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Abstract 

Background: Previous studies from this as well as other research groups suggested that non‑invasive chromosome 
screening (NICS) with embryo culture medium can be used to identify chromosomal ploidy and chromosomal abnor‑
malities. We here report a series of clinical cases utilizing the technology.

Methods: A total of 45 couples underwent in vitro fertilisation during a period between February 2016 and February 
2017. Karyotyping revealed normal chromosomes in both partners in 23 couples, and chromosomal rearrangements 
in at least one partner in 22 couples. Intracytoplasmic sperm injection (ICSI) was used for fertilization. NICS was carried 
out using embryo culture medium at the blastocyst stage via multiple annealing and looping‑based amplification 
cycles, whole‑genome amplification and next‑generation sequencing.

Results: A total of 413 embryos were obtained; 170 blastocysts were subjected to NICS. The screening showed 
euploidy in 79 embryos, aneuploidy in 52 embryos, and mosaic ploidy for 33 embryos. The rate of euploidy was com‑
parable in couples with normal karyotype (50.7%; 38/75) vs. chromosomal rearrangement (43.2%; 41/95). A total of 52 
euploid embryos (50 oocyte retrieval cycles) were transferred in 43 women. Biochemical pregnancy rate was 72.0% 
(36/50). Clinical pregnancy rate was 58.0% (29/50). The rate of spontaneous miscarriage was 3/29 (none with chromo‑
somal aneuploidy). A total of 27 healthy babies were delivered.

Conclusions: NICS could identify embryo chromosomal abnormalities in couples either with or without chromo‑
somal rearrangement, with satisfying clinical outcomes.

Keywords: Non‑invasive chromosome screening, Assisted reproductive technology, Chromosomal ploidy, Next‑
generation sequencing, Clinical outcome
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Background
One of the greatest challenges for in  vitro fertilisation 
and intracytoplasmic sperm injection (ICSI) is accurately 
selecting viable embryos that are more likely to achieve 
healthy livebirths following implantation. Currently, 
this selection is based on morphological assessment [1], 
but embryo morphology does not always correlate with 

chromosome status. In fact, a substantial proportion of 
human blastocysts designated as high grade based on 
morphology has chromosomal aneuploidy [2].

Embryo biopsy and preimplantation genetic screening 
(PGS) provide more direct assessment of chromosome 
status, and could improve the rate of implantation and 
clinical pregnancy [3, 4]. The biopsy procedure involves 
removing either a single cell at the cleavage stage or sev-
eral trophectoderm cells at the blastocyst stage [5]. PGS 
has seen limited clinical application because of techni-
cal difficulties and concerns over the long-term health 
of the offsprings. Animal studies suggest embryo biopsy 
could delay blastocoel formation and increase the risk 
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of neurodegeneration and dysfunction in the offsprings 
[6–8].

A less invasive alternative is to analyse genomic DNA 
from embryo culture medium or blastocyst cavity fluid 
[9–14]. Culture medium may be a more reliable source 
because screening of blastocyst cavity fluid often gives 
results inconsistent with those from embryo biopsy [11–
17]. In addition, collecting blastocyst cavity fluid can be 
as challenging as embryo biopsy.

Previous studies from this research group as well as 
others have shown that DNA testing using embryo cul-
ture medium on days 5 or 6 could detect chromosome 
aneuploidy with resonable positive predictive value and 
high negative predictive value [18, 19], suggesting that 
the NICS assay could be used for selecting chromosom-
ally normal embryos.

Here, we report the clinical outcomes of using NICS to 
select embryos for implantation in a total of 45 couples 
(22 with normal karyotype and 23 with chromosomal 
rearrangement in at least one partner).

Methods
Study design and patients
This study was conducted from February 1, 2016 to Janu-
ary 31, 2017, with the approval by the Ethics Committee 
of the Wuxi Maternal and Child Health Care Hospital. 
All women had a history of recurrent spontaneous abor-
tion (≥ 3 events) or repeated implantation failure ( ≥ 3 
events). All couples had a consultation with a clinical 
geneticist and were karyotyped. Study design is shown in 
Fig. 1.

