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COMMENTARY

Invasive non-typhoidal Salmonella 
in sickle cell disease in Africa: is increased gut 
permeability the missing link?
Seah H. Lim1,5* , Barbara A. Methé2, Bettina M. Knoll3, Alison Morris2 and Stephen K. Obaro4

Abstract 

Non-typhoidal Salmonella usually induces self-limiting gastroenteritis. However, in many parts of Africa, especially in 
individuals who are malnourished, infected with malaria, or have sickle cell disease, the organism causes serious and 
potentially fatal systemic infections. Since the portal of entry of non-typhoidal Salmonella into the systemic circula-
tion is by way of the intestine, we argue that an increased gut permeability plays a vital role in the initiation of invasive 
non-typhoidal Salmonella in these patients. Here, we will appraise the evidence supporting a breach in the intestinal 
barrier and propose the mechanisms for the increased risks for invasive non-typhoidal Salmonella infections in these 
individuals.
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Background
Sickle cell disease (SCD) is a major global hemoglobi-
nopathy and affects between 20 and 25 million people 
worldwide, with an incidence of approximately 300,000 
births/year [1]. It is particularly prevalent in the African 
continent, with nearly 80% of the SCD births occurring in 
sub-Saharan Africa [2]. It is a chronic illness and affected 
individuals suffer from recurrent vaso-occlusive crises 
(VOC) crises, poor quality of life, and a shortened lifes-
pan. If life-span extends into adulthood, end-organ dam-
age occurs in these patients, affecting the kidneys, brains, 
lungs, and eyes. The life expectancy of SCD in the United 
States (US) has increased to 42 and 48 years for men and 
women, respectively [3]. However, 50–80% of children 
with SCD in Africa still die before the age of 5 years [4]. 
Since many babies are born and die outside of hospital, 
it is likely that the mortality rate due to SCD in African 
children is much higher [5, 6].

While infections caused by encapsulated bacte-
rial agents are the most widely recognized cause of life 

threatening infections in SCD, specific species vary 
across geographic regions. In Europe and the US, Strep-
tococcus pneumoniae is the leading cause but in Africa, 
enteric bacteria, such as Salmonella are most common. 
Pneumococcal infections can be readily prevented with 
penicillin prophylaxis and the advent of pneumococ-
cal conjugate vaccines has been a major breakthrough 
in disease prevention. Although a typhoid fever/invasive 
non-Typhoidal Salmonella (iNTS) disease conjugate vac-
cine targeting S. enteritidis, S. typhimurium, and S. typhi 
is currently in Phase 1 clinical trials, prevention of Sal-
monella infections, particularly those by NTS, remains 
a major challenge. Thus, improved understanding of the 
pathogenesis of iNTS warrants urgency to provide new 
tools for preventive care of SCD in populations most 
afflicted by the infections.

In this paper, we will examine the evolving data sup-
porting a breach of gut permeability in SCD. A compro-
mised gut barrier may facilitate the portal of entry for 
iNTS in these patients. We will propose potential preven-
tive strategies to reduce the risk for iNTS in this group of 
patients.
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Main text
Public health impact of non‑typhoidal Salmonella
NTS is among the three most common pathogens caus-
ing systemic infections in children and adults in the sub-
Saharan Africa [7, 8]. NTS consists of many serovars, 
with S. typhimurium being the serovar that is the most 
commonly implicated pathogen. Unlike typhoidal Sal-
monella that consists of the serovars Typhi and Para-
typhi and causes the systemic disease of typhoid, NTS 
generally induces self-limited gastroenteritis in human. 
However, in many parts of Africa, NTS causes highly sig-
nificant invasive systemic infections [9, 10]. The clinical 
features of invasive NTS (iNTS) are distinct from those 
of gastroenteritis or typhoid disease. These patients usu-
ally present with nonspecific fever similar to malaria, and 
in some patients, pneumonia, meningitis or osteomyeli-
tis. The impact of iNTS on childhood mortality exceeds 
malaria in some African communities [11]. The estimated 
mortality rates for iNTS among hospitalized patients in 
Africa ranges from 4.4 to 27% for children [12–14] and 
22 to 47% for adults [15, 16]. The mortality rate is high-
est in those with meningitis and is higher than any other 
common bacterial causes of meningitis. In Malawi, the 
mortality rate due to NTS meningitis in the neonates was 
64%, compared to 26% in those with Group B Streptococ-
cal meningitis [17]. The burden due to iNTS is significant. 
For example, it has been estimated that iNTS occurred 
in 88 cases per 100,000 person-years in the age group of 
5  years old in rural Kenya, while in Mozambique, NTS 
accounted for 120 cases per 100,000 person-years [17]. 
These incidences are likely grossly under-estimated since 
many children with iNTS died before reaching the local 
hospitals [8, 11].

