Skip to main content

Table 2 Multivariate Analysis to identify predictors of SIS

From: Reduced blood EPAC1 protein levels as a marker of severe coronary artery disease: the role of hypoxic foam cell-transformed smooth muscle cells

Variable

F(3,140)

R2

B

SE

P

Model 1 (ENTER METHOD)

25.002

0.349

−0.639

1.759

0.718

Age

0.095

0.023

 < 0.001

EPAC1

−0.203

0.059

 < 0.001

DLP

1.456

0.543

0.008

Variable

F(7,129)

R2

B

SE

P

Model 2 (ENTER METHOD)

10.653

0.366

−1.039

2.418

0.668

Age

0.071

0.027

0.010

BMI

0.064

0.059

0.280

HTA

0.632

0.620

0.310

DLP

1.444

0.586

0.015

DM

−0.322

0.706

0.649

Hs-TnT

0.007

0.009

0.452

EPAC1

−0.233

0.064

 < 0.001

Variable

F(4,139)

R2

B

SE

P

Model 3 (ENTER METHOD)

29.872

0.462

−1.833

1.620

0.260

EPAC1

−0.201

0.053

 < 0.001

Sex

2.482

0.458

 < 0.001

Age

0.091

0.021

 < 0.001

DLP

1.307

0.496

0.009

  1. A large F-statistic value indicates that the regression model effectively explains the variation in the dependent variable. The R2 value represents the percentage of variation in the dependent variable (SIS) explained by the model. The β-coefficient (B) shows how much the dependent variable (SIS) changes with each unit change in the independent variable. The standard error (SE) reflects the potential error associated with the β-coefficient (B). DLP dyslipidemia, BMI body mass index (kg/m2), HTA arterial hypertension, DM type 2 diabetes mellitus, hs-TnT high-sensitivity troponin T