta-
tistic used for the "level" and "trend" stationarity tests is 
given by:

(9)
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Kwiatkowski et al. [29] calculated the symmetric criti-
cal values via Monte Carlo simulation. The probability 
corresponding to a test statistic higher than 5% indicates 
stationarity.

Jarque–Bera (JB) test
The JB test [30] is applied to measure the the goodness of 
fit and the test statistic is expressed as follows:

where Ku is kurtosis, Sk is skewness and JB is a chi-square 
distribution with two degrees of freedom that can be 
used to assume the data is normal.

Stationarizing methods
Trend analysis
In case a significant trend term exists in the TS as 
detected in the MK, seasonal Mann–Kendall (SMK) or 
autocorrelation function (ACF) plot, a trend analysis is 
the best way to remove or reduce its impact on TS. Then, 
a linear line is fitted to the TS and is subtracted from the 
TS values; remaining is a detrended TS.

Differencing
One of the most widely employed methods of station-
arizing TS is differencing. This method eliminates cor-
relations in TS. The non-seasonal differencing method, 
which is the subtraction of each value from the previ-
ous one, removes the trend in variances and jumps. The 
equation is as follows:

where MED(t) represents a studied TS, in this case 
ACE, recorded at time t.

Stochastic modeling
The auto-regressive moving average (ARMA) and auto-
regressive integrated moving average (ARIMA) models 
are the two most conventional methods of the stochastic 
approach. The difference between these models is in the 
data differencing method of the ARIMA model, which 
makes it suitable for non-stationary TS. The equation for 
ARIMA(p, d, q) is as follows [31]:

(17)ητ ,µ =
1

n2

n
∑
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S2t
S2(l)

(18)JB = n

(

S2k
6

+
(Ku − 3)2

24

)

(19)
Differenced TS (t) = MED(t) − MED(t − 1)

(20)ϕ(I) (1 − I)dMED(t) = θ(I) ε(t)
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where φ is the autoregressive (AR) process, θ the mov-
ing average (MA) parameter, ε(t) the residual, d the non-
seasonal differencing, and p and q the AR and MA orders 
of the model parameters respectively. The value of these 
orders is determined through autocorrelation function 
(ACF) and partial autocorrelation (PACF) diagrams [31], 
I the differencing operator, and (1 − I)d the dth non-sea-
sonal differencing. In the ARMA model, d is equal to 0 
and it does not have the differencing operator.

As it is crucial to investigate the structure of the TS 
being studied prior to modeling, certain tests and pre-
processing methods were initially applied to prepare 
the data for stochastic modeling. After separation of the 
dataset into training and testing samples, the existence of 
deterministic terms in the TS should be examined. For 
this purpose, MW, MK and Fisher tests are employed 
to check the existence of Jump, Trend and Period 
(respectively).

If the results of these tests show no deterministic 
terms, the stationary TS must be checked. Otherwise, 
any deterministic terms should be eliminated. The KPSS 
test is applied to check the stationary TS. If the result 
of this test does not confirm the stationary TS, Trend 
analysis and differencing is applied and the KPSS test is 
applied again to check the stationary TS. After ensuring 
that the TS is stationary, the TS normality is evaluated 
using the JB test. After making sure that the TS is station-
ary and normal, the preprocessing is finished and sto-
chastic modeling is initiated. Initially, depending on the 
type of problem, it is determined whether the problem 
is seasonal or not. Then, the range of seasonal and non-
seasonal parameters related to auto regressive (AR) and 
moving average (MA) terms, as well as a constant term, 

(21)
ϕ(I) =

(

1 − ϕ1I − ϕ2I
2 − ϕ3I

3 − · · · − ϕpI
p
)

(22)
θ(I) =

(

1 − θ1I − θ2I
2 − θ3I

3 − · · · − −θpI
p
)

are determined using ACF and PACF diagrams. The ACF 
and PACF diagrams only determine the most important 
lags, not the optimum ones.

It may be possible to obtain the optimal model; it does 
not require the use of all the parameters specified by these 
two diagrams. The first way to obtain the optimum com-
bination is to examine all the compounds resulting from 
the defined domains for the stochastic model parameters 
(i.e.  2p(max)+q(max) − 1 models for an ARMA model). Doing 
this is very time-consuming as one has to examine all the 
comparisons and compare them, and the results in many 
models should be examined as well. Therefore, integrating 
a stochastic model with the continuous genetic algorithm 
(CGA) is used in the current study. Indeed, the optimal 
values of the seasonal MA and AR parameters are deter-
mined through an evolutionary process. Then, the residual 
independence of the proposed model is evaluated using the 
Ljung-Box test. Finally, the performance of the model is 
appraised using test data. Considering the maximum num-
ber of ARMA, seasonal auto regressive (SAR) and seasonal 
moving average (SMA) as 5, an example of the optimum 
achieved solution by ARIMA-CGA is provided in Fig. 2.