The use of whole genome sequencing has become 
important for monitoring the prevalence, movement 
and genotype of infectious disease agents such as Sal-
monella. Sequence analysis of invasive S. typhimurium 
from Malawi and Kenya identified a dominant type, des-
ignated ST313, which is rarely isolated outside of Africa 
[18]. Whole-genome sequencing of ST313 NTS found 
genetic element encoding multi-drug resistance (MDR) 
genes located on a virulence-associated plasmid of the 
organism. Unfortunately, the factors contributing to the 
high prevalence of iNTS remain poorly defined. Our 
surveillance platform of 9345 children in Kano, Nigeria, 
identified that the age-adjusted odds ratio for clinically 
significant iNTS was much higher in SCD than those 
without the disease (OR 4.28, 95% CI 2.3–7.9) [19, 20]. 
We have also previously shown that SCD patients have 
alteration of their lymphocyte phenotype and functions 
[21]. In addition to splenic dysfunction associated with 
SCD, children with malnutrition, malaria, and human 
immunodeficiency virus (HIV) are also more susceptible 

to iNTS [10, 22]. However, these immunocompromised 
states only explain the obstacles in eradicating micro-
organisms that successfully enter the blood stream and 
do not address the disproportionally higher incidence 
of enteric-derived systemic infections in these patients, 
unless there is a breach in the gut permeability in these 
patients.

Regulation of gut permeability
Gut permeability is a complex system provided by an 
anatomical barrier of the intestinal wall and a physiologi-
cal barrier closely linked to the intestinal microbiota and 
elements of the mucosal immune system [23]. The inter-
cellular space between enterocytes is sealed by tight junc-
tions (TJs) that regulate the flow of water ions and small 
molecules. TJs are composed of proteins such as claudins, 
occludin, and tricellin. A balanced intestinal microbiota 
community not only helps maintain the microbial home-
ostasis and immunologic tolerance, but also modulates 
the metabolic processes that influence the intestinal per-
meability. This can occur due to effects on the production 
of short chain fatty acids (SCFAs) that play an important 
role in enterocyte development [24, 25] or through bac-
terial factors that directly affect the development of TJs 
between enterocytes [26–34] (Fig. 1). Butyrate, a SCFA, 
promotes intestinal barrier function, increases trans-
epithelial electrical resistance and decreases inulin per-
meability [35, 36]. Reduced levels of butyrate occurred 
in mucosal tissue are associated with decreased histone 
acetylation and increased enterocyte apoptosis [36]. 
Indole metabolites produced from tryptophan by some 
enteric microbes also provide protection against entero-
cyte injury by modulating the host-microbe homeosta-
sis at the mucosal surface. Indole metabolites have also 
been found in mice to modulate incretin secretion from 
colonic L cells [37] and increases epithelial tight-junction 
resistance [38]. It is, therefore, not surprising that intes-
tinal dysbiosis may result in increased gut permeability 
and decreased enterocyte health and is implicated in the 
pathogenesis of extra-colonic diseases.

Factors causing intestinal dysbiosis in Africa
Diarrheal illnesses affecting intestinal microbiota 
compositions
Diarrheal illnesses are common in Africa and may 
impact the gut microbiome composition and lead to 
mucosal damage. Most of the diarrhea-related deaths 
in children are due to unsafe water, inadequate sani-
tation, and insufficient hygiene [39, 40]. Increased 
motility associated with diarrhea per se has also been 
found to alter the intestinal microbiome, characterized 
by striking difference in the stool and mucosal micro-
biotas, with Firmicutes being found predominantly on 
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the mucosa and Bacteroidetes in the stools [41]. It also 
results in relative shifts in the phyla Bacteroidetes and 
Firmicutes and to a relative increase in Proteobacteria 
on the mucosa, a finding commonly seen in inflamma-
tory bowel disease [41]. Frequent diarrheal illnesses 
that induce rapid colonic transit, worsened in some 
cases by mucosal inflammation induced by the infec-
tious agents, would not only cause mucosal damage but 
also changes in the intestinal metabolomics involved 
in normal enterocyte health and TJ formation.