Ovarian stimulation and oocyte retrieval
Ovarian stimulation was carried out using clomiphene 
citrate and gonadotropin. Briefly, clomiphene citrate 
(50 mg/day) was administered orally on an extended regi-
men from cycle day 3 until the day before induction of 
final oocyte maturation. Human menopausal gonadotro-
pin or recombinant follicular stimulating hormone was 
given by injection (150–225  IU/day) from cycle day 4. 
Ultrasound images and hormone profile (oestradiol  [E2], 
luteinising hormone, progesterone) were monitored daily 
starting on day 8 and until the triggering day. Oocytes 
were retrieved at 36  h after trigger administration of 
human chorionic gonadotropin.

Blastocyst culture
All embryos were fertilised using ICSI. Embryos with 
two pronuclei were transferred to individual 30-µL drop-
lets of cleavage-stage SAGE culture medium (Cooper-
Surgical Fertility, Malov, Denmark) in a 30-mm Falcon 
culture dish overlaid with 2.5-mL mineral oil (Cooper-
Surgical Fertility) and cultured at 37 °C in an atmosphere 

containing 5%  O2 and 5.5%  CO2. On day 3 after fertilisa-
tion, the embryo was repeatedly pipetted using 135-μm 
stripper tips (CooperSurgical Fertility), then individual 
embryos were placed in 30-µL droplets of Quinn’s Advan-
tage Protein Plus blastocyst culture medium (CooperSur-
gical Fertility) and cultured for 2–3 days to the blastocyst 
stage in an atmosphere containing 5%  O2 and 5.5%  CO2 
at 37 °C. On day 5 or 6, blastocyst development and qual-
ity were evaluated as described [20].

Sample collection and blastocyst vitrification
Blastocyst culture medium (20–25  µL) was transferred 
to DNase- and RNase-free PCR tubes containing 5-µL 
cell lysis buffer (Yikon Genomics, China), snap-frozen in 
liquid nitrogen, and stored at − 80  °C until NICS. Blas-
tocysts were frozen via vitrification and stored in liquid 
nitrogen (Cryotop Safety Kit; Kitazato Corp., Tokyo, 
Japan).

Whole‑genome amplification and DNA sequencing
NICS was performed using culture medium as previously 
described [19]. DNA for whole-genome amplification was 
amplified using multiple annealing and looping-based 
amplification cycles (cat no. YK001B, Yikon Genomics). 
Amplification products were sequenced on an Illumina 
HiSeq 2500 platform (Illumina, San Diego, CA, USA) 
with approximately two million sequencing reads per 
sample. The read numbers were counted along the whole 
genome with a bin size of 1 Mb and normalised based on 
GC content and a reference dataset. The number of read 
counts served as the index of ploidy: a 50% increase indi-
cates an increase in the number of chromosomes from 2 
to 3, whereas a 50% decrease indicates a reduction in the 
number of chromosomes from 2 to 1 [21, 22].

Endometrial preparation and blastocyst transfer
The endometrium was prepared for transfer of frozen–
thawed blastocysts using an artificial cycle [23–25]. Hor-
mone replacement therapy (oral E2 valerate at 6 mg/day) 
was started on day 3 of the menstrual cycle. Ultrasound 
was performed, and the serum progesterone level was 
measured after 12  days of E2 replacement. When the 
endometrium was 8-mm thick, luteal support was started 
with daily oral progesterone or vaginal micronised pro-
gesterone gel administration (Crinone 8%, Merck Serono 
KGaA, Darmstadt, Germany). E2 valerate and progester-
one administration continued until 10 weeks of gestation.

Blastocysts were selected based on traditional mor-
phological assessment and NICS results, and trans-
ferred on day 6 of progesterone administration. 
Vitrified blastocysts were warmed using Kitazato vitrifi-
cation thawing solution as described [19]. Before trans-
fer, the cryotop strip of frozen embryos was immersed in 
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thawing solution (1-mol/L sucrose) for 60 s at 37 °C, then 
in dilution solution (0.5-mol/L sucrose) for 3 min. Blas-
tocysts were washed in washing solution without sucrose 
for 3–5 min. Surviving blastocysts were incubated in an 
atmosphere of 5%  O2 and 5.5%  CO2 at 37  °C for 1–2  h 
before transfer to the uterus.

Clinical outcomes
Biochemical pregnancy was defined as human chorionic 
gonadotropin  > 10  mIU/mL at 10  days after blastocyst 
transfer. The rate of clinical pregnancy was calculated as 
the number of transfer cycles in which transferred blas-
tocysts developed to a stage at which foetal heartbeat 

was visible by ultrasound, divided by the total number of 
freeze-thaw blastocyst transfer cycles. The miscarriage 
rate was defined as the number of spontaneous pregnan-
cies lost, divided by the number of freeze-thaw blastocyst 
transfer cycles leading to clinical pregnancy.

