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REVIEW

The era of bioengineering: how will 
this affect the next generation of cancer 
immunotherapy?
Michele Graciotti1, Cristiana Berti2, Harm‑Anton Klok2 and Lana Kandalaft1,3*

Abstract 

Background: Immunotherapy consists of activating the patient’s immune system to fight cancer and has the great 
potential of preventing future relapses thanks to immunological memory. A great variety of strategies have emerged 
to harness the immune system against tumors, from the administration of immunomodulatory agents that activate 
immune cells, to therapeutic vaccines or infusion of previously activated cancer‑specific T cells. However, despite 
great recent progress many difficulties still remain, which prevent the widespread use of immunotherapy. Some of 
these limitations include: systemic toxicity, weak immune cellular responses or persistence over time and most ulti‑
mately costly and time‑consuming procedures.

Main body: Synthetic and natural biomaterials hold great potential to address these hurdles providing biocompat‑
ible systems capable of targeted local delivery, co‑delivery, and controlled and/or sustained release. In this review we 
discuss some of the bioengineered solutions and approaches developed so far and how biomaterials can be further 
implemented to help and shape the future of cancer immunotherapy.

Conclusion: The bioengineering strategies here presented constitute a powerful toolkit to develop safe and success‑
ful novel cancer immunotherapies.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
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Background
Since its first application in 1890 by William Coley who 
treated cancer patients with a mixture of killed bacteria 
observing complete remission in 10% of cases [1], can-
cer immunotherapy has “travelled” a long way, culminat-
ing in 2010 with the first personalized immunotherapy 
approved by FDA against prostate cancer [2]. However, 
despite its surprising progress, many hurdles still per-
sist that hamper success rates and wide applicability [3]. 
An anticancer immune response usually consists of an 
intricate network of events involving both innate and 
adaptive immune system first triggered by the uptake, 
processing and presentation of tumor antigens by antigen 
presenting cells (APCs), followed by T cell priming and 
activation and concluding with the infiltration of effector 

T cells to the tumor site where they exert their cytotoxic 
activity potentially leading to tumor clearance (Fig.  1). 
Although this is a spontaneous and natural occurring 
process, tumors usually develop various mechanisms 
in order to escape this immune response (e.g. antigen 
loss, release of immunoinhibitory signals in the tumor 
microenvironment and others), usually referred to as 
immunoediting [4]. Several therapeutic approaches act-
ing at different stages of the cancer immunity cascade 
have been developed over the years to overcome tumor 
immune escape. These can be classified in two: immuno-
therapies where cytokines or other immunomodulatory 
molecules are submitted to patients eliciting a cellular 
immune response in  vivo, or immunotherapies where 
immune cells are generated, stimulated and expanded 
ex vivo and then injected into patients. In this review we 
will describe the current challenges that these approaches 
present and how biomaterials and bioengineering could 
help solving central issues to advance and improve cancer 
immunotherapy.
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Immunomodulatory drug delivery
Chemotherapy is one of the most common therapies cur-
rently used for cancer treatment, however its application 
is often limited by large side effects linked to cytotoxic 
activity also on healthy tissues and cells, especially in 
patients already compromised by the disease. Although 
the use of cytotoxic drugs was traditionally thought to be 
immunosuppressive, this view is currently being changed 
by raising evidence [5]. One major factor to contribute in 
this sense is the so-called immunogenic cell death (ICD) 
which consists of the release of immunostimulatory mol-
ecules by cancer cells upon apoptotic cell death, lead-
ing to increased antigen uptake by dendritic cells (DCs) 
and immunization [6]. In recent years, to overcome 
side effects related to systemic administration, cancer 
drugs have been encapsulated in nanoparticles such as 
liposomes or poly(lactic-co-glycolic acid) (PLGA) nano-
particles (Fig.  2) and several are now FDA approved or 
being tested in clinical trials [7]. Nanoparticle encapsula-
tion ensures tumor delivery thanks to both high vascular 
permeability and poor lymphatic drainage of the diseased 
tissue, leading to passive accumulation of nanoparticles 
at the tumor site (so-called EPR effect: enhanced perme-
ability and retention effect) [8]. While the EPR effect has 
been shown to be effective in rodent models, translat-
ing this concept to the treatment of human cancers has 
proven more difficult [9]. Moreover, nanoparticles also 
provide increased drug stability due to shielding from the 
external environment, sustained release over time and 
increased local concentration. Interestingly, the impact 

of these approaches in the immunotherapy field is only 
starting to emerge very recently. A study by Zhao et  al. 
showed for example that delivery of oxaliplatin by PLGA 
nanocarriers [10] (NP-OXA) induced a stronger immune 
response both in  vitro (in co-culture assays of stimu-
lated DCs and T-cells) and in immunocompetent mice, 
compared to oxaliplatin alone (OXA). In particular, NP-
OXA-treated mice showed a higher proportion of tumor 
infiltrated lymphocytes (TILs), higher IFN-γ expression 
and increased tumor shrinkage compared to OXA treat-
ment alone [10]. These results show that encapsulation 
improved the drug immunogenicity by increasing ICD, 
thus leading to a more pronounced immune response. 
On the contrary, no significant differences were recorded 
between mice treated with gemcitabine alone or encap-
sulated, confirming that not all chemotherapeutic drugs 
and formulations are able to induce ICD or possess 
immunostimulatory effects [11]. To that point, it will 
be important in the future to extend the test of chemo-
therapeutic nanomedicines also in immunocompetent 
mice instead of just the standard immunodeficient mice 
model [12] in order to investigate a possible role of the 
immune system in the response and fully reveal thera-
peutic potentials.