Malnutrition affecting intestinal microbiota compositions
The African continent has a high prevalence of mal-
nutrition [42], and malnutrition has been linked to 
alteration in the gut microbiome. It is a major prob-
lem and sets up a vicious cycle of impaired immunity, 
increased risks for infections, and worsening malnutri-
tion, especially in children with SCD who already have 
chronic ill health due to SCD. Malnutrition affects the 
intestinal microbiota compositions [43] and may fur-
ther affect food intake metabolism. Balanced nutri-
tion is needed for enterocyte health [44] and impaired 
enterocyte development affects intestinal perme-
ability [43]. Malnutrition, therefore, not only affects 
immunity against infection, but also allows enhanced 
translocation of enteric bacteria into the systemic cir-
culation due to a breach of the intestinal barrier.

Malaria
NTS bacteremia overlaps significantly with malaria in 
Africa, both in terms of seasonality and affected age 
groups. Several studies have demonstrated parallel 
decreases in incidence of malaria and NTS bacteremia 
in the same geographical area over time [45]. For exam-
ple, a comparative study of the temporal trends of child-
hood malaria and NTS infection from two locations in 
the Gambia at three-time points between 1979 and 2005 
evaluated the percentage of malaria positive outpatient 
thick blood films and the percentage of admissions asso-
ciated with malaria over time. The estimated incidence of 
NTS infection at the coastal site fell from 60 (1979–1984) 
to 10 (2003–2005) cases per 100,000-person years and 
the proportion of outpatients with suspected malaria who 
were parasitemic fell in parallel from 33% in 1999 to 6% 
in 2007, and malaria-associated hospital admissions from 
14.5% in 1999 to 5% in 2007. At the second location, in 
the hinterland, the estimated incidence of NTS infection 
fell from 105 per 100,000-person years between 1989 and 
1991, to 29 in 2008 cases mirrored the drop in the preva-
lence of malaria parasitemia from 45% in 1992 to 10% in 
2008. These drops in the incidence cannot be explained 
purely by any change in healthcare since the incidence 
of pneumococcal bacteremia at both sites remained the 
same during these periods [46]. Many mechanisms have 
been proposed to explain how malaria causes suscepti-
bility to NTS, although the most consistent evidence is 

Fig. 1 Intestinal homeostasis provided by a balanced intestinal microbiota community. A balanced intestinal microbiota community helps 
maintain microbial homeostasis and immunologic tolerance, and modulate the metabolic processes that influence the intestinal permeability. An 
intact intestinal barrier is provided by an anatomical barrier of the intestinal wall and a physiological barrier linked to the intestinal microbiota and 
elements of the mucosal immune system. The space between enterocytes is sealed by TJs that regulate the flow of water ions and small molecules 
across the barrier. TJ development is maintained by SCFAs and indole metabolites produced by some intestinal microbes. However, TJ development 
can also be disrupted by the relative abundance of certain intestinal microbes. An intact intestinal barrier prevents the translocation of intestinal 
microbes, including NTS, across the barrier into the systemic circulation, thereby reduce the risks for systemic infections by the enteric microbes
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that malarial hemolysis creates conditions which favor 
bacterial growth, by increasing iron availability and by 
impairing neutrophil function [47], thereby preventing 
the effective eradication of NTS that successfully enter 
the systemic blood stream via the intestine. Whether or 
not malaria infections facilitate the entry of NTS into the 
blood stream remains speculative. There are two possible 
mechanisms whereby malaria infections enhance NTS 
translocation across the intestinal barrier. First, chronic 
malaria and parasitemia induces a state of anorexia and 
malnutrition that might affect healthy enterocyte devel-
opment [43] and balanced intestinal microbiota compo-
sition [43] needed to maintain gut permeability. Second, 
previous studies have found that malaria-infected eryth-
rocytes are sequestrated in various capillary beds [48] 
and induce local hypoxemia. In SCD patients, local tis-
sue hypoxemia is made worse by erythrocyte sickling 
induced by the sequestrated erythrocytes. The resultant 
hypoxemia will affect not only normal enterocyte devel-
opment, but also induce intestinal dysbiosis [49] that 
may impair TJ formation and the production of SCFAs 
needed for enterocyte health.