Statistical analysis
Continuous variables are reported as mean ± standard 
deviation. Categorical variables are presented as fre-
quencies. Inter-group differences were assessed for sig-
nificance using Fisher’s exact test. P < 0.05 (2-sided) was 
considered statistically significant. All statistical analyses 

Fig. 1 Schematic representation of the study design and work flow
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were performed using SPSS 20.0 (IBM, Armonk, NY, 
USA).

Results
Patient characteristics
A total of 45 couples were included. The average age 
of the women was 30.7    5.0  years (range 23–42  years). 
A total of 501 oocytes (47 cycles) in metaphase of the 
second meiotic division were obtained (Table  1). ICSI 
produced 421 zygotes and 413 embryos, of which 179 
(43.3%) developed into transplantable blastocysts. Karyo-
typing revealed chromosome rearrangements in 23 cou-
ples, including Robertson translocation (n = 4), balanced 
translocation (n = 10), chromosome inversion (n = 4), 
and 47XYY (n = 1) (Additional file  1: Table  S1). The 
remaining 4 couples had unbalanced chromosome rear-
rangements involving deletions or duplications.

Correlation of embryo morphology with euploidy
Whole-genome amplification and next-generation 
sequencing of DNA in culture medium from 164 blasto-
cysts revealed that 79 (46.5%) were euploid; 52 (30.6%) 
aneuploid; and 33 (19.4%) mosaic (Table  2). No usable 
signal was obtained in the remaining 6 blastocysts.

Of the 60 embryos assigned morphology grade 1 (AA), 
33 (55%) were euploid; of the 51 embryos with morphol-
ogy grade 2 (AB, BA and BB), 19 (37.3%) were euploid; 
and of the 59 embryos with grade 3 (AC, CA, BC and 

CB), 27 (45.5%) were euploid (Table  2). Logistic regres-
sion showed no significant association between euploidy 
and morphology grade. In comparison to the embryos 
with morphology grade 3, there are no significant dif-
ference in the probability of euploidy in blastocysts 
with morphology grade 1 (OR = 1.504, P = 0.27) and 2 
(OR = 0.769, P = 0.50) (Table 2).

NICS
Based on NICS of 95 embryos from couples with chro-
mosomal rearrangements, 41 embryos (43.2%) were 
euploid, 31 (32.6%) were aneuploid and 17 (17.9%) 
showed mosaic ploidy (Table  1). Ploidy could not be 
determined in 6 embryos (6.3%).

Based on NICS of 75 embryos from couples with nor-
mal karyotypes, 38 (50.7%) were euploid, 21 (28.0%) ane-
uploid and 16 (21.3%) mosaic. The two groups of couples 
did not differ significantly in the rate of ploidy abnormali-
ties. Transferable blastocysts were not obtained from 1 
oocyte retrieval cycle in each group.

Clinical outcomes
Twenty-five euploid blastocysts were transferred into 
22 patients who underwent preimplantation genetic 
diagnosis (PGD); three women underwent two embryo 
transfers. 27 euploid blastocysts were implanted in 
21 patients who underwent PGS; the implantation 
was performed within 25 cycles, with four women 

Table 1 Clinical characteristics of patients for whom NICS was performed on embryo culture medium

Values shown are n, n (%) or mean ± SD

CCOCs, cumulus oophorus-oocyte complex; FSH, follicle-stimulating hormone; LH, luteinizing hormone; MII, mature oocyte; NICS, non-invasive chromosome 
screening

Chromosomal rearrangement 
(n = 23)

Normal karyotype (n = 22) Entire cohort (n = 45)

Female age (years) 29.4 ± 5.4 31.7 ± 4.5 30.7 ± 5.0

Female body mass index (kg/m2) 21.5 ± 3.1 23.0 ± 3.2 22.3 ± 3.2

Baseline FSH (mIU/mL) 6.8 ± 2.5 6.8 ± 1.4 6.8 ± 2.1

Baseline LH (mIU/mL) 5.0 ± 3.4 5.6 ± 2.4 5.4 ± 2.9

Infertility duration (years) 3.0 ± 1.9 3.2 ± 2.7 3.1 ± 2.4

Number of cycles 25 22 47

CCOCs 345 292 637

MII 285 216 501

Zygotes 237 (83.2%) 184 (85.2%) 421 (84.0%)

