Skip to main content

Table 2 Performance of various machine learning models for predicting MASLD across internal validation, internal testing, and external validation cohorts

From: Machine learning models for predicting metabolic dysfunction-associated steatotic liver disease prevalence using basic demographic and clinical characteristics

Cohort

Model

AUC

95% CI

Optimal cutoff

Accuracy

Sensitivity

Specificity

Precision

F1 score

Internal validation cohort

LR

0.806

(0.787–0.825)

0.571

0.728

0.749

0.713

0.659

0.701

MLP

0.809

(0.790–0.827)

0.531

0.735

0.724

0.744

0.676

0.699

XGBoost

0.806

(0.788–0.825)

0.566

0.727

0.730

0.725

0.662

0.694

Bagging

0.801

(0.782–0.820)

0.578

0.727

0.709

0.740

0.669

0.688

RF

0.801

(0.782–0.820)

0.578

0.719

0.750

0.697

0.646

0.694

NB

0.797

(0.778–0.816)

0.464

0.714

0.747

0.689

0.640

0.689

LightGBM

0.796

(0.776–0.815)

0.577

0.716

0.731

0.705

0.647

0.687

SVM

0.769

(0.747–0.791)

0.594

0.736

0.704

0.760

0.685

0.694

KNN

0.767

(0.746–0.788)

0.619

0.694

0.753

0.650

0.614

0.677

DT

0.714

(0.694–0.734)

0.569

0.711

0.736

0.692

0.639

0.684

Internal testing cohort

LR

0.798

(0.771–0.825)

0.617

0.711

0.793

0.649

0.626

0.700

MLP

0.796

(0.769–0.823)

0.579

0.697

0.847

0.585

0.602

0.704

XGBoost

0.798

(0.771–0.825)

0.641

0.709

0.857

0.599

0.612

0.714

Bagging

0.791

(0.763–0.818)

0.597

0.722

0.718

0.724

0.658

0.687

RF

0.792

(0.764–0.819)

0.556

0.720

0.700

0.734

0.661

0.680

NB

0.786

(0.759–0.814)

0.664

0.695

0.826

0.597

0.603

0.697

LightGBM

0.789

(0.762–0.817)

0.582

0.719

0.749

0.696

0.646

0.693

SVM

0.739

(0.707–0.770)

0.610

0.717

0.674

0.748

0.664

0.669

KNN

0.748

(0.718–0.778)

0.614

0.685

0.704

0.670

0.612

0.655

DT

0.721

(0.693–0.749)

0.569

0.718

0.746

0.696

0.645

0.692

External validation cohort

LR

0.831

(0.825–0.837)

0.923

0.777

0.756

0.790

0.695

0.724

MLP

0.823

(0.817–0.829)

0.691

0.755

0.734

0.769

0.667

0.699

XGBoost

0.784

(0.777–0.791)

0.788

0.763

0.574

0.883

0.755

0.652

Bagging

0.757

(0.751–0.764)

0.874

0.758

0.633

0.837

0.710

0.669

RF

0.763

(0.755–0.770)

0.726

0.756

0.571

0.873

0.740

0.645

NB

0.798

(0.792–0.805)

0.997

0.742

0.762

0.729

0.640

0.696

LightGBM

0.807

(0.800-0.814)

0.912

0.766

0.723

0.794

0.689

0.706

SVM

0.607

(0.598–0.615)

0.641

0.731

0.436

0.917

0.769

0.556

KNN

0.774

(0.767–0.781)

0.880

0.738

0.628

0.807

0.673

0.650

DT

0.670

(0.664–0.676)

0.569

0.733

0.391

0.949

0.829

0.532

  1. Abbreviations: LR, logistic regression; MLP, multilayer perceptron; XGBoost, extreme gradient boosting; Bagging, bootstrap aggregating; DT, decision tree; KNN, k-nearest neighbors; LightGBM, light gradient boosting machine; NB, naive bayes; RF, random forest; SVM, support vector machine; AUC, area under the curve; MASLD, metabolic dysfunction-associated steatotic liver disease