A similar strategy of nanoparticle encapsulation is also 
currently being pursued for the delivery of cytokines to 
boost and sustain the immune response against cancer 
cells in a more direct manner. Cytokines play a crucial 
role in stimulating and regulating the immune response 
against antigens, but their use in the clinic has been 

Fig. 1 The cancer immunity cycle. Diagram illustrating the seven major steps involved in the generation of an immune response against cancer 
with main bioengineering approaches developed so far (in red). aAPCs artificial antigen presenting cells, APCs antigen presenting cells, NPs nanopar‑
ticles. Adapted from [171]



Page 3 of 16Graciotti et al. J Transl Med  (2017) 15:142 

Nanopar�cle Characteris�cs

Liposomes
Spontaneously-assembled bilayered membranes 
containing an aqueous core. They can entrap both 
hydrophobic and hydrophilic drugs, providing a 
biocompa�ble and non-toxic drug delivery system.

Synthe�c polymers 
(e.g. PLGA, g-PGA) biocompa�ble and FDA-approved; 
usually immunogenic, slow and sustained cargo 
release.

Natural polymers
(e.g. albumin, HLA) biocompa�ble, biodegradable, non-
toxic, usually low immunogenic. Monomers can vary in 
size which does not allow a strict control of the 
features. Can be easily produced by cross-linking.

Micelles
nanosized aggregated formed by self-assembly of 
amphiphilic, surfactant molecules in aqueous solu�on, 
able to encapsulate water-unsoluble drugs.

Dendrimers

highly branched, symmetrical molecular that are 
structurally perfect and monodisperse and which are 
obtained by step-wise synthe�c protocols via 
convergent or divergent strategies.

Gold nanopar�cle
Easily produced and highly stable; inert material; used 
in thermal therapy, in vivo imaging, and in radio-
sensi�za�on also in the clinic.

Carbon 
nanopar�cle

Offers mechanical s�ffness and chemical stability; 
selec�vely enter the lympha�c vessels rather than 
blood capillaries due to the molecular size and 
permeability; par�cularly suitable for biomaging and 
diagnos�c applica�ons as well as thermal therapy.

Quantum dots

Nanometer-sized crystals composed of 
semiconductors; mainly used for diagnos�c and 
fluorescence imaging thanks to the ability of 
mul�plexing (dis�nct excita�on and emission 
wavelengths).

Silica nanopar�cle
Non-toxic and biocompa�ble systems; easy to produce 
and func�onalize; are highly stable in a variety of 
environments.

Ion oxide 
nanopar�cle

Composed of magne�te or maghemite cores stabilized 
with a hydrophilic surface coa�ng; their magne�c 
proper�es allow controlled delivery through external 
magne�c fields.

Fig. 2 Nanoparticle classification and main characteristics. γ-PGA poly(γ‑glutamic acid), HA hyaluronic acid, PLGA poly(lactic‑co‑glycolic acid)
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greatly limited due to harmful side effects linked with 
their pleiotropic nature and often dual role in simultane-
ously stimulating and suppressing the immune response 
at different levels [13]. As for chemotherapeutic drugs, 
nanoparticle encapsulation offers a potential solution 
also in this context by providing target delivery at the 
tumor site, therefore avoiding systemic toxicity. Recently, 
several groups have tested the delivery of IL-12 loaded 
on chitosan nanoparticles either as a recombinant pro-
tein [14, 15] or as encoding DNA for gene therapy [16], 
obtaining promising results. IL-12 is a powerful, proin-
flammatory cytokine that enhances  TH1 cell differentia-
tion, proliferation of activated T cells and natural killer 
(NK) cells and cell-mediated immunity [17]. Zaharoff 
et  al. reported that IL-12/chitosan nanoparticles were 
superior to IL-12 alone in terms of overall survival and 
cytokine production in a mouse model of bladder cancer, 
further inducing 100% protection to tumor rechallenge 
in previously cured mice, lasting lymphocytic infiltra-
tion and a tumor-specific adaptive immune response [14, 
15]. Significant results in terms of cytokine production 
and positive therapeutic outcome in mice have also been 
recorded with nanoparticle-mediated IL-12 gene therapy 
[16]. In addition, nanoparticle encapsulation has been 
reported for IL-2 [18–20], IL-15 [21], IL-10 siRNA [22], 
GM-CSF [23, 24], and the toll-like receptor (TLR) ago-
nists CpG oligodeoxynucleotides (CpG-ODN) [25–27] 
and Poly I:C [28, 29], with positive outcomes in mouse 
models (Table 1). All these studies collectively confirmed 
the previous assumption that nanoparticle formulations 
are safer and induce better therapeutic effects than their 
free-soluble counterparts due to controlled local admin-
istration and higher concentration at the tumor site in 
virtue of the EPR effect. This innovative approach opens 
therefore a new scenario where immunomodulatory 
agents previously discontinued due to toxicity could be 
potentially reconsidered, improved by encapsulation and 
tested for future cancer immunotherapy. On the other 
hand, also treatments discarded due to low efficacy could 
be revisited and implemented in new biomaterials for-
mulations [30]. Interestingly, a novel approach combining 
delivery of both cytotoxic drugs and cytokines through 
nanoparticles is also being pursued. The rationale here 
is of a “two-hit” strike to cancer cells: a “first-hit” due to 
the drug cytotoxic effect leading to cell apoptosis, activa-
tion of APCs and subsequent triggering of an immune 
response, and a “second-hit” which improves and sus-
tains such immune response through the cytokine/TLR 
agonist action [10]. An example of this approach is the 
administration of lipid-coated cisplatin nanoparticles 
(LPC) followed by CpG-encapsulated liposomes 1  day 
after in a melanoma mouse model. Results showed that 

the combination treatment was far superior than both 
single mono-therapies in terms of controlling tumor 
growth, IFN-γ production, favourable cytokine profile 
and immunological memory [31]. Another study used a 
sequential administration of hyaluronic acid-paclitaxel 
complex followed by two types of PLGA nanoparticles 
loaded respectively with CpG-ODN and IL-10 siRNA 
also showing effective and synergistic results [32]. Other 
studies in a mouse model successfully used instead simul-
taneous co-delivery of chemotherapeutic drugs and 
immunomodulatory agents loaded in the same nanopar-
ticle (Table 1) [33, 34].