Human immunodeficiency virus infection
HIV is prevalent in Africa. Intestinal dysbiosis occurs 
frequently in HIV patients, especially before the initia-
tion of anti-retroviral therapy [50]. The consistent find-
ings in these patients include the depletion of Bacteroides 
and enrichment of Proteobacteria [51–53]. Bacteroides 
are associated with modulating intestinal inflammation 
and Proteobacteria with pro-inflammatory responses. 
Intestinal dysbiosis has been associated with increased 
microbial translocation and monocyte activation mark-
ers, and inferior disease outcome [54]. The increased 
microbial translocation suggests a breach in the intestinal 
permeability.

The effects of SCD on intestinal microbiota compositions
SCD per se is associated with intestinal dysbiosis. We have 
documented that pediatric and adult patients with SCD in 
the US showed altered intestinal microbiota compositions, 
with significantly lower abundance of Pseudobutyrivibrio 
and Alistipes in SCD patients compared to subjects with 
sickle trait [55]. These organisms negatively correlated 
with serum lactate dehydrogenase, a marker of hemolysis. 
We also found that Lachnoclostridium positively correlated 
with higher baseline hemoglobin and fetal hemoglobin and 
lower baseline C-reactive protein in SCD patients. The 
underlying cause for the dysbiosis is currently unclear, 
but is most likely due, at least in part, to the hypoxemia 
induced by recurrent sickling in the splanchnic vascula-
ture. Hypoxia alters intestinal microbiota communities 
[49]. There is indirect evidence supporting the occurrence 

of vaso-occlusive crisis in the splanchnic vessels and caus-
ing intestinal hypoxemia, e.g. the occurrence of ischemic 
colitis in SCD [56, 57]. The propensity for the splenic 
artery, part of the splanchnic vasculature, of children with 
SCD to develop atherosclerosis [58] further supports the 
notion that VOC occurs in the intestinal vasculature. The 
dysbiosis resulting from hypoxemia may, therefore, result 
in a breach in the gut permeability.

What is the evidence supporting increased gut 
permeability in SCD?
Previous clinical and laboratory studies have raised 
the concept of increased gut permeability in SCD. SCD 
patients have higher baseline total white cell counts than 
those with hemoglobin (Hb) AA phenotype [59]. Their 
neutrophils are also more likely to be activated, as shown 
by the higher expression of activation molecules, e.g. 
CD64 [60] and CD11b/CD18 [61], and elevated levels 
of soluble CD62L, a serum marker of in vivo neutrophil 
activation [60]. Neutrophils are pivotal in the initiation 
and propagation of VOC. In SCD mice, sickled erythro-
cytes more commonly adhered to activated neutrophils 
than to endothelium [62]. These immobilized neutrophils 
act as niduses for sickled erythrocytes to attach to and 
cause VOC. A study found that the quality and quantity 
of circulating aged neutrophils are regulated by Toll-like 
receptor (TLR) 2, TLR 4, and Myd88 [63]. Mice geneti-
cally engineered to not express TLR 2, TLR 4, or Myd88 
had lower numbers of circulating activated neutrophil. 
Furthermore, SCD mice treated with a combination of 
ampicillin, neomycin, vancomycin, and metronidazole 
had a decrease in the number of activated neutrophils 
and were protected from fatal tumor necrosis factor 
(TNF) α-induced VOC [63]. The most common cause for 
an increase in the number and activation of neutrophils 
is an innate immune response from the release of inflam-
matory cytokines following receptor recognition of path-
ogen-associated molecular patterns (PAMPs). TLR and 
Myd88 are well-recognized receptors for PAMPs [64, 65]. 
A compromised gut permeability that allows increased 
translocation of intestinal bacteria into the bloodstream 
where the microbes or their products encounter neutro-
phils [66] could explain why SCD patients have higher 
baseline levels of circulating aged neutrophils and could 
also explain the higher incidence and severity of iNTS 
among SCD patients compared to those without the dis-
ease in the African continent.

