Skip to main content

Table 2 Performance of SVEA and W/O MHSA, MSC on Different Datasets

From: SVEA: an accurate model for structural variation detection using multi-channel image encoding and enhanced AlexNet architecture

Data

Model

DEL

DUP

INS

INV

Overall

  

P

R

F1

P

R

F1

P

R

F1

P

R

F1

A(%)

 

SVEA

0.97

0.97

0.97

0.95

0.94

0.95

0.98

0.98

0.98

0.80

0.65

0.72

97.2

HG00514

w/o SA

0.97

0.97

0.97

0.96

0.92

0.94

0.97

0.98

0.97

0.93

0.62

0.74

96.5

 

w/o C

0.96

0.97

0.96

0.95

0.96

0.95

0.98

0.97

0.98

0.00

0.00

0.00

97.1

 

SVEA

0.96

0.98

0.95

0.97

0.95

0.96

0.98

0.96

0.97

0.70

0.72

0.77

97.5

HG00733

w/o SA

0.96

0.97

0.97

0.97

0.95

0.96

0.98

0.98

0.98

0.91

0.87

0.89

97.5

 

w/o C

0.95

0.98

0.96

0.93

0.95

0.94

0.98

0.97

0.98

1.00

0.07

0.13

96.8

 

SVEA

0.98

0.96

0.97

0.93

0.97

0.95

0.98

0.99

0.98

0.80

0.67

0.74

97.2

NA19240

w/o SA

0.96

0.97

0.97

0.96

0.94

0.95

0.98

0.98

0.98

0.92

0.64

0.76

97.1

 

w/o C

0.94

0.95

0.95

0.96

0.90

0.93

0.97

0.97

0.97

1.00

0.02

0.04

95.8

  1. P: Precision, R: Recall, F1: F1 score, A: Accuracy. SVEA: Structural Variation detection with Enhanced AlexNet architecture. w/o SA: Without Multi-Head Self-Attention. w/o C: Without Multi-Head Self-Attention and Multi-Scale Convolution.