Concerning clinical work, several nanoparticles encap-
sulating chemotherapeutic drugs have been approved 
by FDA or are currently being tested in clinical trials for 
various types of malignancies; these include: liposomal 
doxorubicin [35–38], daunorubicin [39–43], irinotecan 
[44], vincristine [45–48] and albumin-bound paclitaxel 
(nab-paclitaxel) [49–52]. Despite this, clinical studies 
in combination with immunotherapy regimens are only 
slowly starting to emerge. One recent Phase I study inves-
tigated the combination of nab-paclitaxel with immuno-
therapy (co-administration of soluble IL-2 and IFN-α) in 
metastatic melanoma, but the study failed to identify the 
maximum tolerated dose due to recorded toxicity at the 
lowest concentration tested and also the limited num-
ber of patients enrolled (10) [53]. On the other hand, a 
Phase Ib study in metastatic triple-negative breast cancer 
patients confirmed the safety and the therapeutic benefit 
of a combination of a checkpoint inhibitor (anti-PD-L1: 
atezolizumab) with nab-paclitaxel, setting the basis for an 
ongoing Phase III clinical trial [54]. Finally, another Phase 
I study in recurrent ovarian cancer provided evidence for 
safety and biological activity of pegylated liposomal dox-
orubicin in combination with interleukin-18 [55]; similar 
positive outcomes were also reported for a combination 
of liposomal doxorubicin, anti-IL6-receptor antibody and 
IFN-α [56].

In light of these studies, it is clear that further work 
will be needed in the future to establish what the best 
encapsulation and administration strategies are (e.g. co-
encapsulation and co-delivery versus sequential adminis-
tration) as well as to identify the best drug combinations. 
To help the clinical translation the different formulations 
should also be tested in more sophisticated systems such 
as immunocompetent and/or humanized mouse models 
[57]. Finally, nanotherapies previously tested in humans 
(i.e. nab-paclitaxel) should be further investigated in 
combination with immunostimulatory agents (e.g. inter-
leukins, checkpoint inhibitors, etc.) with and/or without 
encapsulation to potentially improve therapeutic out-
comes [58].
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Adoptive T cell therapy
Adoptive T cell therapy (ACT) consists of the isolation 
of autologous tumor specific T cells from the patient’s 
peripheral blood or tumor biopsies, followed by ex vivo 
expansion and patient re-infusion to elicit an anti-cancer 
immune response [59]. Alternatively (especially for those 
type of cancers where cancer-specific T cells are less 

spontaneously occurring), T cells can be expanded from 
patient-genetically modified T cells expressing a tumor-
specific T Cell Receptor (TCR) or a chimeric TCR com-
posed of a synthetic antigen-binding Ig domain fused 
with TCR signalling components, called CAR receptor 
[60]. Despite promising results yielded in clinical trials 
for melanoma [61–63] and other cancer types [64–66], 

Table 1 List of recent studies investigating nanoparticle-mediated delivery of immunomodulatory agents

DOX doxorubicin, HA hyaluronic acid, LPS bacterial lipopolysaccharide, PEG polyethylene glycol, PEI polyethylenimine, PLGA poly(lactic-co-glycolic acid), PPS 
poly(propylene sulphide), PS polysaccharide, TIL tumor infiltrating lymphocytes
a Compared to free soluble agent, when applicable

Carrier Agent Model system Outcomea References

mPEG‑PLGA Oxaliplatin Pan02 pancreatic cancer mouse model Increased TIL levels, increased IFN‑γ 
production

[10]

Chitosan IL‑12 MB49 bladder tumor mouse model Induced antitumoral activity and  TH1 
cytokine expression

[14]

Chitosan IL‑12 MB49 and MBT‑2 bladder tumor mouse 
models

100% protection to tumor rechallenge in 
previously cured mice

[15]

Liposome Cisplatin CpG B16–F10 melanoma mouse model Tumor clearance, long‑term protection, 
 Treg downregulation

[31]

Nanodiamond CpG B16–F0 melanoma and 4T1 breast cancer 
mouse models

IL‑12 production and tumor shrinkage [25]

PEI IL‑2 plasmid B16–F1 melanoma mouse model Reduced tumor growth, prolonged sur‑
vival, increased TIL tumor infiltration

[18]

Chitosan IL‑2 plasmid BALB/c mouse inoculated with WEHI‑164 
in vitro transfected cells

Tumor mass volume decrease [162]

Hydroxyethyl starch IL‑2 C57BL/6 mouse model;  Rag2−/−γc−/− mice 
reconstituted with human  CD4+ T cells

In vivo T cell specific uptake [20]

Nanolipogel IL‑2 and TGF‑β inhibitor B16‑F10 melanoma mouse model Increased survival
Increased  CD8+ T cells tumor infiltration

[19]

Polylactic acid IL‑12, IL‑18, TNF‑α alone 
or in combinations

4T1 breast cancer mouse models IL‑12 and TNF‑α combination was the 
best condition for controlling tumor 
growth

[163]

PLGA‑PEI CpG, IL‑10 siRNA A20 B‑cell lymphoma mouse model Improved  TH1/TH2 cytokine expression 
ratio, Increased survival

[22]

HA
PLGA
PLGA

Paclitaxel
CpG
IL‑10 siRNA

B16–F10 melanoma mouse model Tumor growth inhibition
High  TH1/TH2 cytokine expression ratio

[32]

PPS CpG E.G7‑OVA and B16F10 mouse model Enhanced  TH1 cytokine secretion and 
protection to tumor rechallenge