The objective function of the CGA is defined, in which 
all possible combinations are considered and the corrected 
Akaike information criterion (AICC) (Eq. 23) is employed 
to find the optimum model in terms of accuracy and sim-
plicity simultaneously. The first term of the AICC indicates 
the accuracy of the model while the second one considers 
the complexity of the model.

where N is the number of samples, MSE is the mean 
square error and Comp. is the complexity of the model. The 
Comp. is the summation of stochastic models (p, q, P, Q) 
and constant term if it exists. The MSE is calculated as:

(23)
AICC =N × Ln(MSE) + 2 × Comp.

+
2× Comp.(Comp. + 1)

N − Comp. − 1

Fig. 2 An example of the integrated stochastic model with genetic algorithm. AR, auto regressive; SAR, seasonal auto regressive; MA, moving 
average; SMA, seasonal moving average
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where MEDobs,i and MEDp,i are the ith value of the 
observed and predicted value (respectively). The flow-
chart of the preprocessing based stochastic model is pre-
sented in Fig. 3.

Generalized structure of group method of data handling 
(GMDH)
GMDH is a self-organized approach that gradually pro-
duces more complex models when evaluating the per-
formance of the input and output datasets [32]. In this 
approach, the relationship between the input and output 
variables is expressed by the Volterra Series, which is 
similar to the Kolmogrov–Gabor polynomial:

where y is the output variable, A = (a0, a1, …, am) is the 
weights vector and X = (x1, …, xN) is the input variables 
vector. The GMDH model has been developed based on 
heuristic self-organization to overcome the complexities 
of multidimensional problems. This method first consid-
ers different neurons with two input variables and then 
specifies a threshold value to determine the variables that 
cannot reach the performance level. This procedure is a 
self-organizing algorithm.

The main purpose of the GMDH network is to con-
struct a function in a feed-forward network on the basis 
of a second-degree transfer function. The number of lay-
ers and neurons within the hidden layers, the effective 
input variables and the optimal model structure are auto-
matically determined with this algorithm.

In order to model using the GMDH algorithm, the 
entire dataset should first be divided into training and 
testing categories. After segmenting the data, it creates 
neurons with two inputs. Given that each neuron has 
only two inputs, all possible combinations for a model 
with n input vectors are as:

where NAPC is the number of all possible combinations 
and n is the number of input vectors.

According to the quadratic regression polynomial func-
tion, all neurons have two inputs and one output with the 
same structure, and each neuron with five weights (a1, 

(24)MSE =

∑N
i=1 (MEDobs,i − MEDP,i)

2

N

(25)

y = a0 +

N
∑

i=1

aixi +

N
∑

i=1

N
∑

j=1

aijxixj

+

N
∑

i=1

N
∑

j=1

N
∑

k=1

aijkxixjxk + · · ·

(26)NAPC =

(

n

2

)

=
n(n − 1)

2

a2, a3, a4, a5) and one bias (a0) executes the processing 
between the inputs (xi, xj) and output data as follows:

The unknown coefficients (a0, a1, a2, a3, a4, a5) are 
obtained by ordinary least squares. The performance of 
all neural network methods is heavily influenced by the 
chosen parameters. The unknown coefficients are calcu-
lated through a least squares solution as follows:

where A = {a0, a1, a2, a3, a4, a5} is the unknown coeffi-
cients vector, Y = {y1, …, yN}T is the output vector and x is 
the input variable vector.

The AICC criterion (Eq.  23) is applied to determine 
the optimal network structure and select the neurons 
describing the target parameter. The Comp. in this equa-
tion for the GMDH model is defined as follows:

where Comp. is the complexity, NL is the number of lay-
ers and NTN is the number of total neurons.

The performance of classical GMDH in the modeling 
of nonlinear problems has been demonstrated in vari-
ous studies [33–36]. However, along with its advantages, 
it possesses the following limitations: (i) second-order 
polynomials, (ii) only two inputs for each neuron, (iii) 
inputs of each neuron can only be selected from the adja-
cent layer [37, 38]. In complex nonlinear problems, the 
necessity of using second-order polynomials may impede 
an acceptable result. In addition, considering only two 
inputs per neuron and using adjacent layer neurons 
would result in a significant increase in the number of 
neurons (NN) [39].

In the current study, a new scheme of GMDH as a 
GS-GMDH is employed and encoded in the MAT-
LAB environment. The developed model removes all 
the mentioned disadvantages, so that each neuron can 
connect to two or three neurons at a time, taken from 
adjacent or non-adjacent layers. In addition, the order 
of polynomials can also be two or three. Similar to clas-
sical GMDH, the best structure is chosen based on the 
AICC index. According to the provided description, 
the developed GS-GMDH can offer four modes: (1) 
second-order polynomial with two inputs, (2) second-
order polynomial with three inputs, (3) third-order 
polynomial with two inputs, and (4) third-order poly-
nomial with three inputs. The first mode is classical 
GMDH.