Embryos obtained 234 (98.7%) 179 (97.3%) 413 (98.1%)

Blastocysts obtained 97 (41.5%) 82 (45.8%) 179 (43.3%)

Blastocysts subjected to NICS 95 75 170

 Euploid 41 (43.2%) 38 (50.7%) 79 (46.5%)

 Aneuploid 31 (32.6%) 21 (28.0%) 52 (30.6%)

 Mosaic 17 (17.9%) 16 (21.3%) 33 (19.4%)

 Unsuitable for implantation by NICS 6 (6.3%) 0 6 (3.5%)

Cycles without transferable blastocysts 4% (1/25) 4.5% (1/22) 4.3% (2/47)
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undergoing two transplantations and two women 
receiving two embryos per cycle (Table 3).

Biochemical pregnancy rate was 68% (17/25) in 
the PGD group and 76% (19/25) in the PGS group 
(Table 3). The clinical pregnancy rate was 52% (13/25) 
and 63% (16/25), respectively. Neither biochemical or 
clinical pregnancy rate differ significantly between the 
groups. Miscarriages occurred in 2 of the 13 (15.4%) 
pregnancies in the PGD group and in 1 of the 16 (6.2%) 

pregnancies in the PGS group. All three miscarried foe-
tuses were euploid based on foetal tissue examination.

26 women in each group had given birth to healthy 
babies. Birth weight did not differ significantly between 
the two groups.

Discussion
The results from this pilot study suggest that NICS can 
be used to screen chromosomal ploidy in embryos and 
identify chromosomal rearrangements. The overall 

Table 2 Embryo morphology and ploidy

Values shown are n (%), unless otherwise noted

Euploid Aneuploid Mosaic No result OR (95% CI) P

Day 5 embryos 75 (46.6%) 47 (29.2%) 33 (20.5%) 6 (3.7%) 1.09 (0.282–4.208) 0.900

Day 6 embryos 4 (44.4%) 5 (55.6%) 0 0 1

Morphology

 Expansion

  4 72 (46.5%) 46 (29.7%) 32 (20.6%) 5 (3.2%) 0.867 0.864

  5 4 (44.4%) 3 (33.3%) 1 (11.1%) 1 (11.1%) 0.800 0.833

  6 3 (50.0%) 3 (50.0%) 0 0 1

 Inner cell mass

  A 35 (49.3%) 23 (32.4%) 11 (15.5%) 2 (2.8%) 0.972 (0.130–7.288) 0.978

  B 42 (44.2%) 27 (28.4%) 22 (23.2%) 4 (4.2%) 0.792 (0.107–5.863) 0.792

  C 2 (50.0%) 2 (50.0%) 0 0 1

 Trophectoderm

  A 37 (54.4%) 23 (33.8%) 7 (10.3%) 1 (1.5%) 1.432 (0.702–2.924) 0.324

  B 17 (36.2%) 15 (31.9%) 11 (23.4%) 4 (8.5%) 0.68 (0.306–1.509) 0.343

  C 25 (45.5%) 14 (25.5%) 15 (27.3%) 1 (1.8%) 1

 Embryo morphology grade E

  1 (AA) 33 (55.0%) 20 (33.3%) 6 (10.0%) 1 (1.7%) 1.504 (0.728–3.108) 0.27

  2 (AB, BA, BB) 19 (37.3%) 16 (31.4%) 12 (23.5%) 4 (7.8%) 0.769 (0.359–1.647) 0.50

  3 (AC, BC, CA, CB) 27 (45.8%) 16 (27.1%) 15 (25.4%) 1 (1.7%) 1

Table 3 Pregnancy outcomes with NICS

DET, double embryos transfer; ET, embryo transfer; NICS, non-invasive chromosome screening; SET, single embryo transfer

Chromosomal rearrangement Normal karyotype Total

Total ET

 Cycles 25 25 50

 Patients 22 21 43

(SET/DET) 25/0 23/2 48/2

Transferred euploid blastocysts 25 27 52

Biochemical pregnancies 68% (17/25) 76% (19/25) 72.0% (36/50)

Clinical pregnancies 52% (13/25) 64% (16/25) 58.0% (29/50)

Miscarriages 15.4% (2/13) 6.2% (1/16) 10.3% (3/29)

Deliveries 11 15 26

Singleton/twins 11/0 14/1 25/1

Babies born (male/female) 11 (6/5) 16 (9/7) 27 (15/12)

Birth weight (g, mean ± SD) 3283.7 ± 412.4 3174.7 ± 391.5 3217.5 ± 403.4
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clinical pregnancy rate was 58% (64% in couples with 
normal karyotype, and 52% in couples with chromo-
somal rearrangements). The clinical pregnancy rate 
of 52% in couples with chromosomal rearrangements 
in the current study is similar to the rate of 45.1% 
reported in a study of patients with chromosomal rear-
rangements who underwent PGD based on next-gen-
eration sequencing [26].