[26]

silica GM‑CSF In vitro Increased macrophage proliferation [24]

Zinc oxide Poly I:C B16–F10 mouse melanoma model suppressed tumor cell growth [28]

PS Poly I:C C57BL/6 mouse model High IL6 production; tnfa, il15, il18, mip3a, 
and ip10 mRNA upregulation

[164]

PLGA Paclitaxel LPS B16–F10 mouse melanoma model Increased TIL levels and tumor regression [33]

Pyridyl disulfide Paclitaxel or CpG B16–F10 mouse melanoma model Slowed tumor growth, increased  CD8+/
CD4+ T cell ratio

[27]

Albumin Paclitaxel Phase I studies Combination with IL‑2, IFN‑α, cisplatin 
and temozolomide was too toxic; 
combination with atezolizumab was 
well tolerated

[53, 54]

Liposome DOX Phase I study Combination with IL‑18 is safe and bio‑
logically active

[55]

PEG‑liposome DOX Phase I study Functional IL‑6R blocking with tocili‑
zumab is feasible and safe in combina‑
tion with PEG‑liposomal DOX

[56]
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ACT still suffers from important drawbacks and chal-
lenges that limit its widespread use. Some of the major 
limitations include: (1) the time-consuming and costly 
procedure of ex  vivo cell expansion which requires 
5–6 weeks and specific equipment (e.g. bioreactors), (2) 
T cell persistence and functionality after infusion which 
usually necessitate administration of survival factors, and 
(3) systemic toxicity. Bioengineering approaches have 
recently tried to solve those issues by employing bioma-
terials in different ways. One successful strategy devel-
oped by Irvine and colleagues (so far in mouse models) is 
to conjugate nanoparticles loaded either with stimulating 
factors (IL-15 and IL-21) [67] or an immunosuppression-
blocking drug (NSC-87877) [68] directly on the surface 
of expanded T cells, prior to infusion. Interestingly, this 
strategy enabled the local delivery of immunomodula-
tory agents at high concentration that sustained T cell 
proliferation and effector function with greatly increased 
therapeutic advantages and minimized toxic effects com-
pared to systemic infusion [67, 68]. In a follow-up study, 
nanoparticles were decorated with T cell targeting anti-
bodies and used to stimulate ACT cells in  vivo instead 
of ex  vivo prior to infusion [69]. This approach has the 
advantage of enabling multiple rounds of stimulation 
by repeated nanoparticle injections rather than a single 
stimulation step ex  vivo. In particular, T cell targeting 
was achieved using either an ACT-T cell specific surface 
antigen (Thy1.1) to restrict targeting only to ACT cells, or 
IL-2 which would target less specifically the whole T cell 
compartment but with the advantage of providing also a 
stimulating signal. Results showed successful targeting 
efficiency of ACT cells with low binding to endogenous 
T cells in both cases; however IL-2-loaded nanoparticles 
were also able to induce repeated waves of ACT T cell 
expansion in tumor-bearing mice upon multiple injec-
tions, thanks to IL-2 signalling. Based on this proof-of-
concept, current work is focusing now on loading drugs 
and immunomodulatory molecules on these T-cell tar-
geting nanoparticles to further improve ACT therapeutic 
efficacy [69].

Concerning CAR T cells, a very recent breakthrough 
study explored the possibility to programme T cell in situ 
with the injection of DNA-carrying nanoparticles [70]. 
In particular, these nanoparticles were coated with anti-
CD3 antibodies to target the T cell compartment and 
loaded with DNA encoding for a leukaemia-specific 
CAR T cell receptor. Tests in an immunocompetent leu-
kaemia murine model showed correct T cell transduc-
tion and proliferation, leading to disease regression with 
an efficacy comparable to conventional adoptive CAR 
T cell therapy as well as reporting general safety with-
out any systemic toxicity [70]. Such an approach is very 
promising since it circumvents the need to isolate and 

manipulate T cells ex  vivo, an aspect linked with the 
major hurdles of current ACTs (see above) and it should 
be therefore further investigated in the future for other 
cancer types as well as considered for clinic translation. 
Another explored route to improve current ACTs is the 
employment of artificial antigen presenting cells (aAPCs) 
to stimulate T cell expansion. To provide appropriate sig-
nalling, aAPCs must present on their surface a peptide-
MHC complex that binds to the TCR (signal 1) and a 
CD28 antibody to provide co-stimulatory signalling (sig-
nal 2); in addition they could also provide adjuvants such 
as IL-2, IL-15 or IL-21 to further sustain T cell expan-
sion (signal 3) [71]. aAPCs offer the advantage of avoid-
ing the need to generate patient-specific DCs to stimulate 
tumor-specific T cells either ex vivo or in vivo as well as 
providing a versatile and cost-effective platform for T cell 
stimulation and expansion. On the other hand, a major 
disadvantage is the surface rigidity that fails to recapitu-
late the dynamic changes of the APC surface upon T-cell 
interaction. Important breakthroughs have been made 
recently in this field, thanks to the employment of bio-
materials, substantially contributing to improve aAPC 
efficacy. Initial studies demonstrated that polymer-based 
nanoparticles were much less efficient than microparti-
cles in inducing in vitro T cell functional responses (with 
notably no proliferation) suggesting that micron-sized 
beads, which are close in size to T cells, provide optimal 
T-cell stimulation [72]. However, Perica et  al. recently 
reported a nano-sized aAPC platform based on either 
iron-dextran paramagnetic nanoparticles or quantum dot 
nanocrystals both able to induce antigen specific-T cell 
proliferation and tumor shrinkage in a melanoma mouse 
model [73]. This discovery constitutes a critical improve-
ment for aAPCs in  vivo applications since, contrary to 
micro-sized particles, nano-sized ones are able to pas-
sively drain to lymph nodes [74] where they could gain 
access to a large pool of T cells to prime, making them 
more suitable and efficient for in vivo administration. The 
same group has also recently developed aAPC magnetic 
nanoparticles conjugated to CD28-antibody and MHC-I-
tumor antigen complexes as a strategy to isolate tumor-
specific T cells from peripheral blood using magnetic 
columns, followed by ex vivo expansion [75]. The enrich-
ment step was used to remove unspecific T cells that 
would compete with tumor-specific T cells for growth 
factors and decisively improved the antigen-specific cell 
fold expansion both in  vitro and in  vivo after transfer. 
Other important improvements came from using ellip-
soidal micro-particles instead of spherical ones in order 
to decrease the surface curvature and therefore increase 
the area available for T-cell contact [76] highlighting the 
importance of not only the stimulating signals, but also 
the geometry and design of aAPCs to provide a successful 
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stimulation. In light of this, it will be important in the 
future to also explore alternative geometries to mimic for 
example membrane protrusions or lamellipodia that are 
involved in T cell-APC interactions [77], in an attempt 
that will stimulate both the cancer immunotherapy and 
the bioengineering fields providing future synthetic chal-
lenges [78]. Finally, while up to now aAPCs have been 
prepared by randomly distributing ligands on their sur-
face, recent studies suggest that the juxtaposition and the 
relative positions of signal 1 and 2, as well as their surface 
density [79, 80], are also important to efficiently stimu-
late T cells [78]. For example, using planar arrays it was 
shown that the presence of anti-CD28 at the periphery of 
the T cell contact site increased IL-2 secretion by CD4 T 
cells compared with having these signals combined in the 
center of the synapse [81]. The need to precisely control 
the pattern and distribution of ligands constitutes there-
fore another challenge for future bioengineering syn-
thetic approaches.