Figure  4 indicates an example of the developed GS-
GMDH for a model with five inputs and one output. In 

(27)

⌢
y =

⌢

f (xi, xj) = a0 + a1xi + a2xj + a3x
2
i + a4x

2
j + a5xixj

(28)Ai = (xTi xi)
−1xiY

(29)Comp. = NL + NTN



Page 8 of 21Bonakdari et al. J Transl Med          (2020) 18:466 

Fig. 3 Flowchart of the preprocessing‑based stochastic model. KPSS, Kwiatkowski–Phillips–Schmidt–Shin test; F, Fisher test; AR(p), auto regressive 
model; SAR(P), seasonal auto regressive model; MA(q), moving average model; SMA(Q), seasonal moving average model
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this figure, 3 different neurons (x11, x12, x21) are presented 
to provide an equation to estimate the target parameter 
(y). The two neurons x11 and x21 have three inputs, which 
are the inputs of the desired problem. The x21 neuron, 
which is the output of the problem, has three inputs simi-
lar to the two previous neurons (x11 and x21), except that 
it uses the non-adjacent layer neurons (x13) in addition to 
the adjacent layer neurons (x11 and x21).

The GS-GMDH was used in this study to achieve the 
most precise results in forecasting the studied TS, which 
we abbreviated as MED data. GS-GMDH is superior to 
the former method, GMDH, due to the random struc-
ture of neurons that is encoded in the genotype string 
that results in using all neurons from previous layers in 
subsequent layers. In addition, GS-GMDH facilitates 
finding the minimized training and prediction errors 
separately, preventing model overtraining. The flow 
chart of the developed GS-GMDH model is presented in 
Fig. 5.

Before starting the modeling using the GS-GMDH 
method, some parameters must first be determined. The 
first parameter is the Maximum Number of Inputs (MNI) 

that determines the maximum number of inputs for indi-
vidual neurons. It could be two or three. If set to three, 
both two and three inputs are tried. Inputs More (IM) 
is the other one that should be determined before start-
ing modeling. It could be zero or one. If set to zero, the 
inputs of each neuron are considered only for previous 
layer while if IM is set to one, this results in taking input 
from the non-adjacent layers also. The Maximum Num-
ber of Neurons (MNN) is equal to the number of input 
variables, while it could be twice that number for complex 
problems. The polynomial degree (PD) could be consid-
ered to be two or three. If set to three, both two and three 
are allowed.

Combining linear and nonlinear models (data‑driven 
method)
ITS consists of stochastic and deterministic compo-
nents. Thus, by using appropriate data preprocessing 
methods, it is possible to reduce the problematic effects 
of deterministic components in the modeling process. 
The proposed methodology is based on a continuous 
modeling process. This data-driven method is based on 

Fig. 4 An example of the developed generalized structure group method of data handling (GS‑GMDH) for a model with five inputs and one 
output. × 1, ×2, ×3, ×4, ×5, input parameters; ×11, × 2, neurons in first layer; ×21, neuron in second layer; y, output
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preprocessing to identify linear and nonlinear compo-
nents of ITS, verification of the validity of decomposed 
data, and the decomposed model. In the studied case (6), 
the ACE TS fluctuates greatly. The outcomes of the single 
stochastic and neural network modeling approaches are 
relatively weak. Hence, as a third approach, the ACE TS 

is modeled with a combined stochastic-neural network 
model. Stochastic models perform efficiently, while TS 
are linear and do not contain deterministic terms that are 
responsible for nonlinearity. AI methods, on the other 
hand, allow the modeling of TS with nonlinear compo-
nents. The TS, however, is not purely linear or nonlinear; 

Fig. 5 The flow chart of the developed generalized structure group method of data handling (GS‑GMDH). MNI, maximum number of inputs; MNN, 
maximum number of neurons; IM, inputs more; DNN, decrease number of neurons; PD, polynomial degree; NL, number of layer; NN, number of 
neuron; n, number of input vectors; AICC, Akaike information criterion
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both components are present simultaneously; the inte-
gration of which sometimes produces complex structures 
in the TS. In such cases, the use of single stochastic or 
nonlinear methods might be improved by a combined 
model. Combining stochastic models with AI methods is 
one of the most effective methods of modeling TS with 
complex structures. As shown in Fig.  6, the residuals 
of the stochastic models were used as a new TS in GS-
GMDH modeling, such that the features of both mode-
ling approaches were utilized.

Verification indices to evaluate models
To verify the accuracy of modeling performed in the TS 
MED forecasting, the correlation coefficient (R), scatter 
index (SI), mean absolute percentage error (MAPE), root 
mean squared relative error (RMSRE) and performance 
index (ρ) are used. In addition to these indices, the corrected 
AICC and Nash–Sutcliffe model efficiency (EN-S) based on 
comparing the model’s simplicity with the goodness-of-fit 
and amount of deviation from the mean value [40] are used. 
The AICC index is used to find the best models in each TS 
modeling, and the lower the index value is the simpler the 
model. The EN-S index ranges from -∞ to 1, and the closer 
the index is to one, the more accurate the model.