The clinical pregnancy rate in the current study is 
apparently higher than that in the ESHRE study, which 
reported clinical pregnancy rate of 28–30% among 
patients undergoing PGS and 25–35% among patients 
undergoing PGD based on PCR, microarray analysis, 
or fluorescence in  situ hybridization [27]. The mis-
carriage rate in our study (6.2% in the PGS group and 
15.4% in the PGD group) is lower than that reported by 
in the ESHRE study (9% and 18%, respectively). These 
results indicated that using NICS to detect chromo-
somal rearrangements and to screen chromosome 
ploidy is a viable approach to select embryos with high 
developmental potential.

Consistent with previous studies [28, 29], we did not 
observe significant correlation between morphological 
grade and embryo ploidy. These results argue strongly 
against morphology-based assessment of an embryo’s 
implantation potential. At the minimum, a combina-
tion of morphological assessment with NICS-based 
PGS can further improve in  vitro fertilisation out-
comes. This should be examined in future work, pref-
erably in prospective randomised studies.

The sex ratio of the 27 newborns in our study was 
consistent with NICS prediction. 11 newborns in the 
PGD group underwent amniocentesis prior to the 
eventual delivery. Similar to PGS involving embryo 
biopsy, NICS cannot distinguish normal embryos from 
those carrying a balanced translocation. However, 
NICS can accurately identify embryos with balanced 
chromosomes, since observed variations in chromo-
some copy number were consistent with NICS predic-
tions for the newborns and aborted foetuses (data not 
shown).

In our previous study, we validated the NICS assay 
for identification of chromosomal abnormalities by 
using donated complete embryo and obtained 0.882 
sensitivity and 0.840 specificity [19]. The PPV and NPV 
were 78.9% and 91.3%, respectively. The relatively low 
PPV indicated significant false positivity, and could 
reflect the self-repair process in which abnormal DNA 
fragments are released by early embryos into culture 
medium during development [30, 31]. Since the goal of 
NICS assay is to select healthy embryos for implanta-
tion, we believe that the assay is clinically useful con-
sidering the relatively high NPV.

Conclusions
Here we demonstrate the usefulness of genomic DNA 
testing in embryo culture medium, as suggested from 
previous work [10]. Blastocyst fluid is another source of 
embryo DNA, but smaller amount of DNA, and thus low 
rate of detection (63%–76.5%) remains a major challenge. 
Also, testing results using blastocyst fluid may be inaccu-
rate for preimplantation genetic testing [12–17].

Consistent with previous work using the same method 
[32], the success rate of amplification with NICS was 
96.4% in the current study. This likely reflects the appre-
ciable amount of embryonic DNA in the culture medium 
volume, which is 100-fold greater than the volume of 
blastocyst fluid with a similar DNA concentration [10]. 
In addition, multiple annealing and looping-based ampli-
fication cycling may reduce the effects of amplification 
inhibitors present in the embryo culture. We used culture 
medium from the blastula stage rather than oocyte stage, 
which may result in higher DNA amounts because the 
cell mass is greater and because mosaicism occurs more 
often at the cleavage stage.

Despite the advantages of using culture medium for 
NICS, it is vulnerable to contamination with sperm and 
cumulus granulosa cells. Also, serum in the medium 
could inhibit DNA amplification. At our centre, embryos 
are repeatedly rinsed when changing the culture medium 
on day 3 in order to enhance the removal of cumulus cells 
and other sources of DNA contamination. Future studies 
are needed to examine the potential effects of these pro-
cedures on embryonic development.

Our results should be interpreted with caution given 
the retrospective, observational study design and the 
small sample size. The study is subject to a variety of 
biases, including but not limited to patient selection. In 
addition, we did not include a control group in which 
only morphology scoring was used to screen embryos 
for implantation. Larger, randomised controlled trials are 
needed to verify and extend our findings.

Additional file

Additional file 1: Table S1. Karyotypes of the patients with chromosomal 
abnormalities in the chromosomal rearrangement group.
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