Cancer vaccines
Therapeutic cancer vaccines consist of using cancer 
antigens to pulse dendritic cells either in vivo or ex vivo 
followed by administration to patients to induce a can-
cer-specific immune response. These vaccines are thera-
peutic rather than preventive, since they are designed 
to treat a disease, which is already in course. The first 
attempts in this sense were injections of autologous 
tumor cells or tumor specific proteins administered 
alone or with an adjuvant [82–84], while more recently 
an alternative strategy has been developed by stimulat-
ing directly dendritic cells ex  vivo with tumor associ-
ated or specific antigens (TAAs, TSAs) or whole tumor 
lysate (WTL) which are then re-infused into patients; this 
with the advantage of manipulating DCs during pulsing 
and activation to further improve their immunogenicity 
[85]. To this aim, dendritic cells can be obtained ex vivo 
by isolating monocyte precursors from peripheral blood 
followed by incubation with specific growth factors and 
cytokines such as GM-CSF, IL-4, IL-3, Flt3 ligand and 
c-Kit [86]. A great limitation of using TAAs is that the 
antigen(s) used has to be first identified and character-
ized which is not always possible for all types of cancers 
and it often requires extensive procedures. Moreover, 
there is also the possibility of immune escape by anti-
gen loss from cancer cells [87]. Alternatively, DCs have 
also been pulsed with autologous WTL obtained from 
patient’s cancer cells by irradiation or cycles of freezing 
and thawing with the advantage of using a much larger 
pool of potential antigens and also avoiding the need 
for antigen identification [88–91]. Our group recently 
reported that HOCl oxidation of WTL prior to DCs 
ex vivo pulsing and maturation increased the uptake and 

presentation as well as improving the therapeutic out-
come in an ovarian Phase I clinical trial [92, 93]. Another 
approach to increase immunogenicity of the lysate is to 
use heat, allowing increased production of heat shock 
proteins that further activate the immune response. 
This approach was tested in a pancreatic cancer mouse 
model with promising results [94]. Nonetheless, gen-
erating and activating DCs ex  vivo is a time-consuming 
and costly procedure that can be potentially overcome 
using biomaterial vectors to deliver antigen(s) in situ. In 
recent years bio- and synthetic materials such as hydro-
gels, liposomes, matrices and nanogels which have the 
common feature of being biocompatible and non-toxic 
have been tested for the delivery of tumor antigen(s) in 
micro and nanoparticles in a great variety of combina-
tions of different building blocks, antigens, adjuvants and 
targeting molecules (Table 2) [95]. Among these, due to 
their high biocompatibility and easy approval, liposomes 
have been largely explored and have also been tested in 
the clinic. Unfortunately, while certain formulations have 
shown discrete success in Phase I [96–100] and II trials 
[101, 102] showing good tolerance and survival improve-
ment, Phase III trials have been less successful reporting 
limited benefits (BLP25 [103]) or failed to meet study 
endpoints (Allovectin-7 [104], product discontinued; 
Table  2). A major drawback of liposomes is their very 
short half life in the body and rapid clearance that lim-
its the time frame in which they are active, a feature that 
could well be at the base of their reported failures [105]. 
A possible solution to this problem could be potentially 
offered by the implementation of Poly(lactic-co-glycolic 
acid) or PLGA in nanovaccine formulations. PLGA 
offers the advantage of being itself an immunostimulat-
ing agent, contributing therefore to the overall immune 
stimulation process rather that just acting as an inert car-
rier as well as being characterized by longer persistence 
in the human body and slow cargo release [105]. Several 
types of antigens such as proteins (e.g. ovalbumin (OVA) 
[106, 107], peptides (e.g.  Hgp10025–33;  TRP2180–188) [108, 
109] and WTLs [110–113] have been encapsulated in 
PLGA nanoparticles and tested in in vitro systems and/
or in mouse models showing positive outcomes in terms 
of efficient antigen delivery and elicited tumor-specific T 
cell responses. However none of these different formula-
tions have been tested in humans yet. Another biopoly-
mer tested in the clinic for cancer vaccine delivery is 
cholesteryl pullulan. Phase I trials in esophageal [114] 
or HER2-expressing [115, 116] cancer patients were 
carried out delivering well established cancer antigens 
(NY-ESO-1 protein and HER2 fragment, respectively) 
reporting good tolerance and the occurrence of antigen 
specific immune responses, while no Phase II or III tri-
als appeared so far in the literature to our knowledge. 
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Table 2 List of recent studies investigating nanoparticle-mediated delivery of tumor antigen(s) either alone or in combi-
nation with adjuvant(s)/DC-targeting moieties for cancer therapeutic vaccination