(30)R =

N
∑

i=1

(

MEDobs,i − MEDobs,i

)(

MEDpred,i − MEDpred,i

)

√

N
∑

i=1

(

MEDobs,i − MEDobs,i

)2
N
∑

i=1

(

MEDpred,i − MEDpred,i

)2

Fig. 6 Flowchart of interrupted time series modeling through a continuous nonlinear approach
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where k is the number of parameters, N is the number 
of samples, σε2 is the residuals’ standard deviation, EN-

S is the Nash–Sutcliffe test statistic, and MEDobs,i and 
MEDpred,i are the ith value of actual data and forecasted 
MED, respectively.

(31)
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√
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(36)AICC =
2kN +

(

N ln
(

σ 2
ε

)

(N − k − 1)
)

N − k − 1

The Ljung-Box test is used to check the independence 
of the residuals of the modeled TS [41]. The test statistic 
is calculated as follows:

where N is the number of samples, rh is the residual coef-
ficient of the auto regression (εt) in lag h, and the value 
of m is equal to ln(N). If the probability corresponding to 
the Ljung-Box test statistic in the χ2 distribution is higher 
than the α-level (in this case PQ > α = 0.05), the residual 
series is white noise and the model is adequate.

Results
Preprocessing tests
The values of the JB test show that the desired TS is dis-
tributed normally (pJB = 66.29 > 0.05). Figure  7 indicates 
the ACF and the PACF of the main TS (standardized rate 
of ACEs TS), and data showed that there is a correlation 
up to three non-seasonal lags (the time period). Since 
the values of ACF are rapidly damped and are within the 
limit boundaries, there is no significant period or trend 
in the TS. However, to ensure this, the existence of deter-
ministic terms and stationarity of the main TS was also 
evaluated using quantitative tests.

Table 1 provides the results of the quantitative test to 
evaluate the existence of deterministic terms, station-
arity and normality of the main series, and detrended 
and differenced TS. The results of the non-seasonal and 
seasonal MK tests show that the p-values of MK and 
seasonal MK are 0.02 and 0.24 respectively. Therefore, 

(37)QLjung−Box =

(

N 2 + 2N
)

m
∑

h=1

rh

N − 1

Fig. 7 Standardized rate of acute coronary events (ACEs) time series: a autocorrelation; b partial autocorrelation. Lag indicates the time period
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the ACE TS has a non-seasonal trend (pMK = 0.02 is 
less than critical value, 0.05). Hence, the trend must be 
removed. Moreover, the p-value of the Fisher test indi-
cates that the TS has a period (pFisher = 5.85) greater 
than the critical value 3. According to the Fisher test, 
the severity of the period is not very high as the value 
is close to critical, then minor. Moreover, the MW test 
proves there is no jump in the TS (pMW = 2.78, higher 
than the acceptable value 0.05). The KPSS test also indi-
cates the TS is non-stationary (pKPSS = 0.19, higher than 
the acceptable value 0.05), which is because of the trend 
and period detected in the TS.

To remove the deterministic terms, two scenar-
ios are defined: de-trending and stationarizing the 
ACE TS by differencing before stochastic modeling. 
The linear trend line is obtained as follows: trend 
line = 0.4792 × t + 201.72.

After eliminating the linear trend from the main TS, 
all of the deterministic factors are removed. Indeed, the 
detrended TS is stationary with no deterministic term. 

Similar to the main TS, this has a normal distribution. 
Consequently, the detrended TS is modeled with the 
ARMA. To find the parameters of the ARMA model, 
ACF and PACF diagrams are employed. As shown in 
Fig.  8, it is obvious there is still a correlation to three 
non-seasonal lags. Therefore, p and q in ARMA(p,q) are 
considered as p,q = {0,1,2,3}. For the purpose of deter-
mining more accurate and simpler models, the value of 
these parameters is considered 10.

In the second scenario, differencing the main TS is 
proposed (differenced TS) to remove the determinis-
tic terms. The findings in Table  1 in which MW, MK, 
SMK and JB increases are higher than 0.05, as well as 
the Fisher test higher than 3, indicate the differenced 
TS results in an increasing of the period in the new TS. 
Although the Fisher test exhibits growth in periodicity, 
the stationarity of the differenced TS increases consid-
erably; thus, enabling the modeling of the TS. Further-
more, the differencing method has considerable impact 
on the correlation of the lags and decreases them 

Table 1 Evaluation of the presence of deterministic terms; stationarity and normality of the standardized rate of acute 
coronary events (ACEs) time series; and detrended and differenced time series

Fisher critical value: 3. Fisher < 3 means the absence of a period, other tests: critical value 0.05, acceptable value > 0.05

Tests Time series Trend Jump Period Stationarity Normality

Mann–Kendall Seasonal 
Mann–Kendall

Mann–Whitney Fisher Kwiatkowski–Phillips–
Schmidt–Shin

Jarque–Bera

Main time series 0.02 0.24 2.78 5.85 0.19 66.29

Detrended time series 100 37.75 46.77 1.14E + 03 44.55 53.06

Differenced time series 81.96 28.07 97.54 1.25E + 04 98.48 54.48

Fig. 8 Detrended time series: a autocorrelation, b partial autocorrelation. Lag indicates the time period
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markedly. Hence, an ARIMA model could be employed 
with fewer parameters and subsequently less error. The 
ACF and PACF of the differenced TS (Fig.  9) indicate 
that the values of p and q in this state are lower than 
the ARMA model.

