

POSTER PRESENTATION

In vivo targeting of cutaneous melanoma using an MSH-engineered human protein cage bearing fluorophore and MRI tracers

Luca Vannucci¹, Elisabetta Falvo², Cristina Maria Failla^{3*}, Miriam Carbo², Manuela Fornara⁴, Rossella Canese⁵, Serena Cecchetti⁵, Lenka Rajsiglova¹, Dmitry Stakheev¹, Jiri Krizan¹, Alberto Boffi^{2,4,6}, Giulia Carpinelli⁵, Veronica Morea², Pierpaolo Ceci²

From Melanoma Bridge meeting 2013 Naples, Italy. 5-8 December 2013

Background

Nanoparticle (NP)-based materials are very promising agents for enhancing cancer diagnosis and treatment. Once functionalized for selective targeting of tumor expressed molecules, they can specifically deliver drugs and diagnostic molecules inside tumor cells.

Materials and methods

In the present work, we evaluated the in vivo melanomatargeting ability of a nanovector (HFt-MSH-PEG) based on human protein ferritin (HFt), functionalized with both melanoma-targeting melanoma stimulating hormone (α -MSH) and stabilizing poly(ethylene glycol) (PEG) molecules. We used two independent and complementary techniques, such as whole-specimen confocal microscopy and magnetic resonance imaging, to detect the in vivo localization of NP constructs endowed with suitable tracers (i.e., fluorophores or magnetic metals).

Results

Targeted HFt-MSH-PEG NPs were shown to accumulate persistently at the level of primary melanoma and with high selectivity with respect to other organs. Melanoma localization of untargeted HFt-PEG NPs, lacking the α -MSH moiety, was less pronounced and disappeared after a few days. Further, HFt-MSH-PEG NPs accumulated to a significantly lower extent and with a different distribution in a diverse type of tumor (TS/A adenocarcinoma), which does not express α -MSH receptors. Finally, in a spontaneous lung

metastasis model, HFt-MSH-PEG NPs localized at the metastasis level as well.

Conclusions

These results point at HFt-MSH-PEG NPs as suitable carriers for selective in vivo delivery of diagnostic or therapeutic agents to cutaneous melanoma.

Authors' details

¹Institute of Microbiology, Academy of Sciences of the Czech Republic (ASCR), v.v.i., Prague, Czech Republic. ²CNR – National Research Council of Italy, Institute of Molecular Biology and Pathology, Rome, Italy. ³Molecular and Cell Biology Laboratory, IDI-IRCCS, Rome, Italy. ⁴Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome "Sapienza", Italy. ⁵Department of Molecular and Cellular Imaging, Istituto Superiore di Sanità, Italy. ⁶Center for Life Nano Science at Sapienza, Istituto Italiano di Tecnologia, Italy.

Published: 6 May 2014

doi:10.1186/1479-5876-12-S1-P6

Cite this article as: Vannucci *et al.: In vivo* targeting of cutaneous melanoma using an MSH-engineered human protein cage bearing fluorophore and MRI tracers. *Journal of Translational Medicine* 2014 12 (Suppl 1):P6.

³Molecular and Cell Biology Laboratory, IDI-IRCCS, Rome, Italy

Full list of author information is available at the end of the article

© 2014 Vannucci et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

^{*} Correspondence: c.failla@idi.it