Carrier Loaded with Study type Outcomea References

Liposome Hsp70 peptide complex Breast cancer mouse 
model

Enhanced immune response [165]

Liposome MUC1 peptide, TLR4 
ligand

Phase I–II–III studies Phase I studies: vaccine was well tolerated; phase II study in 
NSCLC: survival improvement; Phase III study in NSCLC: only 
improvement observed was in concurrent chemoradiother‑
apy with a 10.2 month improvement in median survival

[96, 97, 101, 103]

Liposome HLA‑B7 and 
β2‑microglobulin DNA

Phase II‑III studies Phase II study in metastatic melanoma had a positive outcome, 
but phase III study failed and product is currently discontin‑
ued

[102, 104]

Liposome NY‑ESO‑1, MAGE‑A3, 
tyrosinase and TPTE 
RNA

Phase I study Positive outcome in all 3 patients tested. Recruitment of more 
patients is currently undergoing

[98]

Liposome Mix of different peptides Phase I study Phase I trial positive outcome, with induced de novo and 
specific T cell response

[99, 100]

Liposome SOCS1, A20 siRNA Mouse lymphoma model Drastic enhancement in cytokine production resulting in 
significant tumor suppression

[166]

Liposome E7 HPV TC‑1 lung mouse model Induced specific  CD8+T cell response and  Treg inhibition [167]

Liposome OVA, TLR3/9 ligands C57BL/6 mouse model Increased  CD8+ T cell response [123]

γ‑PGA/Pol‑
ylysine

Empty or ovalbumin C57BL/6 mouse model Comparative study: PGA has intrinsic immunogenic properties 
and induced a stronger immune response than polylysine 
when both loaded with ovalbumin

[160]

γ‑PGA Ovalbumin C57BL/6 mouse model γ‑PGA immunogenic properties are TLR4 signalling‑dependent [168]

Cationic 
polymers 
(PE/C32)

CD40 ligand DNA, 
CpG + poly(I:C)

B16‑F10 melanoma 
mouse model

Comparative study: C32 polimer was superior to PE. TLR 
ligands had a synergistic effect in triggering immune 
response

[124]

PLGA WTL In vitro Co‑culture of patient TILs with patient DCs pulsed with 
autologous WTL‑NPs resulted in higher IFN‑γ and lower IL‑10 
production compared to soluble WTL

[110, 111]

PLGA WTL, CpG, polyI:C TRAMP mouse model Induced CTL response and tumor shrinkage [112]

PLGA WTL In vitro Increased T cell proliferation [113]

PLGA Ovalbumin TLR3/7 
ligands; CD40, CD11c, 
or DEC‑205 ab

C57BL/6 mouse model NP coating with targeting molecules (CD40, CD11c or DEC‑205 
antibodies) induced a stronger immune response

[106]

PLGA Ovalbumin, mannose C57BL/6 mouse model Decoration of ovalbumin‑NPs with mannose moieties 
increased the efficiency of ovalbumin‑specific  CD4+ and 
 CD8+ T cell responses

[107]

PLGA TRP2180–188; TLR‑4 ligand B16‑F10 melanoma 
mouse model

Immune stimulation in the tumor microenvironment, induc‑
tion of antigen‑specific  CD8+ response

[108]

PLGA Hgp10025–33  TRP2180–188 C57BL/6 mouse model Increased antigen‑specific T cell response [109]

Cholesteryl 
pullulan

HER2 fragment; NY‑
ESO‑1 protein

Phase I studies Vaccine was well tolerated and induced antigen‑specific 
immune responses

[114–116]

Chitosan Ovalbumin, alginate In vitro Sugar‑coated NP induced higher IFN‑γ production in co‑
culture assays

[169]

Chitosan WTL, mannose B16 melanoma mouse 
model

Increased tumor growth inhibition [117]

BSA/pyri‑
dine

Ovalbumin In vitro This type of nanogel had intrinsic adjuvant properties [170]

Nanogel Ovalbumin, galactose B16‑OVA mouse model (pH‑sensitive system) cytosolic antigen release; ROS produc‑
tion and increased MHC‑I antigen presentation

[133]

γ-PGA poly(γ-glutamic acid), BSA bovine serum albumin, NP nanoparticle, NSCLC non-small-cell carcinoma, PLGA poly(lactic-co-glycolic acid), TLR toll-like receptor, 
TRAMP transgenic adenocarcinoma of the mouse prostate, WTL whole tumor lysate
a Compared to free soluble agent, when applicable
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Among other materials, chitosan also showed promising 
results for future translational applications. Chitosan is a 
cationic polysaccharide able to elicit an adjuvant innate 
immune response, like PLGA, further triggering DCs 
maturation. A recent study showed for example that sub-
cutaneous injections of these NPs loaded with WTL in 
mice induced a specific cytotoxic T cell (CTL) response 
and reduced tumor size compared to control groups 
[117]. In an attempt to further improve particle uptake, 
DC-targeting and DC-maturation, several studies have 
used nano- or microparticles coated with DC-targeting 
ligands such as anti-CD40 [106, 118], anti-DEC-205 [106, 
119, 120], anti-SIGN [121, 122], carbohydrates [107, 122] 
and/or TLR agonists [112, 123, 124] (Table  2). Collec-
tively, results from all these studies confirmed the previ-
ous assumption that particle coating (or encapsulation in 
the case of TLR agonists) indeed improves DC matura-
tion, antigen internalization and presentation, inducing 
a stronger immune response compared to non-targeted 
nanovaccines or free antigen(s) in mouse model systems. 
Few comparative studies were also able to identify better 
formulations over others (e.g. uptake of SIGN-antibody 
coated-nanoparticles was more efficient that carbohy-
drates-coated ones [122]; or, in another study, coating 
with CD-40 ligand was superior to DEC-205 or CD11c in 
terms of uptake [106]), even though a systematic classifi-
cation and comparison is still lacking.