Stochastic modeling
TS modeling, however, offers numerous combina-
tions of previous lags from which to select the most 
appropriate TS input combination. Therefore, apply-
ing suitable preprocessing should lead to determin-
ing and selecting the most effective lag for modeling. 
According to the ACF plots for both preprocessed 
TS and test results, a maximum of three parameter 
orders are required for ARMA modeling and one for 
ARIMA modeling (Figs.  7, 8, 9). For modeling, the 
first 50 data were considered for the training stage and 
the remainder (nine data) for the testing stage. The 

stochastic-based linear modeling results are presented 
in Table  2. As the results in this table indicate, both 
linear models are relatively weak in modeling the ACE 
TS. The ARMA model outperforms ARIMA and the 
results are marginally better than ARIMA. The ARMA 
model with seven non-seasonal auto-regressive param-
eters and five non-seasonal moving average parame-
ters modeled the ACE TS with R = 77.95%, SI = 3.46%, 
MAPE = 2.89%, RMSRE = 3.54%, EN-S = 0.66 and 
AICC = −15.84 in testing. The ARIMA model also per-
formed slightly weaker than ARMA with R = 73.74%, 
SI = 4.21%, MAPE = 2.89%, RMSRE = 4.37, EN-S = 0.50 
and AICC = −5.55 in testing. The Ljung-Box results for 
ARIMA and ARMA models are provided in Fig. 10. The 
test is done for the first 47 lags of the training part and 
the eight lags of the test part separately (n-1 data are 
considered for testing). It is observed that the residu-
als of both linear models are independent and the white 

Fig. 9 Differenced time series: a autocorrelation, b partial autocorrelation. Lag indicates the time period

Table 2 Statistical indices for the stochastic-based linear modeling

ARMA (7,5) auto-regressive moving average for seven non-seasonal auto-regressive parameters and five non-seasonal moving average parameters, ARIMA (9,1,4) 
auto-regressive integrated moving average for nine non-seasonal auto-regressive parameters, one non-seasonal differencing and four non-seasonal moving average 
parameters, R correlation coefficient, SI Scatter index, MAPE mean absolute percentage error, RSMRE root mean square relative error, EN-S Nash–Sutcliffe model 
efficiency, AICC Akaike information criterion

Superior models R% SI% MAPE% RMSRE% ENS AICC

ARMA (7,5) Train 77.95 4.94 4.16 4.84 0.61 269.04

Test 81.87 3.46 2.89 3.54 0.66 −15.84

ARIMA (9,1,4) Train 78.60 4.89 3.75 4.78 0.61 271.71

Test 73.74 4.21 2.89 4.37 0.50 −5.55
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noise and modeling are adequate and correct. Figure 11 
demonstrates scatter plots of both ARMA and ARIMA 
models in testing and training versus the observed data. 
According to this figure, the majority of forecasted data 
are located within 5% intervals.

Generalized structure group method of data handling 
(GS‑GMDH)
As mentioned earlier, AI methods are widely utilized for 
data simulation and forecasting. Each TS consists of two 
parts: linear and nonlinear. The stochastic models, also 
known as linear models, are able to model the linear part 
of the TS; hence, the nonlinearity is removed from the TS 
prior to modeling with pre-preprocessing methods. Con-
versely, AI models are known for their ability in modeling 
the nonlinear part. The neural network applied to the 
ACE TS under study is the GS-GMDH model, which is 
enhanced by the genetic algorithm. In this GS-GMDH, it 
is allowed to randomly apply crossover and mutation for 
the whole length of the chromosome string. Neurons are 
used for all layers and by calculating the errors separately; 
both training and testing sets have low errors. The results 
of this method are presented in Table  3. According to 
the results, the model was able to forecast the original 
TS without preprocessing with R = 82.35%, SI = 4.22%, 
MAPE = 3.16%, RMSRE = 4.25% and ρ = 2.33% for the 
training data and R = 89.35%, SI = 2.60%, MAPE = 2.10%, 
RMSRE = 2.66% and ρ = 2.33% for the testing data. As the 
scatter plot for both training and testing data in Fig. 12 
indicates, the majority of forecasted data in the testing 
period have less than 5% error and are located within 
the intervals. The AI method employed allowed forecast-
ing of the nonlinearity in the ACE TS very well. Though 
the GS-GMDH method performed better than the sin-
gle ARIMA and ARMA models, with a mean growth of 

Fig. 10 Ljung–Box results of the auto‑regressive moving average (ARMA) and auto‑regressive integrated moving average (ARIMA) models for both 
training (train) and testing (test) stages. Lag indicates the time period

Fig. 11 Scatter plot of the auto‑regressive moving average (ARMA) 
and auto‑regressive integrated moving average (ARIMA) model 
predictions of MED data

Table 3 Statistical indices for the developed hybrid model in acute coronary event (ACE) forecasting

R correlation coefficient, SI scatter index, MAPE mean absolute percentage error, RSMRE root mean square relative error

Model R% SI% MAPE% RMSRE% ρ%

ARMA–GS‑GMDH Train 88.97 3.64 2.84 3.59 1.9

Test 91.03 2.52 2.13 2.47 1.29

ARIMA–GS‑GMDH Train 84.93 3.91 2.94 3.97 2.15

Test 91.91 2.86 2.46 2.99 1.56
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11.63% in correlation, these results are relatively close 
to the stochastic models. Therefore, a complementary 
method is required.