Proposed mechanisms for increased iNTS in African SCD
Based on the above considerations, we propose the fol-
lowing model for the initiation and entry of iNTS into the 
systemic circulation in SCD (Fig. 2). In the setting of an 
intact gut barrier, patients exposed to NTS are protected 
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from iNTS by an intact mucosa formed by healthy 
enterocytes maintained by indole metabolites, and by the 
presence of effective TJs between enterocytes promoted 
by normal intestinal microbiota and SCFAs. However, a 
combination of frequent diarrheal illnesses, malnutri-
tion, HIV, and malaria in some of these patients render 
a change in the intestinal microbiota. These factors are 
further worsened in patients with SCD whose gut bar-
rier has already been compromised due to the disease. 
As a result, the microbes capable of disrupting TJ forma-
tion are increased, causing a deficiency of TJs between 
enterocytes and an imbalance of the indole metabolites 
produced by the microbes. Changes in the composition 
of the intestinal microbiota also result in changes in the 
metabolomics and cause a reduction in the production 
of SCFAs. The consequences of a deficiency of SCFAs 
include reduced histone acetylation in the enterocytes, 
increased enterocyte apoptosis, and dysregulation of TJ 
formation. The combination of a subclinical damaged 
intestinal mucosa, due to increased enterocyte apoptosis 
and reduced indole metabolites, and an increased perme-
ability provides an optimal entry point for intestinal NTS 
to cause systemic diseases in these SCD patients.

Conclusions
Looking into the future
Patients with sickle cell disease in Africa are at higher risk 
for developing invasive non-typhoidal Salmonella infec-
tions, such as meningitis and osteomyelitis, than those 

without sickle cell disease in the same geographical loca-
tions or with sickle cell disease in developed countries. 
However, specific interventions to reduce the burden of 
disease continues to be hampered by poor understanding 
of the pathogenesis of the infections caused by these bac-
teria, which for the most part are commensals of the gut 
and only cause self-limiting gastrointestinal symptoms in 
developed countries. Understanding the epidemiology of 
the gut microbiome in the tropics will provide insights 
into new approaches for reducing the incidence of inva-
sive enteric bacterial infections. A breach in the intestinal 
permeability may play an important role in the patho-
genesis of invasive NTS infections in these patients since 
the portal of entry of the microbes into the systemic cir-
culating is the intestine. A breakdown in the gut barrier 
in these patients may occur due to intestinal dysbiosis 
induced by recurrent sickle cell vaso-occlusive crises in 
the splanchnic vasculature, frequent diarrheal illnesses, 
malaria, and malnutrition. Based on the mechanisms 
we have proposed here, since intestinal-protective effect 
may be conferred by the indole metabolites produced 
by intestinal commensal bacteria, it would be appropri-
ate to investigate the role of microbiota-based therapeu-
tic approaches in African SCD children to prevent iNTS. 
Restoration or preservation of intestinal commensal bac-
teria by probiotics or prebiotics, especially in African 
SCD children, may provide the bridge to reduce the inci-
dence of iNTS.

Fig. 2 Intestinal dysbiosis leads to a breakdown of the normal gut barrier. Due most likely to the intermittent hypoxia induced by recurrent 
vaso-occlusive crises of the splanchnic vasculature, patients with SCD often experience intestinal dysbiosis. However, frequent diarrheal illnesses, 
malnutrition, and malaria further worsen the intestinal dysbiosis that may result in changes in the compositions of the intestinal microbes disrupt 
TJ formation and reductions in the production of SCFAs that enhance TJ formation and enterocyte health, while reduce enterocyte apoptosis. 
Deficiencies of the indole metabolites produced by microbial metabolism of tryptophan, enterocyte health is further compromised. A breach in the 
intestinal barrier results in an increased in gut permeability, enhancing translocation of enteric NTS and other microbes to cause systemic infections
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Abbrevations
Hb: hemoglobin; HIV: human immunodeficiency virus; iNTS: invasive nonty-
phoidal Salmonella; NTS: nontyphoidal Salmonella; PAMP: pathogen-associ-
ated molecular patterns; SCD: sickle cell disease; SCFA: short chain fatty acid; 
TJ: tight junction; TLR: toll-like receptor; TNF: tumor necrosis factor; US: United 
States; VOC: vaso-occlusive crisis.
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