Another direction in which nanovaccine research has 
recently focused on is the development of pH-sensitive 
nanoparticles. These nanoparticles, once internalized, are 
able to disrupt endosomes leading to antigen(s) release in 
the cytosol, a process known to promote cross presenta-
tion by DCs and enhance CTL over humoral response 
[125]. This approach has been successfully attempted 
with different biomaterials including liposomes [126–
128], hydrogels [129], micelles [130, 131] and synthetic 
polymers [132]. Overall, all these studies used nano-
assisted delivery of OVA in mice as a model system and 
showed positive results including increased MHC-I anti-
gen presentation and induction of OVA-specific  CD8+ 
T cell response. Furthermore, a recent study using a pH-
sensitive galactosyl dextran-retinal (GDR) nanogel for 
OVA encapsulation was able to show that the lysosome 
rupture triggered by nanoparticles could directly induce 
reactive oxygen species (ROS) production in DCs, aug-
menting proteasome activity and downstream MHC I 
antigen presentation [133]. These interesting results sug-
gest therefore that pH-sensitive nanocarriers constitute a 
very promising scaffold for future translational work.

In conclusion, a great variety of scaffolds, materials 
and antigens have been tested for cancer vaccine deliv-
ery alone or in combination with specific surface recep-
tors, and adjuvants that can improve DC-targeting and 

maturation. Despite these efforts achieved important 
results, further comparative studies are needed in order 
to understand which are the most promising and suit-
able biomaterials and to identify the best combinations 
of antigen(s), adjuvants and targeting molecules to obtain 
the best immune response. Enhancement of cross pres-
entation by cytosol localization of the antigen(s) plays 
also a significant role in terms of  CD8+ T cell polariza-
tion and should be studied and exploited in-depth in the 
future. Finally, tests in more complex systems that better 
represent human settings (e.g. humanized mouse mod-
els) [57] and for the delivery of epitopes more clinically 
relevant (e.g. other than OVA) or more immunogenic 
(e.g. oxidized WTL [92, 93] or heated lysate [94]) will 
help in translating these strategies into the clinic as well 
as potentially achieving better therapeutic outcomes.

Circulating tumor cells isolation and detection
Circulating tumor cells (CTCs) are cancer cells that shed 
from the tumor primary site and after entering the blood-
stream extravasate and arrest at a second distal site to 
initiate cancer metastasis [134]. Despite their first report 
dates back to 1869 [135], a great amount of interest 
towards CTCs and their use as predictive biomarkers for 
cancer metastasis has only emerged in the last two dec-
ades. This is mainly due to the technical challenges linked 
with detecting and isolating very rare cells (usually one 
in  106–109 hematologic cells [136]) which are also often 
highly heterogenic [137–139]. Several bioengineering 
solutions have been recently developed addressing these 
issues. One common strategy employs magnetic nano-
particle coated with specific ligands targeting CTCs (e.g. 
anti-EpCAM) that enables CTC separation and enrich-
ment from blood samples by simply applying a mag-
netic field [136]. Other isolation techniques rely on Au 
nanoparticles, quantum dots, graphene or dendrimers 
coated with different CTC-targeting moieties such as lec-
tins, tumor antigens or aptamers and have already been 
extensively reviewed elsewhere [140–142]. Despite great 
advances in biomaterial formulations for the detection 
and isolation of CTCs, their therapeutic implications have 
been largely unexplored yet, especially in the immuno-
therapy field. CTCs can be in fact isolated with a “simple” 
blood test (often referred to as liquid biopsy), contrary to 
solid tumors which require invasive surgery, and consti-
tute a precious tool to assess genotypic and phenotypic 
features at a personalized level [143]. For example, CTCs 
genotyping and phenotyping could be potentially used 
to inform cancer vaccination strategies permitting the 
identification in real time of present antigens or, on the 
opposite, of antigen-loss due to selective pressure. On the 
other hand, isolated CTCs could constitute also a poten-
tial source of antigens to pulse autologous dendritic cells 



Page 10 of 16Graciotti et al. J Transl Med  (2017) 15:142 

for personalized cancer vaccine formulations. Analogous 
strategies have been recently applied to instruct chemo-
therapeutic regimens such as HER2-receptor antagonists 
in breast cancer patients. Surprisingly, in several cases 
HER2 was detected in CTCs in metastatic patients that 
were previously negative at original diagnosis at the pri-
mary tumor site [144–146] and in one particular study 
three over four of these patients treated with anti-HER2 
therapy (trastuzumab) showed evidence of complete or 
partial response [145]. These examples, besides demon-
strating the heterogeneity and the dynamic nature of can-
cer, illustrate also the critical role that CTCs could play in 
guiding therapeutic efforts [147]. Thus, we envisage that 
in the future new studies will appear linking CTCs analy-
sis and detection with immunotherapy. However, the suc-
cess of these future approaches will rely in the high yield 
isolation of CTCs in a viable form. To this aim, several 
proof-of-concept studies showed the possibility to isolate 
CTCs from leukapheresis products, in order to screen 
blood volumes much larger (~10 L) than the commonly 
used for CTCs analysis (5–10  mL) [148–150]. Alterna-
tively, other groups are developing implantable scaffolds 
that are able to capture and trap CTCs which could be 
subsequently recovered and analyzed [151, 152]. In 
addition to this, the material could also be seeded with 
cells, or adjuvants to modulate the immune environ-
ment within the scaffold [152]. Ongoing work is focus-
ing in further developing these proof-of-concept studies 
towards translational applications. It should also be noted 
that developments in CTCs sequestering and elimination 
will be immensely powerful in fighting cancer, consider-
ing that 90% of cancer mortality is caused by metastasis 
[153]; hence efforts in this direction could be potentially 
extremely rewarding.