Combined data‑driven modeling
As mentioned in previous sections, each model has cer-
tain specifications. Stochastic models perform efficiently, 
while TS are linear and do not contain deterministic 
terms that are responsible for nonlinearity. AI methods, 
on the other hand, allow the modeling of TS with nonlin-
ear components. The TS, however, is not purely linear or 
nonlinear. Both components are present simultaneously, 
the integration of which sometimes creates complex 
structures. In such cases, employing single stochastic or 
nonlinear methods does not provide acceptable results. 

Therefore, alternative solutions are required to resolve 
this problem. Hybridizing stochastic models with AI 
methods is one of the most viable methods of modeling 
TS with complex structures. In the studied case, the 
ACE TS fluctuates greatly. The outcomes of the single 
stochastic and neural network modeling approaches are 
relatively weak. Thus, as a third approach, the ACE TS 
is modeled with a combined stochastic-neural network 
model. The hybrid model results are provided in Table 4.

It is apparent from the information supplied in 
Table  4 that the correlation between the modeled 
and observed data is rising. The R exhibited an aver-
age of 17.74% enhancement from the single stochastic 
model and 2.05% from the single GS-GMDH model. 
Although the results are slightly better than the single 
GS-GMDH model, model accuracy improved and in fact, 
the errors are about half those of the linear model. The 
ARMA-GS-GMDH model with R = 91.03%, SI = 2.52%, 
MAPE = 2.13%, RMSRE = 2.47% and ρ = 1.29% outper-
formed the ARIMA–GS-GMDH model with R = 91.91%, 
SI = 2.86%, RMSRE = 2.99% and ρ = 1.56% as well as all 
other models. Figure 13 demonstrates the scatter plot of 
the hybrid modeling results, where almost all forecasted 
data are within the  ± 5% error interval. Figures 14 and 15 
provide a good comparison between the observed MED 
data and the models. The box plot (Fig. 4a) shows that the 

Fig. 12 Scatter plot of generalized structure group method of data 
handling (GS‑GMDH) in MED prediction

Table 4 Statistical indices for the developed hybrid model 
in acute coronary event (ACE) forecasting

ARMA–GS-GMDH Auto-regressive moving average–generalized structure group 
method of data handling, ARIMA–GS-GMDH Auto-Regressive Integrated Moving 
Average–Generalized Structure Group Method of Data Handling, R coefficient 
correlation, SI scatter index, MAPE mean absolute percentage error, RSMRE root 
mean square relative error, ρ% performance index

Model R% SI% MAPE% RMSRE%

ARMA–GS‑GMDH Train 88.97 3.64 2.84 3.59

Test 91.03 2.52 2.13 2.47

ARIMA–GS‑GMDH Train 84.93 3.91 2.94 3.97

Test 91.91 2.86 2.46 2.99 Fig. 13 Scatter plot of auto‑regressive moving average‑generalized 
structure group method of data handling (ARMA–GS‑GMDH) and 
auto‑regressive integrated moving average–generalized structure 
group method of data handling (ARIMA–GS‑GMDH) in acute 
coronary event (ACE) prediction
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hybrid model forecasted the interquartile area, mean and 
median of the data better than other models. However, 
the maximum and minimum predictions varied between 
the models (Fig. 4b). The superiority of the ARIMA–GS-
GMDH model is demonstrated by the model’s maximum, 
minimum and interquartile areas, which are much closer 
to the observed data than all other models, especially the 
regression model used in the Bernal et al. [6] study.

The Taylor diagram [42] investigates the performance 
of the models using the standard deviation (SD) and R 
of all the tested models simultaneously. The distance 
from any point to the observed data in the diagram is 
equivalent to the centered RMSE and a precise model 

is one with a coefficient of determination of 1 and SD 
similar to the observed data. [43, 44] As illustrated in 
Fig. 16, the sample ITS models, including combined data-
driven modeling (ARMA–GS-GMDH and ARIMA–GS-
GMDH); showed a superior performance to models in 
the Bernal et al. study [6]. Both data-driven models were 
situated closer to the reference (observed) point than 
the models alone (GS-GMDH, ARMA and ARIMA). 
ARMA–GS-GMDH has a lower SD and higher R. By 
applying a combined model, the difference between the 
model and observed data is decreased and accuracy of 
predicted results is increased (Table  4, Fig.  13) in both 
training and testing stages. The R of the proposed com-
bined data-driven model (ARMA–GS-GMDH and 
ARIMA–GS-GMDH) exhibited an average of 17.74% 
enhancement from the single stochastic model (ARMA 
and ARIMA) and 2.05% from the nonlinear model (GS-
GMDH). Although the results of combined approaches 

Fig. 14 Box plot of all models versus observed data. GS‑GMDH, generalized structure group method of data handling; ARMA, auto‑regressive 
moving average; ARIMA, auto‑regressive integrated moving average; ARMA–GS‑GMDH, auto‑regressive moving average–generalized structure 
group method of data handling; ARIMA–GS‑GMDH, auto‑regressive integrated moving average–generalized structure group method of data 
handling; Std rate standardized rate of acute coronary events (ACEs) [6]

Fig. 15 Taylor graph for checking the performance of the linear, 
nonlinear and hybrid models in predicting acute coronary 
events (ACEs). GS‑GMDH, generalized structure group method 
of data handling; ARMA, auto‑regressive moving average; ARIMA, 
auto‑regressive integrated moving average; ARMA–GS‑GMDH, 
auto‑regressive moving average–generalized structure group 
method of data handling; ARIMA–GS‑GMDH, auto‑regressive 
integrated moving average–generalized structure group method of 
data handling [6]

Fig. 16 Scatter plot of observed acute coronary events (ACEs) and 
Auto‑regressive integrated moving average–generalized structure 
group method of data handling (ARMA–GS‑GMDH) superior hybrid 
model results compared to Bernal et al.’s model results. Std rate, 
standardized rate of ACEs [6,25]
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are slightly better than the single GS-GMDH model, 
the accuracy is improved and the errors were about half 
those of the linear model.

As illustrated in Fig.  16, compared to the regression 
model of the Bernal et al. study [6], the single stochastic 
ARMA model and ARIMA have almost the same loca-
tion in the diagram, in addition to showing a relatively 
higher RMSE than the single GS-GMDH and the com-
bined model. The plot in Fig. 16 showed the superiority 
of the combined ARMA–GS-GMDH model with the 
observed ACE data [25] and the regression model [6]. 
Moreover, by combining the features of both models 
(ARMA and GS-GMDH), the fluctuations in the ACE 
TS could be better predicted. The series has severe fluc-
tuations, which is why linear models alone cannot ade-
quately forecast the data (Fig. 16). Hence, data (Table 5) 
showed that the combined model improved the results of 
the linear regression. The statistical indices indicate that 
the linear regression model has lower accuracy (R being 
11.83% lower) and higher errors (SI, 1.33%; MAPE, 1.25%; 
and RMSRE, 1.19%) than the proposed model. Index ρ 
can be employed for measuring model error in addition 
to examining the correlation between the model and 
observational values. This index is lower for the ARMA–
GS-GMDH model (ρ = 1.86%) compared to the Bernal 
et al. [6] model (ρ = 2.66%). Moreover, the Nash–Sutcliffe 
coefficient (EN–S), which is an index showing a model’s 
weakness in forecasting extreme values, revealed an EN–

S = 0.58 for the regression model which is considerably 
lower than the combined model EN–S = 0.78.

Discussion
This study provides a novel approach on the use of ITS 
modeling based on the continuous translational data 
driven approach. To validate the developed model, we 
assessed the effects of the Italian smoking ban in public 
areas on hospital admissions for acute coronary events. 
We propose a hybrid methodology using a continu-
ous translational data-driven approach based on a com-
bination of the stochastic and AI methods that will (i) 
increase the accuracy of prediction results through a 

continuous modeling process, and (ii) importantly will 
solve a challenging issue in ITS modeling regarding the 
time lag between pre- and post-intervention periods, 
which limits the application of the segmented regression 
method in ITS modeling.

The complex dynamic behavior of the ACE can be 
modeled with a TS approach, which deduces the char-
acteristics of the data generation process by analyzing 
historical data. In a recent study, Bonakdari et  al. [24] 
showed that future prevalence a complex heath care 
outcome can be evaluated by historical TS at a specific 
time. As different dependent parameters can have a seri-
ous impact on outcome, relevant information regarding 
the ACE was extracted based on historical data summa-
rized as internal patterns. In this study, the ACE TS was 
modeled using linear-based stochastic model (ARMA, 
ARIMA), nonlinear-based GS-GMDH and an integra-
tion of a continuous linear (stochastic) with a nonlinear 
model (data-driven method). Two fundamental premises 
for stochastic modeling were stationarity and normal 
distribution. In order to achieve stationarity, the deter-
ministic terms should be removed from the TS. For this 
purpose, the structure of the TS was investigated by dif-
ferent tests. Initially, the ACE TS structure was investi-
gated by stationarity and normality tests. Data showed 
that the TS was normally distributed but was not sta-
tionary (Table  1). The deterministic term(s) responsi-
ble for non-stationarity (trend, jump and period) terms 
were performed and trend and jump were found in the 
series. Detrending the ACE TS by trend analysis was 
done by stationarizing the data and then by differencing 
the detrended data. The former surprisingly eliminated 
all deterministic terms and stationarized the TS very well 
by 44.55% (Table  1). The latter improved the stationar-
ity and removed the linear trend completely, made some 
fluctuations in the TS and increased the Fisher statis-
tic parameter. Nonetheless, the preprocessed ACE TS 
was completely stationary and normal. The ARMA and 
ARIMA models were the first applied to the series. In 
order to determine the order of the models, ACF plots 
were used and a maximum of three parameters were 
required. For further investigation, ten parameters were 
considered in modeling. The ARMA model with seven 
non-seasonal auto-regressive parameters and five non-
seasonal moving average parameters in the testing period 
outperformed the ARIMA model. For the second TS 
modeling approach, the ACE TS data was modeled by 
GS-GMDH. The most important feature of these mod-
els is their ability to model nonlinearity better than lin-
ear stochastic models. The results showed that the single 
nonlinear model improved the accuracy of GS-GMDH. 
In the third and final step, a combination of linear and 
nonlinear models was made. As the results depicted, 