Route of administration
One of the crucial aspects for a successful nanotherapy is 
the route of administration which should ensure both tar-
geted delivery of the regimen at its active site (this being 
for example the tumor site or the lymph nodes) combined 
with as few as possible collateral effects and invasiveness. 
Regarding those formulations that target the tumor site, 
several studies applied intratumoral or peritumoral injec-
tion of nanoparticles loaded with immunostimulatory 
molecules (such as: IL-12 [154], IL-15 superagonist [155], 
IL2 and TGF-β [19] among others) with positive out-
comes, reporting the initiation of an immune response in 
tumor-bearing mice. Interestingly, one particular study 
demonstrated how intratumoral injection of liposomes 
carring anti-CD137 and IL-2 enabled an otherwise lethal 
treatment (compared to soluble anti-CD137 and IL-2) 
[156]. Although intratumoral injection ensures high local 
drug concentration and targeted delivery, a lot of studies 

apply more straightforward intravenous or subcutaneous 
injections and exploit instead the above mentioned EPR 
effect to passively accumulate the cargo at the tumor site. 
However, raising evidence suggests that the EPR effect 
works in rodents but not in humans (probably due to 
the large differences in tumor-to-body weight ratio and 
differences in the tumor microenvironment, between 
murine models and human cancers) [9], a fact that 
should be taken into careful consideration for clinical 
translation. In particular, this issue could potentially be 
solved by coating the surface of nanocarriers with ligands 
targeting receptors overexpressed by cancer cells (e.g. 
transferrin, folate, epidermal growth factor or glycopro-
teins receptors [157]) allowing therefore a more focused 
and active targeting.

Regarding formulations that target instead lymph 
nodes (e.g. cancer vaccines), nanocarriers can be admin-
istered either parentally (intramuscularly or subcutane-
ously, as in the majority of the studies), or intranodally. 
In the former case, the size of the nanoparticle is crucial 
in determining the mechanism of trafficking to the lymph 
nodes. In fact, while smaller particles (<200 nm) are able 
to passively drain through lymphatic system to finally 
reach the lymph nodes, larger particles cannot and have 
to be first engulfed by peripheral DCs which then migrate 
from the injection site to the lymph nodes [74]. On the 
other hand, the intranodal injection, although more tech-
nically challenging and invasive, ensures direct delivery 
and accumulation at the lymph node enabling the use of 
also microparticles which, contrary to nanoparticles, are 
able to persist longer at the lymph node releasing their 
cargo in a more prolonged and sustained fashion [158].

Finally, in an effort to balance improved targeted deliv-
ery versus limited invasiveness, a recent study pioneered 
the use of microneedle patches (MNs) to deliver antibod-
ies against the checkpoint inhibitors PD1 and CTL4 in a 
melanoma mouse model. Results showed that MNs can 
painlessly pierce the mouse skin and efficiently deliver 
their cargo to regional lymph and capillary vessels ensur-
ing disease control in 70% of mice over 2  months (end 
time point) [159]. This promising proof-of-concept study 
shows therefore that MNs could efficiently combine tar-
get delivery with easy and non-invasive administration, 
holding great potential for delivery of also other immu-
notherapeutic regimens in the future.

Conclusion and future perspectives
As highlighted by the sheer amount of studies reviewed 
here, nanoparticle delivery systems are a very versatile 
platform to address crucial limitations of current can-
cer immunotherapy, both in  vivo and ex  vivo. In par-
ticular, nanotechnology and bioengineering approaches 
have greatly enhanced the efficacy of immunotherapies 
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by ensuring targeted delivery, limited systemic toxic-
ity, and increased local concentrations of therapeutic 
regimens. Despite many advances, a great deal of work 
is still needed in the future to further characterize and 
optimize the various platforms. First of all, comparative 
studies are importantly required to identify what are the 
most advantageous materials (e.g. liposomes versus syn-
thetic polymers etc.), sizes, compositions and other bio-
physical aspects, for each application. Few of this type of 
studies already appeared in the literature [74, 124, 160] 
but a systematic classification is still lacking. Further-
more, comparative studies aimed at identifying the best 
synergistic combinations of immunomodulatory mol-
ecules (e.g. cytokines, chemotherapeutic agents, anti-
gens etc.), coadjuvantes (e.g. TLR receptor ligands) and/
or target moieties (e.g. DC or T cell specific antibodies) 
will also help to progress the future of these therapies. 
Another key aspect to further investigate is the route of 
administration, in order to guarantee efficient delivery 
while limiting the treatment invasiveness. In this sense, 
a recent breakthrough study reported the successful use 
of MNs for the delivery of checkpoint inhibitors [159], 
a route of administration that should be further tested 
for the release of also different nanotherapies. Finally, 
apart from few cases, the majority of these formula-
tions have not been implemented yet in the clinic. To 
this aim, studies in more sophisticated models such as 
“humanized” mouse models [57, 161] that better reca-
pitulate the human settings of the disease will be key 
to support and boost future clinical translations. In 
conclusion, biomaterials constitute a powerful tool to 
overcome challenges with current immunotherapies, 
however we may have just started scratching the sur-
face of the future bioengineered solutions for cancer 
immunotherapy.
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