Table 5 Statistical indices for the proposed model, ARMA-
GS-GMDH, and  segmented regression method by  Bernal 
et al. [6] for the same testing and training periods

ARMA–GS-GMDH Auto-regressive moving average–generalized structure group 
method of data handling, R correlation coefficient, SI scatter index, MAPE mean 
absolute percentage error, RSMRE root mean square relative error, EN–S,Nash–
Sutcliffe model efficiency [6]

Model R% SI% MAPE% RMSRE% ENS

Bernal et al. [6] 76.33 4.85 4.02 4.69 0.58

ARMA–GS‑GMDH 88.16 3.52 2.77 3.50 0.78
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both ARMA–GS-GMDH and ARIMA–GS-GMDH out-
performed the single models. The ARMA–GS-GMDH 
model enhanced the results by an average of 17.74 and 
2.03% compared to the single linear and nonlinear mod-
els. As illustrated in the Taylor diagram, combined mod-
els have a higher R to observed data, lower RMSE and SD 
closer to the observed data than other models, thus bet-
ter fitting the observed data.

The proposed methodology, as well as ITS modeling, 
can be employed for TS prediction. To verify the per-
formance of the methodology in TS data set modeling, 
another health care real case was assessed. Bhaskaran 
et  al. [45] used TS modeling in environmental epide-
miology. They studied the association between ozone 
levels and the total number of deaths in the city of Lon-
don (UK) for a time period of five years from 1 January 
2002 to 31 December 2006. In brief, the authors [45] 
investigated three alternative techniques including time 
stratified model, periodic functions, and flexible spline 
functions to shed light on key considerations for mod-
eling long term patterns of studied TS. Their prediction 
for the total number of deaths as TS outcomes yielded 
a coefficient of R = 0.71, 0.65 and 0.69 for each method, 
respectively. When applying the present developed meth-
odology to their dataset, data from the hybrid model 
(ARMA–GS-GMDH) give more accurate results in 
which R = 0.75 for total number of deaths. These confirm 
not only that the proposed hybrid model is able to pre-
dict ITS outcomes (no need to identify the implemented 
intervention on outcomes), but it also can be employed 
for modeling TS with high accuracy compared to con-
ventional approaches.

As detailed by Bonakdari et al. [46], conventional anal-
ysis of ITS in healthcare is based on regression methods 
that highly depend on intervention lag time which is very 
often difficult to determine. However, the present meth-
odology can continuously be employed in such cases. 
As examples, the hybrid model could also be applied 
to several health conditions and include to analyze the 
relationship between smoking bans and the incidence 
of acute myocardial infarction [47]; to analyze the qual-
ity improvement strategy on the rate of being up-to-date 
with pneumococcal vaccination [48]; to assess the impact 
of health information technology initiatives on the per-
formance of rheumatoid arthritis disease activity meas-
ures and outcomes [16], to name a few.

As all studies, there are limitations of the hybrid meth-
odology and mostly associated with stochastic and/or 
nonlinear models. The most important limitation of such 
a hybrid method is the minimum length of outcome TS 
dataset needed in the training stage. In addition, select-
ing appropriate parameters of stochastic models in some 
cases requires increasing stationarization steps which 

could lead to differencing, seasonal standardization, and 
spectral analysis methods. In turn, selecting the best 
input combination in nonlinear models could also be a 
challenging task. Finally, designing AI architecture for a 
given ITS requires several trial and error steps to find the 
appropriate parameters.

Conclusions
Our study suggested that the proposed continuous 
translational data-driven model not only predicts ACEs 
with high accuracy and improved ITS prediction com-
pared to current regression methods, but importantly, 
does not require any predefined lag time between pre- 
and post-intervention. This methodology can therefore 
be used as a reliable alternative in public health inter-
vention evaluation. Hence, the novel hybrid approach 
provides a step forward by facilitating the modeling of 
such assessments in a short time. This is important for 
decision makers to manage health conditions as com-
plex adaptive systems in a timely manner.
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